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Three‑dimensional computational 
fluid dynamics analysis 
of an electric submerged arc 
furnace
K. Karalis1*, N. Karalis2, N. Karkalos3, Ν. Ntallis4, G. S. E. Antipas4 & A. Xenidis2

A computational fluid dynamics (CFD) method is proposed to analyze the operation of a submerged 
electric arc furnace (SAF) used in ferronickel production. A three‑dimensional mathematical model 
was used for the time‑dependent solution of the fluid flow, heat transfer and electromagnetic 
phenomena. The slag’s physical properties, which play a crucial role in the SAF operation, were 
previously determined using classical molecular dynamics simulations and empirical relationships. 
The analysis revealed that the main slag properties affecting SAF operation are density, viscosity and 
electrical conductivity—the latter two being mutually dependent. The high electrical conductivity 
values of the slag favor melting via the high Joule heat produced within the slag region. Calculation of 
the dimensionless Péclet and Reynolds numbers revealed that the slag velocities play a decisive role 
in heat transfer and further indicate that the slag flow is laminar. The average slag velocity calculated 
0.0001 m/s with maxima in the vicinity of the electrodes.

The principal ferronickel production route involves reductive roasting of lateritic ores in rotary kilns towards for-
mation of  calcine1, which further undergoes excess-carbon  smelting2 in megawatt electric arc furnaces (SAF)3–5. 
SAFs typically operate at temperatures as high as 2000  K6 under the effect of Joule heating maintained by several 
self-backing Söderberg  electrodes7 which are continuously consumed via submersion into a slag  melt1,7. FeNi 
recovery is achieved by continuous chemical reduction promoted by high-temperature (fast) metal/slag reaction 
kinetics, enhanced mass and heat transfer, and the slag bath’s electromagnetic stirring buoyancy  effects7,8 and low 
slag  viscosity9. Intrinsically, however, metal recovery is dependent on the slag’s electrical conductivity (EC) and 
its effect on transport properties of the  mesoscale10–12; slag EC itself is very sensitive to even fractional changes 
in the chemical concentration of the ore, which reflect on final nickel quality.

Ultimately, slag and ferronickel EC define the association between the chemical composition of the ore feed 
and the energy consumption of the SAF; this association constitutes the most substantial reductive smelting 
metric—exclusively determined by trial and  error1—and an intrinsically multi-scale modeling problem which 
has not been addressed so far. To this extent, we previously reported the first step of a multi-scale approach, 
regarding the first principles’ prediction of mesoscale slag EC to within 10% of the experimentally determined 
value (81.1 S/m at 1773 K) for an industrial-grade reductive smelting  implementation6. In the current study, we 
apply the pre-determined properties (based on the atomic order, atomistic modeling)3,4,6,13 on the development of 
a three-dimensional mathematical model to examine the effect of the main operational parameters (applied volt-
age, current density etc.) in the process efficiency. In the former models, the distribution of temperature, velocity, 
and density regarding the slag electrical and thermal conductivity was determined. Based on the obtained results, 
correlations based on the slag composition to the overall power consumption can be made.

Methods
CFD model formulation. Maxwell’s equations were solved throughout the three-dimensional CFD 
domain to account for heat generation due to the materials’ resistance to the flow of electric current (Joule heat-
ing). These equations consist of the two Gauss laws, the Faraday law and the Ampere  law14. If the charge density 
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is initially zero, it remains zero at all times thereafter. In the absence of free charge density and of an external 
magnetic field, these equations respectively revert to the following  form15

where E (V/m) is the applied (external) electric field, μ0 (H/m) is the magnetic permeability, ε0 is the permit-
tivity of free space. In the case where E is constant, the term in the right side of Eq. (4), which is describing the 
displacement current, is vanishing. The magnetic field B [T] is describing by the equation

where B0 and b represent the contributions from the external and induced magnetic field, respectively; in the 
current model, B0 is by definition zero and we have previously shown b to be  infinitesimal7,8 and may, thus, be 
ignored. We note that Eq. (4) is valid under the additional provision that charge mobility is sufficiently low.

Based on the electric field, the current density field, j (A/m2), was calculated from Ohm’s law for a fluid with 
a velocity field u (m/s), formally expressed as inside a magnetic field

where σ (S/m) is the electrical conductivity and the term u × B is due to the induced field. The magnetic force 
(Lorentz force law) in a charge Q , moving with velocity u in a magnetic field B  is16

The mathematical statement of electric local charge conservation law can be formulated in the equation of 
continuity in the form  of16

where ρ is the volume charge density and j is the volume current density.
In Eq. (7), the applied electric field E is also expressed as the gradient of an electric potential, φ (V) by 

satisfying

and due to Eqs. (6)–(8) it arises

The velocity field was computed via the momentum differential equations describing the convective motion 
of a fluid with variable density ρ(t) (the latter required in order to be able to resolve thermal buoyancy effects 
in the SAF)  as17.

and

where, P (Pa) is the pressure and μ (Pa·s) is the dynamic viscosity. In Eq. (12), the combined effect of the intensity 
of the magnetic field and of the current density yields the Lorentz force source ( j× B ), the source term  Su modi-
fies the momentum balance depending on completion of solid–liquid phase change and vice versa by dampening 
the velocity at the phase change interface (solid–liquid) so that it becomes that of the solidified phase after the 
 transition18 and g is the gravity force.  Su is given  by18,19

where α represents the volume fraction of the liquid phase,  Amush and ε represent arbitrary constants respec-
tively  (Amush should be large and ε small to produce proper damping)18 and usolid is the velocity of the solidified 
material (m/s).

Finally, the SAF temperature field, T (K), obeys energy  conservation17

(1)∇ · E = 0

(2)∇ · B = 0

(3)∇ × E = −
ϑB

ϑt

(4)∇ × B = µ0j + µ0ε0
∂E

∂t

(5)B = B0 + b

(6)j = σ(E + u× B)

(7)Fmag = Q(E + u× B)

(8)
∂ρ

∂t
+∇ · j = 0

(9)E = −∇ϕ

(10)∇2ϕ = ∇ · (u × B)

(11)
ϑ

ϑt
ρ +∇ · (ρu) = 0

(12)
ϑ

ϑt
ρu +∇ · (ρuu) = −∇P+∇ · (µ∇u)+ ρg+ j× B+ Su

(13)Su =
(1− a)2

a3 + ε
Amush(u− us)
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where, ρ is the fluid density (kg/m3),  Cp is the heat capacity (J/(kg K)), k is the thermal conductivity (W/(m K)) 
and σ is the electrical conductivity (S/m). The j·j/σ term in Eq. (14) represents the energy source (Joule heating)20, 
relating the flow of electric current, q

where σ is equal either to the slag’s ionic contribution computed via the Nernst-Einstein relationship based on 
our precursor MD structural modelling (electrical conductivity range between 27 to 233 S/m for a temperature 
range of 1473 to 1773 K) or set to FeNi literature value(s)6,21. The total heat induced by the three electrodes in the 
SAF is approximately 44  MW7, while the heat due to the radiation was determined to be approximately 1.87 MW 
(4% of the total heat produced). Since an amount of heat due to radiation re-enters the molten bath via reflection 
on the furnace dome, radiative contributions have been ignored.

CFD simulations. Convergence was assumed when the discretized equations residual fell below a preset 
tolerance of  10–6. The coupled thermal/electromagnetic problem [i.e., the system of Eqs. (11)–(14)] was solved 
via the stationary direct solver Multifrontal Massively Parallel Sparse direct Solver (MUMPS)22. The grid of the 
SAF model consisted of 3,237,985 free tetrahedron mesh elements, with the worst element having a minimum 
quality of 0.7465; element quality for the tetrahedron mesh was defined  as22,

where V is the volume and  h1-h6 are the side lengths of the tetrahedron. If q1 > 0.1 the mesh quality (skewness) 
is not expected to affect the quality of the  solution22. All CFD simulations were performed with COMSOL 
 Multiphysics20.

Materials properties. The air, slag and ferronickel phases were considered as homogeneous fluid  continua7. 
The density, viscosity and electrical conductivity of the slag layer and the electrical conductivity of the ferron-
ickel layer were modeled as functions of temperature (see Table 1). For the slag, the values obtained by perform-
ing MD simulations while for the other domains the properties were obtained from the  literature10–12,23–28.

The slag properties were determined via MD  simulations6 while for the ferronickel, electrode and firebrick 
domains they were obtained from the  literature11,12,23–28. A graphical representation of the density, viscosity and 
electrical conductivity is given in Appendix.

Results and discussion
By solving Eqs. (12)–(15), the values and the corresponding gradients of temperature and velocity were calcu-
lated in the developed three-dimensional discretized domain. The temperature gradients in the SAF are a direct 
outcome of Joule  heating6 which, in turn, is proportional to the current density, j, relating the flow of electric 
current, q according to Eq. (14)7,8. To calculate j, the aggregate FeNi/slag σ value can be inputted into Eq. (5), 
then solving the system of Eqs. (5) and (10) in order to obtain the spatial distribution of the electric potential 
V, on the provisions that B is zero as there is no magnetic field external to the SAF rig,  B0 is by definition zero 
[Eq. (6)] and b is negligible as previously shown by  us8. In this manner we were able to examine whether the 
experimentally-observed electric SAF potential in the range 380–400 V may be reproduced by setting the applied 
electric current of the CFD model to values within the SAF operating parameter range of 68–72 kA.

(14)ρCp
ϑT

ϑt
+

(

ρCpu · ∇
)

T = ∇ · (k∇T)+
j · j
σ

(15)q =
j · j
σ

(16)q1 =
72
√
3V

(

h21 + h22 + h23 + h24 + h25 + h26
)3/2

Table 1.  Thermophysical properties of materials used in the computations. The slag properties were 
determined via MD  simulations21 while for the ferronickel, electrode and firebrick domains they were obtained 
from the  literature11,23–29. A graphical representation of the density, viscosity and electrical conductivity is given 
in Appendix 1.

Properties Slag Ferronickel Electrodes Firebricks

Density [kg/m3] 7.48 ×  10−8T3–3.799 ×  10−4T2 + 0.25704 T + 3294.203 7000 1800 2300

Viscosity [kg/(m s)] 5 ×  1013  T−4.776 0.005 – –

Heat capacity [J/(kg K)] 1700 525 1800 1000

Thermal conductivity [W/(m K)] 1 15 18 1.22

Electrical conductivity [S/m] 5.34 (Τ < Τmelt)
427.32 – 0.866 T + 0.000515  T2 − 7.57E −  8T3 (T >  Tmelt)

1E6−330.83 T 25,000 0.01

Solidus temperature [K] 1420 1570 − −

Liquidus temperature [K] 1450 1600 − −

Latent heat [J/kg] 400,000 290,000 − −
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Hence, alternating current with a frequency of 5 Hz (see Appendix 1) and a maximum potential of 380 V was 
applied to the upper surface of the electrodes (V = 380 × sin(ωt + φ), φ equal to 0, 120 and 240 respectively for 
each electrode, Fig. 1). On the furnace freeboard, immediately above the air region (Fig. 1), a zero normal gradi-
ent for the electric potential was  imposed29–32, in order to maintain the current densities and the joule heating 
phenomenon. In the firebrick-lined side walls adjacent to the air and slag layers, a constant heat-transfer coef-
ficient of 100 W/(m2 K) and a free-stream temperature of 293.15 K were  set29, equaling that of the water-cooled 
firebricks. In the firebrick side walls adjacent to the ferronickel layer, the temperature was set equal to that if the 
free stream and a constant heat-transfer rate of 10 W/(m3 K) were used, in accordance with the physically sensible 
value proposed in the  literature29,30. At the bottom of the furnace, the temperature was considered constant and 
equal to 313.15 K (based on measurements performed at the LARCO plant) and the heat transfer-coefficient was 
set to 2 W/(m3 K). The initial SAF temperature was equal to 1000 K corresponding to the average temperature 
of the calcine (feed material). Using this temperature, the Joule phenomenon and the initial stages of melting 
were examined. Since the flow was treated exclusively within the region containing the slag, no-slip conditions 
(u = v = 0) needed to be imposed at the interfacial boundaries between both the slag and electrodes and the fer-
ronickel and firebricks, while a slip boundary condition (v = 0) was imposed on the slag and air  interfaces30–33. 
We note here that slip conditions ought to be applied in cases where viscous effects are negligible and there is 
no boundary layer, such as in a fluid/solid interface. As we determined  previously8 the no-slip condition is par-
ticularly suitable for the interaction with a solid wall, when liquid layers adhere to a nearby solid boundary, due 
to infinite shear stress which reduces which velocity to zero, whereas slip boundary conditions are related to a 
stress-free condition in the gas–liquid interface.

Distribution of electric potential. In order to understand the electric and thermal phenomena inside the 
SAF, we calculated the distribution of electric potential as portrayed in Fig. 1a on the time frame of 0.02 s across 
three cross sections. In the current frame the three electrodes are under potential values of -330 V, 330 V and 0 V 
respectively. Due to the ground potential applied in the sidewalls, the potential distribution inside the SAF lies 
between a minimum value of 0 V and a minimum/maximum of − 380 V and 380 V respectively. It is evident that 
the vast majority of the SAF’s sub-regions are under virtually zero electric potential, with the mere exception of 
regions in the immediate vicinity (up to 2.5 m) of electrode edges, which are affected by the applied potential in 
the three electrodes. This observation is on a par with very similar behavior observed based on our own precur-
sor 2D analysis of the same SAF layout, having applied direct current (DC)7,8. Consequently, a qualitative agree-
ment of electric potential distribution behavior is observed between 2 and 3D simulations.

Based on the previous findings, and in order to understand the effect of the melting on the distribution of 
electric potential, we decided to investigate the evolution for the computational time periods of 0, 2500, 7500 
and 10,000 s across an intercept line from  x1 = 0 to  x2 = 17 m for constant y = 1.7 m. The line chosen was 20 cm 
lower than the electrode tips in order to avoid spurious effects in the electrode corners (and to achieve smoother 
distribution, see Fig. 2). Along with the intercept, we were able to observe physically meaningful electric potential 
variations with respect to the selected time steps owing to the 5 Hz alternating current and to the temperature 
dependence of the electrical conductivity of the slag. In the later time steps (e.g. 5000 s) the electrical potential 
drop is smoother, which is due to the higher electrical conductivity values of the slag (cross-related to slag tem-
perature). Aiming to determine the electric potential drop in respect to temperature, we focused our study on 
timesteps of 0 s and 2500 s, for which we observed a potential drop equal to 35–40% at distances of 50 cm from 

Figure 1.  (a) Electric potential distribution (V) in the SAF extracted from a frame at 0.02 s. The minimum and 
maximum electric potential values are detected within the electrode core and a strong decay to ground values 
(0 V) is observed and (b) Current density isosurfaces (A/m2) at the time frame of 0.015 s. In comparison to the 
electric potential values, the current density is observed in both slag and ferronickel regions.
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the electrode edge, while for 10,000 s the same pressure drop was determined to lie approximately 2.3 m from the 
electrode edge. Confirming model integrity, for timesteps of 5000 s and 7000 s, respectively, an electric potential 
drop of 20% in distances 20 cm from the electrode edges were calculated in accordance with the  literature29,30,34. 
These observations are important because they offer a plausible explanation of the evolution of the Joule heat 
phenomenon and provide a firm theoretical basis for the explanation of furnace heating.

Distribution of electric current density. In Fig.  1b a set of current density isosurfaces in the range 
0.1–1.5 ×  104 A/m2 at a simulation time of 0.015 s is presented. In this snapshot, the left electrode was observed 
to be under a potential of 380 V while the other two electrodes had a potential of 190 V. The highest current 
densities observed were located in the slag phase, in the vicinity of the three electrodes. However, a fractional 
current density was also computed to be present in the ferronickel phase, suggesting that a small amount of heat 
is also produced. Figure 3 depicts the current density pathways in the upper layer of the slag phase (slag–air 
interaction layer) for several different simulation times. Due to the alternating current, where electrodes change 
their potential, it is evident that the direction of the electric current is following the conventional path, from the 
electrodes with a positive electric potential to those with a negative potential.

Distribution of electric power: the Joule phenomenon
Joule heating in the S facilitates feed material (calcine) melting and is proportional to the current density 
[Eq. (16)]. The higher amount of heat is produced in the electrodes’ vicinity, resulting in temperature gradient 
in the bath; the buoyancy phenomenon is increased, leading to more efficient mixing. In Fig. 4, iso-surfaces of the 
Joule heat at 0.007 s are portrayed. The higher amount of heat is produced in the slag region close to the electrodes 
in full accordance with industrial observations where it also observed intense mixing due to higher velocities.

Figure 5 presents the Joule heat in respect to electrode immersion depths of 40 and 60 cm and to slag electrical 
conductivity values of 10, 30 and 60 S/m. To analyze the results, a cut line in the 3D geometry was drawn with 

Figure 2.  Electric potential distribution across an intercept line from  x1 = 0 to  x2 = 17 m for constant y = 1.7 m.

Figure 3.  Current density pathways (A/m2) in respect to electrode potential.
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coordinates  x1 = 0 m until  x2 = 18 m and constant y = 1.2 m. From the results, it is obvious that the higher values 
of the slag electrical conductivity lead to higher values of produced Joule heat. The increase of the immersion 
depth leads to higher amounts of Joule heat in the lower part of the slag region.

Figures 6 and 7 display the electric potential and temperature distribution for the time steps of 2500, 5000, 
7500 and 10,000 s, respectively. Due to the temperature dependency of the slag’s electrical conductivity, the elec-
tric potential distribution is modified with respect to the time. More specifically, the produced heat increases the 
temperature, which increases the electrical conductivity value, which according to Eqs. (14) and (15) leads to the 
production of higher amount of heat in the next timestep. As shown, the temperature distribution is correlated 
with the slag electrical conductivity values (Fig. 8). Increasing temperatures lead to correspondingly increasing 
electrical conductivities and vice versa. As may be observed, at a time step of 10000 s the temperature in the 
vicinity of the immersed electrodes is close to 2000 K, in accordance with industrial measurements performed 
at LARCO S.A. We performed measurements of the slag temperature via an infrared pyrometer which indicated 
that temperature varies between 1523 and 1633 K at the outlet of the SAF. Also, near the electrodes the tempera-
ture varies between 2273 and 3073  K7. Hence, initial slag melting occurs in the region between the electrodes, 
spreading radially thereafter. This phenomenon is due to the current density pathways as shown in Fig. 1b.

Based on the analysis with constant electrical conductivity values, it was determined that the higher slag 
electrical conductivity leads to higher Joule heat produced. The average Joule heat produced in the slag region 
is calculated equal to 1905.7 W/m3 and in the ferronickel equal to 0.27 W/m3. Increasing electrode immersion 
depth was determined to lead to higher Joule heat in both the slag and ferronickel phases. This is attributed to 
the fact that the electric current is transferred through the ferronickel region producing more heat in this region 

Figure 4.  The reductive smelting in SAF is due to the Joule heat. The Joule heat isosurfaces (W/m3) at the time 
step of 0.007 s are presented. Due to the slag resistance in the electric current (small electrical conductivity) the 
maximum amount of heat is produced in the slag region.

Figure 5.  Joule heat distribution as a function of electrode immersion depth and electrical conductivity of the 
slag.
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Figure 6.  Potential distribution (V) at times equal to (a) 2500 s, (b) 5000 s, (c) 7500 s and (d) 10,000 s. The 
maximum absolute values are determined in the vicinity of the electrode tips and monotonically decreases to 
ground potential (0 V) values.

Figure 7.  Temperature distribution (K ×  103) in the SAF at times equal to (a) 2500 s, (b) 5000 s, (c) 7500 s and 
(d) 10,000 s. A direct pathway from the immersed electrode tip to the ferronickel region is observed which can 
be defined as the submerged arc occurring in the SAFs.

Figure 8.  Electrical conductivity (S/m) of the slag phase at times equal to (a) 2500 s, (b) 5000 s, (c) 7500 s and 
(d) 10,000 s.
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and hence responsible for temperature increase within this  phase35–38. Through empirical  relationships10 it was 
calculated that the thermal conductivity of the slag was in the range of 0.1 –1 W/(mK). Interestingly, any fluctua-
tion of thermal conductivities of this order of magnitude did not appear to affect the outcome of the simulations.

Distribution of slag density and velocity. Due to the variation of temperature in the slag phase, the 
density varies between 2800 kg/m3 in the vicinity of the electrodes to 3300 kg/m3 close to the firebricks (see 
Fig. 9). This variation was observed to lead to stirring of the slag bath due to buoyancy. We could hence deduce 
that slag melting is favored both from an increase in electrode potential as well as from increasing slag electri-
cal conductivity. The latter is of crucial importance for the optimization of the SAF operation because additives 
can be used in the feed materials to artificially cause an increase of the electrical conductivity of the slag in a 
controlled fashion. For example, such additives are CaO and MgO which we have previously found that it acts 
by disrupting the alumino-silicate  chains4. An optimum concentration of these additives can be determined by 
performing MD parametric analysis using the Buckingham-type transferable interatomic  potential6.

The maximum velocities in the vicinity of the electrodes and along the slag solid/liquid interface was found to 
be in the range 0.025–0.53 m/s29,30,33,34,39,40 with average values in the range 0.0001–0.028 m/s29,39,41,42. In Fig. 10, 
the velocity distribution is presented at times of 2000, 3000, 4000 and 5000 s, respectively. The maximum veloci-
ties—equal to 0.1 m/s—were detected on the solid/liquid interface of the slag as well as in the regions close to 
electrode surfaces. Increasing potentials and increasing slag electrical conductivity favor high velocities. For 
example, an indicative supporting case for this is determined by performing simulations with constant electri-
cal conductivity; an increase in slag electrical conductivity lead to increased velocities. We also observed that 
this trend is independent of the use of AC current and of use of temperature-dependent electrical conductivi-
ties. Three dimensional simulations resulted in markedly lower velocities compared to two dimensional. This 
result may be attributed to the average Joule heat which is lower in comparison to 2D analysis. Consequently, 
3D simulations yield smoother temperature profiles which lead to smaller density deviations and much milder 
buoyancy effects. However, as can be seen from the dimensionless Péclet number (computed to be excessively 

Figure 9.  Distribution of slag density (kg/m3) with respect to times of (a) 2500 s, (b) 5000 s, (c) 7500 s and (d) 
10,000 s. As expected, these snapshots are inversely proportional to the temperature distributions (Fig. 7).

Figure 10.  Velocity distribution (m/s) in the slag region with respect to times (a) 2000s, (b) 3000 s, (c) 4000 s 
and (d) 5000 s.
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larger than unity, 231.3), the slag velocity plays an instrumental role in heat transfer-associated phenomena, in 
a flow which based on the associated Reynolds numbers (0.44) is characteristically laminar.

Conclusions
In the current study a three-dimensional mathematical model describing the transient operation of an electric 
submerged arc furnace used in the ferronickel production was developed. The use of temperature dependent 
physical properties leads to instabilities which were results via the use of very small timesteps and fine mesh. 
One of the key physical properties affecting the operational efficiency which could lead to the reduction of the 
operational costs is the slag electrical conductivity; higher values lead to the production of higher amounts of 
Joule heat and consequently favors the smelting procedure. From the nondimensional analysis, it was revealed 
that slag flow is unambiguously laminar but with a decisive role in the heat transfer. The maximum velocities 
revealed in the vicinity of the three submerged electrodes.
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