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Abstract: Our health requires continual protein synthesis for maintaining and repairing tissues. For
protein synthesis to function, all the essential (indispensable) amino acids (IAAs) must be available
in the diet, along with those AAs that the cells can synthesize (the dispensable amino acids). Here
we review studies that have shown the location of the detector for IAA deficiency in the brain,
specifically for recognition of IAA deficient diets (IAAD diets) in the anterior piriform cortex (APC),
with subsequent responses in downstream brain areas. The APC is highly excitable, which makes
is uniquely suited to serve as an alarm for reductions in IAAs. With a balanced diet, these neurons
are kept from over-excitation by GABAergic inhibitory neurons. Because several transporters and
receptors on the GABAergic neurons have rapid turnover times, they rely on intact protein synthesis
to function. When an IAA is missing, its unique tRNA cannot be charged. This activates the enzyme
General Control Nonderepressible 2 (GCN2) that is important in the initiation phase of protein
synthesis. Without the inhibitory control supplied by GABAergic neurons, excitation in the circuitry
is free to signal an urgent alarm. Studies in rodents have shown rapid recognition of IAA deficiency
by quick rejection of the IAAD diet.

Keywords: protein synthesis initiation; neural signaling; anterior piriform cortex; transfer RNA; GCN2

1. Introduction and History

Of the 20 amino acids that are incorporated into the body’s protein, the 9 essential,
i.e., indispensable amino acids (IAAs) are those that are neither stored nor synthesized in
the body in adequate amounts to support the needs of protein synthesis and metabolism
(Table 1). In particular, the limitation of IAAs will lead to dysfunction within the brain,
including seizures [1]. The IAAs include the branched-chain AAs, leucine, isoleucine and
valine, plus the sulfur-containing AAs, methionine (which can be partially replaced by
cysteine), tryptophan, phenylalanine, lysine, threonine and histidine. This distinction
between dispensable AAs and IAAs dates to the early metazoans, reviewed in [2]. In
contrast to plants and organisms that can synthesize all their AAs internally, omnivores
and herbivores depend on their diets to supply the IAAs that are essential for maintaining
the synthesis of proteins, hormones and other body components, as well as for structural
integrity, thus the term dietary IAAs. These must be acquired, most often from food, so the
abilities to recognize and reject an IAA deficiency in the current diet, to seek better food
and to recognize the repletion quickly, are crucial for health, healing, reproduction, and
indeed, survival.

While nitrogen containing foods have been known to be important parts of the human
diet for over 200 years [3], the earliest observations showing growth failure from IAA
deficient (IAAD) diets were made in the early 1900s [4]. Additionally, early in the 1900s,
it was reported that animals did not grow normally when they were fed diets based on
gelatin, which is devoid of the IAA, tryptophan, as well as deficient in several other IAAs.
Thus, gelatin was shown not to be an adequate source of protein for the support of growth,
reviewed in [5].
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Table 1. Indispensable and Dispensable Amino Acids.

Indispensable Amino Acids Dispensable Amino Acids

Histidine (H, His) Alanine (A, Ala)
Isoleucine (I, Ile) Arginine (R, Arg)
Leucine (L Leu) Asparagine (N, Asn)
Lysine (K, Lys) Aspartic Acid (D, Asp)

Methionine (M, Met) Cysteine (C, Cys)
Phenylalanine (P, Phe) Glutamic Acid (E, Glu)

Threonine (T, Thr) Glutamine (Q, Gln)
Tryptophan, (W, Trp) Glycine (G, Gly)

Valine (V, Val) Proline (P, Pro)
Serine (S, Ser)

Tyrosine (Y, Tyr)
Abbreviations: Single letters and three-letter abbreviations assigned to each amino acid. IUPAC-IUB Joint
Commission on Biochemical Nomenclature (JCBN) Nomenclature and Symbolism for Amino, Acids and Peptides.

McCoy and colleagues [6], in completing the list of IAAs, reported the isolation of the
final IAA, threonine. So, a mixture of L-AAs including all the IAAs could substitute for
adequate protein in the diet. Then, each, or any group, of the IAAs could be eliminated to
study their effects with precision. Later, it was found that animals rejected several types
of imbalanced or devoid IAAD diets. The work to answer the many questions raised by
these discoveries up to 1970 was thoroughly reviewed by Harper et al. [7]. By reporting
that decreased food intake occurs before growth retardation or other deleterious effects,
Harper and Rogers [8] showed that altered eating behavior was the first sign of sensing
IAAD. Then, because growth can be maintained in animals on an imbalanced IAAD diet
if intake was maintained by tube feeding or providing the animals no other food choice,
reduced food intake was recognized to be the cause of, rather than resulting from, the poor
growth reported in several animal species [7]. Indeed, a reduction in feeding was observed
as early as 28 min after introduction of a threonine devoid diet, a finding correlated with
the changes in concentration of threonine in the plasma (Figure 1), reviewed in [9], and
later supported by Gloaguen et al. [10].

 
Figure 1. Food intake in intervals of 15 min. by rats (5/group) given corrected (COR: control) or
threonine devoid (DEV) diets. Decreased food intake is seen by the DEV group in the 16–30 min
period. (Taken from Gietzen et al., 1986).

This early response is likely due to the efficiency of the AA transporters with overlap-
ping affinity at the blood–brain barrier [11,12].

2. The Search for the Sensor

Was the sensor in the brain, any of the known sensory pathways, or in the periphery?
Because occluding the nares, so that the animals could not smell, did not affect their ability
to recognize the IAAD, clearly, smell was not the sensory mechanism [13]. Similarly, taste
was not the initial mechanism [14] nor was palatability of the diet [15]. In addition, the
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recognition of IAAD also does not require intact liver [16], vagal [17], gastric [18], or
adrenal [19] function.

The importance of the brain in recognizing and signaling for an animal to reject its diet
was first reported by Quinton Rogers and Philip Leung. Infusions of the limiting IAA into
the carotid artery restored eating of the IAAD diet, but similar infusions into the jugular
vein required 40-fold higher concentrations for the same effect (Figure 2) [20], a finding
replicated in cockerels [21].
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Figure 2. Evidence for brain recognition of IAAD diet. Results from day 1 as % of control: CA,
threonine infusion: 105%. Other groups, approximately 60%. Food Intake, Percent of control on day 1
of infusion. Abbreviations: solid lines: CA, carotid artery infusions of Thr; JV, jugular infusion of
Thr. Dotted lines, infusions of saline into both sites, as indicated. Image is Figure 2 from Leung and
Rogers [20], with permission.

The first results showing that the responses to IAAD diets are in the brain were seen
when Leung and Rogers [20] cannulated rats in either the jugular vein (JV) or carotid artery
(CA) and infused threonine or saline into each cannula. Food intakes of the threonine
imbalanced diet are shown for the first 4 days after onset of the infusions. Clearly, threonine
in the CA blocked the feeding depression to the IAAD diet, while the same infusion into
the JV did not.

Tews et al. [22–24] reported the mechanism for getting IAA imbalance in the brain via
competition for AA transporters [25] but did not localize the effect within the brain. Nonethe-
less, clearly the brain housed the sensor that responded to the loss of the limiting IAA.

The next question was: where in the brain is the sensor? To begin the studies locating
the sensor for IAAD, Rogers and Leung made electrolytic lesions in thirteen brain areas,
plus the pituitary and olfactory bulbs. While investigating various brain areas that could
house the sensor, a student misplaced the surgical apparatus and lesioned an area that had
not been under consideration, as it was further anterior than any areas studied previously.
Surprisingly, the animals with these far-anterior lesions were unable to recognize the IAAD
diet and continued eating it, whereas lesions in the hypothalamus and other brain areas
known to be involved in the control of food intake had no such effect Table 2 [26].
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Table 2. A: Brain areas studied. B: Effects of electrolytic lesions on intake of an IAAD diet, C:
Concentrations of the limiting IAA, threonine, in brain areas as listed. Diets were based on a
basal or corrected diet, each containing all IAAs or an IAA imbalanced diet, using threonine as the
limiting IAA.

Brain Area
Effects of Lesions on Intake

of Deficient Diet

Concentrations of Threonine

µm/g Wet Tissue

A B C

AMYGDALA ↑ * ↑ 7% NS
ANTERIOR CINGULATE

CORTEX – ↓ 50%, * p < 0.05

ANTERIOR PIRIFORM
CORTEX ↑ ↓ 43%, * p < 0.05

LATERAL
HYPOTHALAMUS – ↑ 16% NS

LOCUS COERULUS – ↓ 30% NS
NUCLEUS OF SOLITARY

TRACT – ↓ 43%, * p < 0.05%

VENTRAL TEGMENTAL
AREA ↓ ↓ 24% NS

VENTROMEDIAL
HYPOTHALAMUS – ↑ 2% NS

PITUITARY ↓ N/D
OLFACTORY BULB – N/D

Symbols used: In Column B: ↑ * = significant increase; arrows without * = not significant; –, no effect. In Column
C: NS, not significant; N/D, not determined; p < 0.05, level of significance. In Column B, Behavioral Effects show
altered intake of a threonine imbalanced diet introduced after 1 week of eating a threonine basal diet (see Methods
for details of feeding protocol). In Column C, Biochemical effects: Concentration changes of the limiting IAA after
2.5 h exposure to a threonine imbalanced diet, compared to the basal control. Areas that showed no change in
either measure but were not included in this table: Area Postrema, Dorsolateral Hippocampus, Lateral septum,
Raphe nuclei, Thalamic taste nuclei. Data are taken from Tables 1 and 2 in [26].

Evaluation of brain slices bearing the lesions that had resulted in the rats’ inability
to recognize an IAAD showed that the area sensitive to IAAD diets was in the anterior-
lateral cortex, specifically, the Anterior Piriform Cortex (APC) [27]. This brain area is the
most primitive of all animal cortices and also serves as the primary olfactory cortex [28].
These lesion data showed that the limbic–rhinencephalic areas associated with olfactory
information, including the APC and the amygdala, were important in the initial decreased
feeding responses in rats fed an IAA imbalanced or devoid diet [27,29,30]. However, the
concentration of the limiting IAA was not altered in the amygdala or in any of the three
areas of the hypothalamus that are involved in feeding. This illustrates the importance of
IAA concentrations in the brain areas implicated in IAAs. So, neither the amygdala nor the
feeding centers in the hypothalamus could serve as the primary sensor; by default, the APC
was accepted as the brain’s sensory area for recognizing an IAAD diet. In addition, the
APC is in or near a highly excitable area determined by Gale and colleagues, who injected
progressively smaller doses of a seizure-inducing drug into various discrete brain areas
to determine the most excitable area, which they termed the Area Tempestas [31]. Taken
together, the evidence was consistent with a role for the APC as the prime candidate for
rapid activation by disturbances of IAA balance.

3. Methods: Importance of the Prefeeding Method in Studying the Earliest Response

To study the time course of IAAD recognition, the subjects must be prepared properly.
Prefeeding diets that do not overload the body with protein must be used, as an IAAD
diet will not be noticed when the plasma is replete with an excess of IAAs. As an example
of pretrial treatments, in Beverly’s studies [32–35], preparation of the subjects for rapid
recognition of an IAAD diet, included the following: Rats were fed a low protein basal
diet that was limiting in the IAA to be tested for at least a week. On this diet, they grew as



J. Clin. Med. 2022, 11, 191 5 of 13

well as the controls, but this prefeeding protocol aided the testing for sensing a deficiency
because the diet contained minimal amounts of protein and particularly, was limited (but
not devoid) of the IAA to be studied. In such animals, the test IAAD diet, either imbalanced
or devoid of a single IAA, depletes the limiting IAA rapidly in the plasma and brain. Amino
acids in our studies were determined by chromatography using a Beckman 7300 amino acid
analyzer (Palo Alto), newer models will continue to be available. With this feeding protocol,
Koehnle [36] recorded the decreasing weights of food cups, using on-line computerized
balances, in intervals of a few seconds. Analysis of the meal patterns and durations revealed
that 50% of the animals in the study had stopped eating an IAAD meal in 20 min, and
the time to the second meal was significantly delayed. So, the mechanism underlying the
sensing and rejection of IAAD was rapidly deployed. Therefore, to investigate the earliest
sensory mechanism for IAAD, the subjects need to be studied within the first 1

2 h after
introducing the IAAD diet

Many years were devoted to determining the mechanism of the IAAD sensor and the
neurochemistry involved. It is important that the sensing and rejection of an IAAD must
be rapid, as signals due to the missing IAA will soon stimulate protein degradation [37]
resulting in functional losses, in the brain in particular. Beverly et al. [32–34,38] reported
a series of results using injections into the APC that became the basis for the subsequent
discovery of the role of protein synthesis in the activation of the APC after IAAD diet
ingestion. These experiments showed the specificity of the response to the limiting IAA.
After injections of threonine into the APC, the feeding depression to a threonine (but not an
isoleucine) imbalanced diet was blocked. Conversely, injections of threonine had no effect
on the depressed feeding of an isoleucine imbalanced diet.

It is important to note that this effect could be blocked by the protein synthesis inhibitor,
puromycin, injected with the vehicle or IAA into the APC using the above method [33].
The time course of the effective injections suggested that diffusion or metabolism might
account for these observations. Diffusion of L-[14C]-threonine was rapid (<15 min) but
limited, as most of the label was recovered from within 1 mm of the injection site [34].
Because decreases of an IAA had been linked to protein synthesis in single-cell systems [39],
puromycin, a protein synthesis blocker, was added to the injection protocol. These additions
blocked the amino acid restoration of intake of the IAAD diet but did not alter intake of the
basal control diet. Similarly, puromycin blocked the usual choice for control over IAAD
diets [33]. These findings led to the suggestions that (1) a reduced concentration of the
limiting IAA in the APC, along with (2) changes in protein synthesis, are associated with
the mechanisms involved in recognizing an IAAD diet. Thus, we were able to state that
“inability to make a crucial protein in the APC could lead to a neural signal that protein
synthesis is at risk” [26].

The mechanisms for this rapid recognition of IAAD involve an enzyme important in
the initiation of new protein synthesis: General Control Nonderepressible 2 (GCN2) and its
target, phosphorylated eIF2α can be seen in Figure 6 of [40,41] and has been the subject
of many reviews. For example, in 2021 alone, see [42–45]. The mechanisms involve an
accumulation of uncharged tRNA because the limiting IAA that is deficient in the plasma
and brain cannot adequately charge its cognate tRNA. Therefore, the concentration of
charged tRNA is reduced to such a low level that the initiation of new protein synthesis
cannot proceed [46]. Furthermore, nanomolar injections of L-IAA alcohols, which inhibit
tRNA acylation by competition with their cognate IAA, replicate a deficiency of IAAs
showing both the rejection of diet and other similar biochemical responses [40], supporting
these findings.

The stereospecific tRNA inhibitor blocked intake of the the basal diet at 40 min after
the onset of feeding. The results shown in Figure 3 show the importance of tRNA charging,
which is required for the initiation of protein synthesis [40]. GCN2 is also involved in
the control of a fibroblast growth factor (FGF21) via the activating transcription factor
4 (ATF4) pathway [47]. GCN2 is now recognized as the primary sensor for IAA deficiency,
as recently reviewed [48].
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Figure 3. The mechanism of recognizing IAAD in the APC is shown by injections, as in Figure 4,
of the tRNA analogue threoninol, which competes for threonine in charging its cognate tRNA. The
results using GCN2 knockout mice also showed that the enzyme GCN2 is required for recognition of
an IAAD diet [40]. Star * indicates significance of L-threoninol injections into the APC on intake of
the threonine basal diet.
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Figure 4. Food intake of a threonine imbalanced diet after bilateral micro-injections into the APC:
Intake presented as % of each animal’s baseline intake. Injections were 2 nanomoles L-threonine
into each side. The results supported the role of the APC in recognition of IAA deficiency [32]. The
star * indicates significance at p < 0.05.

The output neurons of the APC, the pyramidal cells of layer II, are glutamatergic
excitatory cells. They are under the inhibitory control of GABAergic proteins in the same
area [49]. These proteins are important in controlling the output circuitry of the APC, but
they have a very short half-life [50], so in the absence of new protein synthesis the inhibitory
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elements are lost from the neural membrane within minutes [50]. As a result, these rapidly
turning-over proteins, including GABAergic inhibitory receptors and ion transporters,
cannot be replaced, and the APC cannot retain the normal balance between the stimulatory
and inhibitory neurons in the circuitry. Given this disinhibition, the glutamatergic excitatory
neurons in the APC are free to send excitatory signals to a wide variety of brain areas
involved in motor activity and food intake [51], resulting in rejection of the deficient diet and
increased activity. Tract tracing studies using a stain for axonal projections show brain areas
with direct axonal projections from the APC [51], including to the lateral hypothalamus
(Figure 5).
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Figure 5. Projections from the APC to the lateral hypothalamus. Black marks show axons from the
APC ending in the lateral hypothalamus. Injections of the axon marker, biocytin, into the APC make
direct contact in the MCLH, the magnocellular area of the lateral hypothalamus. Figure is from Aja,
S., Dissertation, University of California Davis, 1999. Opt: optic tract, seen in the white areas. Purple
spots indicate cell bodies.

Consistent with these observations, Monda et al. showed that L-threonine injections
into the APC increased food intake and neuronal activity in the lateral hypothalamus,
and sympathetic nervous system activity was reduced in rats that were fed a threonine
devoid diet [52]. In view of this report, Blevins and colleagues looked at the effects of
threonine injections in the lateral hypothalamus on the intake of IAAD or corrected diets,
specifically a threonine devoid diet or a threonine corrected diet. After these injections,
intake of the devoid diet was increased during the first 6 h, while intake of the corrected
diet was not affected. These studies showed that the APC and lateral hypothalamus both
take part in the circuitry affected by IAAD diets [53]. Because the output cells of the APC
are glutamatergic, and their axons project directly to the lateral hypothalamus, reviewed
in [51], one would expect that glutamate’s N-methyl D-aspartate (NMDA) receptors in the
lateral hypothalamus may be involved in this circuitry. To study this issue, Blevins et al.
used the NMDA antagonist, D-2-Amino-5-phosphopentanoic acid (D-AP5), showing that
this antagonist, when injected into the APC, increased intake of the IAAD diet, but injected
into the lateral hypothalamus, decreased IAA devoid diet preference vs. the corrected diet,
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while it did not affect intake of the devoid diet. The glutamate antagonist NBQX (FG9202),
when injected into the APC increased IAAD diet intake, NMDA injection into the lateral
hypothalamus increased intake of the AA corrected diet but did not change IAA devoid
diet intake. These results show that glutamate from the APC’s axons acts in the lateral
hypothalamus to affect IAAD diet intake [54].

Initial behavioral responses includes, along with rejection of the IAAD diet, an in-
creased motor activity that is seen as the animals digging into the food cup and searching
their spaces for a different food source. Of additional interest are the subsequent behaviors,
such as increased activity, foraging, sampling of any available new foods, and the like,
along with learned aversions.

4. Conditioned Taste Aversion

It is well known that, after the initial recognition of an IAAD diet in the APC, the
subjects show a long-lasting rejection for the diet and or cues related to it, developing
a conditioned taste aversion (CTA) [15,55]. CTA is found throughout evolution, as re-
ported in snails [56], Limax, a terrestrial slug [57] and the like. The CTA can develop only
after recognition of some negative effect [58], often a negative visceral response [59–61].
Consistent with this, involvement of the vagus nerve was shown by Dixon et al. [62].
This phenomenon has undergone extensive study and review, starting with the work of
Garcia et al. [60] that demonstrated the preference for saccharin solutions shown by rats,
but after pairing these solutions with gamma radiation, the animals became averse to
saccharin; this is now known as the Garcia effect [60,63,64].

Other brain areas, besides the APC, are also activated within hours after the animals
have eaten an IAAD diet, suggesting that they may be involved in the development of a
CTA to the deficient diet. The Fos protein, expressed by the immediate-early-gene c-fos
was increased, indicating brain activation after the initial recognition period, in brain areas
including the endopiriform cortex, dorsomedial nucleus of the hypothalamus, and central
nucleus of the amygdala, a pattern of labeling that was not replicated in animals fed the
control diets [65]. In particular, the amygdala has been linked to CTA and was shown to
affect intake of an IAAD diet [66–68]. In addition, large electrolytic lesions that involve
multiple nuclei in the amygdala blunted the usual CTA to lithium chloride. Glutamate,
injected into the basolateral amygdala (BLA) enhanced CTA, while blockade of glutamate
receptors reduced CTA learning [56]. Lesions of the medial nucleus also replicated the
earlier work on such aversions [66]. The central nucleus of the amygdala (CEA) contains at
least 3 distinct populations of neurons, each of which inhibits the others. Increased feeding
is associated with cells containing the serotonin 2A receptors, whereas decreased feeding
neurons contain the kinase, PKC-delta; both are found in neurons that are considered late
firing cells [69]. In addition, the insular cortex has been implicated in CTA after a few
hours. Here, muscarinic receptor antagonists blocked the CTA. The synaptic connections
between the BLA and the insular cortex were described by Haley et al. [70], and cFos
expression has been seen by several observers in the BLA and insular cortex after hours of
CTA exposure, reviewed in [56]. Further interactions between these brain areas includes the
observation that brain-derived neurotrophic factor (BDNF) increased signaling capabilities
of the insular cortex, and changed the duration of the CTA [71]. Directly related to this
observation, conditioned preferences for the limiting IAA, or cues associated with its
repletion, have been shown by several laboratories [14].

5. Sensing Repletion

A complete dietary supply of IAAs will increase protein synthesis and prevent proteol-
ysis [72]. Clearly, the responses of animals to the corrected or basal control diets in the many
studies cited here show increased ingestion of the balanced diet in approximately 30 min.
This provides direct support for a signaling mechanism aimed at maintaining a balanced
IAA profile in the diet. Signals sensing adequate levels of IAAs also stimulate anabolic
and storage pathways. The IAAs, such as leucine, have been shown to activate the protein
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synthetic-signaling pathway associated with the mechanistic target of rapamycin complex
1 (mTORC1) that acts via stimulation of ribosomal protein S6 kinase (S6K1) and inhibition
of eukaryotic translation initiation factor 4E binding protein-1 (4EBP1) [73]. The mechanistic
target of rapamycin (mTOR) is also linked to the phosphoinositide 3-kinase (PI3K) pathway
and interacts with other components to form mTORC1 or mTORC2 complexes [74]. The
regulation of mTOR occurs via AA transport, which includes a role for glutamine, a dis-
pensable AA [75]; the selective system A transporter substrate, alpha-Aminobutyric acid, is
highly affected by glutamine in APC neurons [76]. Although we were able to rule out roles
for mTORC1 and mTORC2 in detecting IAA deficiency in the APC [75], their involvement
in sensing repletion in the APC may be important. In contrast to IAAD, mTOR responds
to AA abundance [48]. In animals, AA supply activated mTORC1 signaling in several
tissues, including the hypothalamus. In neurons, glutamatergic activity activates extracel-
lular signal-related kinase (ERK) along with mTORC1, consistent with our observation of
P-ERK in IAA deficiency. While mTORC1 is sensitive to rapamycin (Rap), mTORC2 is not;
mTORC2 at appropriate doses is sensitive to the mTOR inhibitor, Wortmannin (Wort). We
studied the effect of these two mTOR complexes on the feeding responses to IAAD diets
after injecting Rap or Wort into the APC. Neither affected the rejection of the IAAD diet, but
intake of the second meal was increased at 40 min after a Wort injection, reviewed by [75].
This suggested that mTOR could be involved in the later responses, such as conditioned
taste aversion (CTA). Furthermore, after ingesting and rejecting an IAAD diet, as described
above, when the animals are offered a complete IAA diet, their intake of the better diet is
robust, seen within approximately 30 min, as noted above. The mediobasal hypothalamus
(MBH) contains nuclei of the arcuate and ventromedial areas and has been determined to
have a central role in sensing AA abundance [77]. Moreover, L-leucine specifically, when
injected into the hypothalamus, activates mTORC1, which is an effect that can be inhibited
by Rap [48].

The ability to select for the growth-limiting IAA has been studied as well. Rats fed
a lysine-deficient diet could select the water bottle containing lysine from several bottles,
including other IAAs, or the non-nutritive sweetener, saccharin, or NaCl. When given a
lysine replete diet, so that they no longer needed the lysine in their drinking water, the rats
switched to the saccharin bottle [78]. Selection among IAAD diets after 2–3 days of choice
showed that animals can select against the more deficient diet that contained just 0.012%
less of the limiting IAA [79]. Clearly, the sensitivity to the concentrations of IAAs is acute.
Flavored solutions paired with complete or IAAD diets verified that rats can develop a
learned preference and learned aversion to these diets, respectively [80]. Additional reports
of selection for the necessary IAA include [63,81,82]. Several species, including those of the
rodent and bird order and class, respectively, can combine intake of two IAAD diets that are
limiting in different IAAs [83,84]. Humans have also developed the use of complementary
amino-acid-containing foods in their diets. Examples include beans and rice, used in many
cultures, reviewed in [2]. A guide for achieving complimentary AA profiles, particularly
for vegetarian diets, is available [85].

6. Conclusions

In summary, both IAAs and non-IAAs act nutritionally and in signaling roles. Protein
synthesis is dependent on a full complementary array of IAAs, but in addition, homeostasis
throughout the body requires dispensable AAs as well. Many aspects of AA nutrition
depend on an understanding of the complex interactions among brain circuits, including
both neurons and glia, and within various cell types in the periphery. In this review, we
have focused on signaling within the brain. The depletion of any IAA in the plasma, and
competition for transporters at the blood–brain barrier results in depletion of the limiting
IAA in the brain. This can cause activation of the GCN2 pathway, which inhibits protein
synthesis at the tRNA level. Signals from the APC to the lateral hypothalamus and several
other brain areas are involved in activating behavioral responses.
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The ability of omnivores to select a complete diet depends on the sensing of IAAD in
their current diet, and the motivation to select a food containing the required complement
to any IAA that is missing in the diet at hand. The development of aversion to a deficient
diet involves brain areas including the amygdala and the insular cortex.

Repletion of a limiting IAA, such as leucine, activates mTORC1, while mTOR is
regulated by AA transporters that include the non-IAA glutamine. The full description of
how cells organize the interactions between signals for optimal metabolism and growth
is not yet established. For example, increasing an IAA can prevent seizures, but in other
diseases such as obesity, IAA restriction is the better option. Clearly, the knowledge of
the complexities of AA interactions and effects is far from complete, and further work
to understand these complex metabolic and systemic systems remains a challenge for
the future.
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