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High expression of E2F transcription factors 7
An independent predictor of poor prognosis in patients with 
lung adenocarcinoma
Yu Zhang, MDa , Lan Lyu, MBBSb, Wei Wang, MDc, Liwei Zhang, MDd,*

Abstract 
Adenocarcinoma is the most common pathological type of lung cancer. The E2F7 transcription factor has been confirmed to be 
related to the occurrence and development of a variety of solid tumors, but the relationship with the prognosis of lung cancer is 
still unclear. Therefore, we conducted this study to explore the prognostic value of E2F7 for lung adenocarcinoma (LUAD) patients.

In this study, we analyzed samples from the Cancer Genome Atlas (TCGA) to study the correlation between the expression of 
E2F7 and clinical features, the difference in expression between tumors and normal tissues, the prognostic and diagnostic value, 
and Enrichment analysis of related genes. All statistical analysis uses R statistical software (version 3.6.3).

The result shows that the expression level of E2F7 in LUAD was significantly higher than that of normal lung tissue (P = 1e-34). 
High expression of E2F7 was significantly correlated with gender (P = .034), pathologic stage (P = .046) and M stage (P = .025). 
Multivariate Cox analysis confirmed that E2F7 is an independent risk factor for OS in LUAD patients (P = .027). Genes related to cell 
cycle checkpoints, DNA damage telomere stress-induced senescence, DNA methylation, chromosome maintenance and mitotic 
prophase showed differential enrichment in the E2F7 high expression group.

In short, high expression of E2F7 is an independent risk factor for OS in LUAD patients and has a high diagnostic value.

Abbreviations: BP = biological process, CC = cellular component, CI = confidence interval, CR = complete response,  
DSS = disease free survival, E2F7 = E2F transcription factor 7, GEO = gene expression omnibus, GO = gene ontology, KEGG = 
Kyoto encyclopedia of gene and gen omes, LUAD = lung adenocarcinoma, MF = molecular function, OS = overall survival, PD = 
progressive disease, PR = partial response, SD = stable disease, TCGA = the cancer genome atlas program.
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1. Introduction
Lung cancer is the second most common malignant tumor in 
the world. In 2020, there will be approximately 2.2 million new 
cases of lung cancer worldwide. Lung cancer has become the 
leading cause of cancer deaths, accounting for about 18% of 
the total cancer deaths (about 1.8 million cases).[1] Among them, 
lung adenocarcinoma is the most common pathological type.[2] 
Early lung cancer has no obvious symptoms, so most patients are 
already in the advanced stage when they are diagnosed, which 
leads to a generally low survival rate of lung cancer patients.

The E2F transcription factor family play a key role in the occur-
rence and development of tumors due to its important cell functions 
related to cell cycle regulation and apoptosis.[3] As a newly discov-
ered member of the E2F family in recent years, unlike other family 
members, E2F7 has two special DNA-binding domains (DBD) in 
structure, lacks the binding domain to the RB protein, and does not 
need to bind to dimerizing proteins to enter the nucleus.[4,5]

E2F7 is a priming factor involved in cell cycle regulation, 
apoptosis and differentiation, involved in the late stage of mito-
sis, embryonic development, DNA stress response, and is likely 

to participate in the occurrence of tumors.[6–9] As an epithelial 
transcription inhibitor, amplification, overexpression or dele-
tion of E2F7 can be observed in many malignant tumors, and it 
can affect tumor differentiation, proliferation and metastasis by 
interacting with different downstream targets. E2F7 is abnor-
mally expressed in glioma,[10,11] colon cancer[12–14] and breast 
cancer,[15,16] and has an important influence on the occurrence 
and development of a variety of tumors.

In view of this, we conducted this study to explore the expres-
sion of E2F7 in lung adenocarcinoma (LUAD) and analyze its 
correlation with clinical parameters, diagnostic and prognostic 
value of LUAD patients.

2. Materials and Method

2.1. Patient data set

E2F7 mRNA expression data (including 594 samples, data for-
mat: FPKM) and clinical characteristics data are downloaded 
from the TCGA database. The data for pan-cancer analysis is 
from UCSC XENA (https://xenabrowser.net/datapages/). It is the 
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Table 1

Main characteristics of LUAD patients.

Characteristic levels Low expression of E2F7 High expression of E2F7 P 

n  267 268  
Age, n (%) <=65 121 (23.4%) 134 (26%) .291
 >65 137 (26.6%) 124 (24%)  
Gender, n (%) Female 155 (29%) 131 (24.5%) .041
 Male 112 (20.9%) 137 (25.6%)  
Race, n (%) Asian 2 (0.4%) 5 (1.1%) .359
 Black or African American 25 (5.3%) 30 (6.4%)  
 White 208 (44.4%) 198 (42.3%)  
Smoker, n (%) No 43 (8.3%) 32 (6.1%) 0.169
 Yes 214 (41.1%) 232 (44.5%)  
number_pack_years_smoked, n (%) <40 102 (27.6%) 86 (23.3%) 0.018
 >=40 75 (20.3%) 106 (28.7%)  
Pathologic stage, n (%) Stage I 152 (28.8%) 142 (26.9%) 0.210
 Stage II 61 (11.6%) 62 (11.8%)  
 Stage III 39 (7.4%) 45 (8.5%)  
 Stage IV 8 (1.5%) 18 (3.4%)  
T stage, n (%) T1 97 (18.2%) 78 (14.7%) 0.336
 T2 135 (25.4%) 154 (28.9%)  
 T3 24 (4.5%) 25 (4.7%)  
 T4 10 (1.9%) 9 (1.7%)  
N stage, n (%) N0 178 (34.3%) 170 (32.8%) 0.787
 N1 49 (9.4%) 46 (8.9%)  
 N2 33 (6.4%) 41 (7.9%)  
 N3 1 (0.2%) 1 (0.2%)  
M stage, n (%) M0 188 (48.7%) 173 (44.8%) 0.034
 M1 7 (1.8%) 18 (4.7%)  
Anatomic neoplasm subdivision, n (%) Left 99 (19%) 106 (20.4%) 0.640
 Right 160 (30.8%) 155 (29.8%)  
Anatomic neoplasm subdivision2, n (%) Central Lung 32 (16.9%) 30 (15.9%) 0.540
 Peripheral Lung 58 (30.7%) 69 (36.5%)  
Residual tumor, n (%) R0 176 (47.3%) 179 (48.1%) 0.186
 R1 6 (1.6%) 7 (1.9%)  
 R2 0 (0%) 4 (1.1%)  
Primary therapy outcome, n (%) PD 27 (6.1%) 44 (9.9%) 0.109
 SD 21 (4.7%) 16 (3.6%)  
 PR 3 (0.7%) 3 (0.7%)  
 CR 177 (39.7%) 155 (34.8%)  
OS event, n (%) Alive 183 (34.2%) 160 (29.9%) 0.041
 Dead 84 (15.7%) 108 (20.2%)  
DSS event, n (%) Alive 198 (39.7%) 181 (36.3%) 0.079
 Dead 51 (10.2%) 69 (13.8%)  
PFI event, n (%) Alive 162 (30.3%) 147 (27.5%) 0.202
 Dead 105 (19.6%) 121 (22.6%)  
Age, meidan (IQR)  67 (59, 72) 65 (59, 72) 0.346

CR = complete response, DSS = Disease Free Survival, OS = overall survival, PD = progressive disease, PFI = Progression Free Interva, PR = partial response, SD = stable disease.

Figure 1. E2F7 expression in LUAD tissues. A. E2F7expression in normal and tumor tissue. B. E2F7 expression in paired tissue.
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RNAseq data in TPM format of TCGA and GTEx that has been 
uniformly converted by the Toil process. Inclusion criteria: 1. 
Sufficient survival information; 2. Definite gene expression value.

All our data come from public databases such as GEO and 
TCGA. The patients involved in the database have obtained eth-
ical approval. Our research is based on open-source data and 
therefore does not require ethics committee approval for the study.

2.2. Statistical analysis
The median of E2F7 expression was selected as the critical 
value, and the Wilcoxon signed rank test was used to test 
the differential expression of E2F7 in LUAD and normal tis-
sues, and the results were displayed by box plots. Wilcoxon 
rank sum test and Dunn's test were used to testing whether 
the expression of E2F7 is related to clinical features in LUAD. 

Table 2

Logistic analysis of the association between E2F7 expression and clinical characteristics.

Characteristics Total (N) OR (95%CI) P value 

Age (>65 vs <=65) 516 0.817 (0.578–1.154) .253
Gender (Male vs Female) 535 1.447 (1.030–2.038) .034
Race (Asian&White vs Black or African American) 468 0.806 (0.455–1.415) .453
Smoker (Yes vs No) 521 1.457 (0.892–2.402) .135
Pathologic stage (Stage IV vs Stage I) 320 2.408 (1.047–6.029) .046
T stage (T2&T3&T4 vs T1) 532 1.383 (0.963–1.993) .080
N stage (N1 vs N0) 443 0.983 (0.623–1.548) .941
M stage (M1 vs M0) 386 2.794 (1.186–7.337) .025
Anatomic neoplasm subdivision (Left vs Right) 520 1.105 (0.777–1.572) .577
Anatomic neoplasm subdivision2 (Central Lung vs Peripheral Lung) 189 0.788 (0.428–1.448) .443
Residual tumor (R1&R2 vs R0) 372 1.803 (0.671–5.331) .256
Primary therapy outcome (PD&SD vs CR&PR) 446 1.424 (0.922–2.208) .112

CR = complete response, PD = progressive disease, PR = partial response, SD = stable disease.

Figure 2. Box plot of E2F7 expression of LUAD patients according to different clinical characteristics. A. Gender. B. Primary therapy outcome. C. Number pack 
years smoked. D. Cancer status. ns, P ≥ .05; *P < .05; **P < .01; ***P < .001.
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Kaplan-Meier analysis was performed to compare the differ-
ences in OS and DSS between E2F7 high and low expression 
groups, and to draw survival curves.[17] The pROC package 
and the ggplot2 package are used to study the role of E2F7 
prognosis and draw the ROC curve, where AUC represents the 
diagnostic value. Univariate Cox regression analysis was used 
to screen potential prognostic factors, and multivariate Cox 
regression was used to verify the independent predictive value 
of multiple indicators including E2F7 for prognosis. The rms 
package and survival package are used to draw nomograms to 
show the relationship between various variables and survival 
rates. The clusterProfiler package and the org.Hs.eg.db pack-
age are used for the enrichment analysis of GO and KEGG.[18] 
The clusterProfiler package and the ggplot2 package are used 
to perform GSEA enrichment analysis and plotting. In addition, 

we used an independent GEO data set (GSE50081) for external 
verification. The difference in the expression of E2F7 in pan-tu-
mor and normal tissues is verified in UCSC XENA (https://
xenabrowser.net/datapages/)[19] and Timmer database (https://
cistrome.shinyapps.io/timmer/). All statistical analysis uses R 
statistical software (version 3.6.3).

3. Result

3.1. Baseline characteristics of included patients

A total of 535 patients diagnosed with lung adenocarcinoma 
were included in this study, and the data of these patients were 
all obtained through the TCGA data portal. The detailed clin-
ical characteristics are shown in Table 1. Among the included 

Figure 3. Kaplan-Meier curve for survival in LUAD. A. OS of all patients. B. OS of T2/T3/T4. C. OS of N0. D. OS of M0. E. DSS of all patients. F. DSS of T2/T3. 
G. DSS of N0. H. DSS of stage I. DSS of smoker.

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://cistrome.shinyapps.io/timmer/
https://cistrome.shinyapps.io/timmer/
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patients, 249 were males (46.5%) and 286 were females 
(53.5%). Regarding the TNM staging of lung cancer: 294 
patients were stage I, 123 patients were stage II, 84 patients 
were stage III, and 26 patients were stage IV. The median age 
of patients in the E2F7 high and low expression group was 65 
and 67 years, respectively, and the results were not statistically 
different (P = .346). Regarding surgical treatment: the number 
of patients undergoing R0, R1, and R2 resection was 355, 
13, and 4, respectively, and there was no significant differ-
ence between the groups (P = .186). In gender (P = .041), num-
ber pack year smoked (P = .018), M stage (P = .034) and OS 
event (P = .041), there are significant differences between the 
2 groups.

3.2. High expression of E2F7 in LUAD

We compared the expression levels of E2F7 in LUAD and nor-
mal lung tissues. Taking the median of the gene expression level 
of CCNA2 as the cutoff value, the patients were divided into 
high expression group and low expression group. The results 
of the study on unpaired samples showed that the expression 
of E2F7 in LUAD was higher than that of normal lung tissue 
(P = 1e-34) (Fig. 1A). In the paired samples of LUAD and normal 
lung tissue, this conclusion was verified. (P = 2.7e-10) (Fig. 1B).

3.3. E2F7 expression and clinical characteristics

The logistic regression analysis results of the correlation between 
E2F7 expression level and clinical characteristics are summa-
rized in Table 2. The high expression of E2F7 was significantly 
correlated with gender (P = .034), pathologic stage (P = .046) and 
M stage (P = .025). As shown in Figure 2, the Mann-Whitney U 
test results verify the correlation between E2F7 expression and 
gender (P = .029) and the number pack-years smoked (P = .002). 
The results of multiple hypothesis test (Dunn's test) using 
Bonferroni method to correct the significance level show that 
the difference between SD and PD (P.adj = .037), CR and PD (P.
adj = .001) was statistically significant. The same result appeared 
in the comparison of tumor and normal tissue (P < .001).

3.4. E2F7 high expression is an independent prognostic 
risk factor

Kaplan-Miere survival analysis of all adenocarcinoma patients 
showed that high expression of E2F7 was associated with 
shorter OS (P = .002) (Fig.  3A). The results of subgroup anal-
ysis showed that in patients with T2/T3/T4 (P = .001) (Fig. 3B), 
N0 (P = .001) (Fig.  3C), M0 (P < 0.001) (Fig.  3D), E2F7 was 
highly expressed Significantly related to shorter OS. In terms 

Figure 4. Forest plot of the multivariate Cox regression analysis of OS in LUAD.

Table 3

Univariate and multivariate Cox regression analysis of the relationship between clinical characteristics and overall survival.

Characteristics Total (N) Univariate analysis Multivariate analysis

  Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value 

T stage (T2&T3&T4 vs T1) 523 1.728 (1.229–2.431) .002 1.202 (0.696–2.074) .509
N stage (N1&N2&N3 vs N0) 510 2.601 (1.944–3.480) <.001 1.494 (0.916–2.437) .107
M stage (M1 vs M0) 377 2.136 (1.248–3.653) .006 1.225 (0.468–3.208) .680
Age (>65 vs <=65) 516 1.223 (0.916–1.635) .172   
Gender (Male vs Female) 526 1.070 (0.803–1.426) .642   
Pathologic stage (Stage III&Stage IV vs Stage I&Stage II) 518 2.664 (1.960–3.621) <.001 1.883 (1.030–3.445) .040
Primary therapy outcome (PD&SD vs PR&CR) 439 2.653 (1.888–3.726) <.001 2.706 (1.638–4.471) <.001
Residual tumor (R1&R2 vs R0) 363 3.879 (2.169–6.936) <.001 4.169 (1.731–10.043) .001
Anatomic neoplasm subdivision (Right vs Left) 512 1.037 (0.770–1.397) .810   
Smoker (Yes vs No) 512 0.894 (0.592–1.348) .591   
Race (Black or African American vs White&Asian) 468 0.698 (0.422–1.157) .163   
E2F7 (High vs Low) 526 1.594 (1.193–2.129) .002 1.662 (1.058–2.610) .027
number_pack_years_smoked (<40 vs >=40) 363 0.932 (0.654–1.328) .697   

CR = complete response, PD = progressive disease, PR = partial response, SD = stable disease.
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of DSS (P = .005), E2F7 showed similar results (Fig. 3E), at T2/
T3 (P = .021) (Fig. 3F) The prognostic value of E2F7 in the sub-
groups of, N0 (P < .001) (Fig. 3G), M0 (P = .023) (Fig. 3H) and 
smoker (P = .019) (Fig. 3I) was also verified.

Univariate Cox regression results show T stage (P = .002), N 
stage (P < .001), M stage (P = .006), pathologic stage (P < .001), 
primary therapy outcome (P < .001), residual tumor (P < .001) 
and E2F7 (P = .002) were significantly related to poor prognosis. 

Figure 5. ROC curve of E2F7 expression in LUAD. A. Normal vs LUAD. B. Stage I/II. C. Stage III/IV. D. T1/T2. E. T3/T4. F. N0. G. N1-3. H. M0.
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Further multivariate Cox analysis confirmed that pathologic 
stage (P = .040), primary therapy outcome (P < .001), residual 
tumor (P = .001) and E2F7 (P = .027) are independent factors 
affecting the prognosis of LUAD patients (Fig. 4, Table 3).

3.5. The diagnostic value of E2F7

We performed ROC curve analysis on the expression data of 
E2F7, and the results showed that this index has a high diag-
nostic value for patients with LUAD (AUC = 0.913, 95%CI: 
0.888–0.939) (Fig. 5A). Further subgroup analysis verified its 
diagnostic value in stage I/II (AUC = 0.912) (Fig. 5B), stage III/
IV (AUC = 0.929) (Fig. 5C), T1/T2 (AUC = 0.910) (Fig. 5D), T3/
T4 (AUC = 0.932) (Fig. 5E), N0 (AUC = 0.906) (Fig. 5F), N1–3 
(AUC = 0.930) (Fig. 5G) and M0 (AUC = 0.910) (Fig. 5H).

Due to its high diagnostic value, we combined E2F7 with 
clinical variables widely considered to be related to prognosis to 
construct a nomogram to predict the 1-, 3-, and 5-year survival 
probability (Fig. 6).

3.6. E2F7 related signal pathways

We performed GO/KEGG enrichment analysis on E2F7. Under 
the conditions of P.adj < 0.1 and q value<0.2, there are 6 BPs, 12 
CCs, 1 MF, and KEGG 2 signal pathways (Table 4).

We performed GSEA on the data set of high and low expres-
sion of E2F7 to determine the differentially activated signaling 
pathways in LUAD. A total of 39 data sets satisfy FDR (q value) 
<0.25 and P.adjust < 0.05. Cell cycle checkpoints, DNA damage 
telomere stress-induced senescence, DNA methylation, chromo-
some maintenance and mitotic prophase and other pathway-re-
lated genes showed enrichment in the high E2F7 expression 
group (Fig. 7).

3.7. Verification through other independent external 
databases

We used an independent GEO dataset (GSE50081) contain-
ing 127 LUAD patients to further verify the above results. The 

Figure 6. Nomogram for predicting the probability of LUAD patients with 1-, 3-, 5-year OS.

Table 4

Gene sets enriched in the high E2F7 expression phenotype.

ONTOLOGY ID Description Gene Ratio Bg Ratio P value P.adjust FDR q-value 

BP GO:0000353 formation of quadruple SL/U4/U5/U6 snRNP 4/300 12/18670 2.92e-05 0.020 0.020
BP GO:0000365 mRNA trans splicing, via spliceosome 4/300 12/18670 2.92e-05 0.020 0.020
BP GO:0045291 mRNA trans splicing, SL addition 4/300 12/18670 2.92e-05 0.020 0.020
BP GO:0007389 pattern specification process 20/300 446/18670 3.85e-05 0.020 0.020
BP GO:0000244 spliceosomal tri-snRNP complex assembly 5/300 26/18670 5.17e-05 0.022 0.022
CC GO:0015030 Cajal body 10/309 77/19717 3.35e-07 7.95e-05 7.83e-05
CC GO:0072588 box H/ACA RNP complex 4/309 10/19717 1.15e-05 0.001 0.001
CC GO:0005732 small nucleolar ribonucleoprotein complex 5/309 28/19717 6.69e-05 0.005 0.005
CC GO:0097525 spliceosomal snRNP complex 7/309 99/19717 9.43e-04 0.050 0.050
CC GO:0030532 small nuclear ribonucleoprotein complex 7/309 105/19717 0.001 0.050 0.050
MF GO:0001228 DNA-binding transcription activator activity, RNA polymerase II-specific 17/223 439/17697 4.37e-05 0.012 0.012
KEGG hsa05034 Alcoholism 8/75 187/8076 3.19e-04 0.037 0.036
KEGG hsa05322 Systemic lupus erythematosus 6/75 136/8076 0.002 0.092 0.089

BP = biological process, CC = cellular component, KEGG = Kyoto Encyclopedia of Genes and Genomes, MF = molecular function.
 P.adj<.05 and FDR q-value<.2 were considered as significantly enriched.
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results of the Kaplan-Meier survival analysis confirmed the 
prognostic value of E2F7 for LUAD patients (Fig. 8A–C).

We used the Timmer database to perform pan-tumor E2F7 
expression analysis and showed that E2F7 is highly expressed 
in a variety of solid tumors including LUAD (Fig.  9A). We 
also integrated the pan-tumor analysis of the two databases of 
TCGA and GTEx and reached similar conclusions (Fig. 9B).

4. Discussion
In our study, the expression of E2F7 in many tumors includ-
ing LUAD was higher than normal, and its expression level was 
higher in men and patients greater than 40 number pack-year, 
and it was related to the primary therapy outcome of disease, that 
is It is said that patients with the progressive disease have higher 
expression of E2F7. Subsequent survival analysis also showed 

that high expression of E2F7 is an independent risk factor for 
OS, and it has a high diagnostic value. This provides a basis for 
E2F7 to judge the prognosis of LUAD patients in future clinical 
work. Genes related to cell cycle checkpoints, DNA damage, 
telomere stress-induced senescence, DNA methylation, chromo-
some maintenance, and mitogenic pathways showed significant 
enrichment in the E2F7 high expression group, suggesting that 
E2F7 affects lung adenocarcinoma The potential mechanism of 
occurrence and development provides an important reference 
for further exploration of its mechanism through experiments 
in the future.

The occurrence and development of malignant tumors is a 
complex process involving multiple genes and their expressed 
proteins. Transcription is the beginning of gene expression and 
is strictly regulated by transcription factors (TFs) and its cofac-
tors, RNA polymerase, and chromatin-modifying proteins.[6]

Figure 7. Enrich plots from GSEA. The possible biological processes or signaling pathways of E2F7.
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E2Fs are an important family of transcription factors, which 
have been confirmed to be involved in the process of cell pro-
liferation,[20–23] differentiation,[24–26] apoptosis,[27–30] cycle regula-
tion[31,32] and DNA damage response.[33,34] So far, a total of 8 
family members have been discovered (E2F1-E2F8). According 
to their different functions, E2Fs are divided into transcription 
activators (E2F1–3) and transcription repressors (E2F4–8), and 
according to their structure, they are divided into typical E2Fs 
(E2F1–6) and atypical E2Fs (E2F7–8). The clinical value of 
many E2Fs members in the diagnosis and treatment of many 
solid tumors has been affirmed.[35–38]

E2F7 is different from the typical E2Fs members in that it 
binds to DNA in a non-DP protein way to play a transcrip-
tional inhibitory effect.[4,39] Studies have shown that E2F7 can 
inhibit cell proliferation by inhibiting the transcription of pro-
liferation-related miRNAs.[40] However, in recent years, more 
and more studies have shown that E2F7 plays a role in promot-
ing tumor occurrence and development in tumors. Chu et al. 
reported that the overexpression of E2F7 in breast cancer can 
inhibit miR-15a/16 transcription, cause Cyclin E1 and Bcl-2 to 
participate in tumor invasion and metastasis, and increase the 
resistance of breast cancer cells to tamoxifen.[15]

Figure 8. Kaplan-Meier curve for survival in LUAD patients in the validation datasets GSE50081. A. OS of all patients. B. OS of ex-smoker. C. Disease-free 
survival (DFS) of all patients.

Figure 9. Expression analysis of E2F7 in different types of human tumors. A. Timmer databases. B. TCGA+ GTEx.
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In our study, the expression of E2F7 in a variety of solid 
tumors was analyzed through the Timmer database and UCSC 
XENA. The results showed that E2F7 is highly expressed in 
LUAD, lung squamous cell carcinoma (LUSC), esophageal squa-
mous cell carcinoma (ESCA) and other solid tumors.

In previous existing studies, there is no content about the prog-
nostic value of E2F7 expression in LUAD patients. In this study, 
the diagnostic value of E2F7 was analyzed on the TCGA data-
base by means of bioinformatics analysis. Kaplan-Meier survival 
analysis showed that high expression of E2F7 was associated 
with shorter OS and DSS, and this conclusion was verified in the 
GEO dataset. Multivariate Cox analysis further confirmed that 
the expression of E2F7 is independently related to OS of patients 
with LUAD. Other clinical features, such as local advanced stage, 
lymph node metastasis, distant metastasis, later TNM staging, 
and the degree of surgical resection are closely related, and are 
also related to poor prognosis. We further constructed a nomo-
gram of the prognosis of LUAD patients based on clinical vari-
ables and the expression of E2F7, which provided a basis for 
clinicians to predict the survival rate of individual patients.

The mechanism by which E2F7 mediates the development 
of tumors is not completely clear. It may promote tumor pro-
liferation, differentiation, infiltration and metastasis through the 
following methods: (1) E2F7 up-regulates Beclin-1 and medi-
ates autophagy induced by miR-129 Trigger autophagy flux[10]; 
(2) E2F7 increases the expression level of vimentin, reduces the 
expression of E-cadherin protein, and promotes the EMT pro-
cess[41–43]; (3) As the transcriptional activators of VEGFA, E2F7 
cooperates with HIF-1α to induce the transcription of VEGFA 
and promote blood vessel Generation[44]; (4) Induce the transcrip-
tion of collagen and calcium-binding domains and Flt to promote 
the generation of lymphatic vessels.[35,45] Our study found that the 
expression of E2f7 is related to pathways such as cell cycle check-
points, DNA damage telomere stress-induced senescence, DNA 
methylation, chromosome maintenance and mitotic prophase. 
Our research results are related to the above-mentioned mech-
anisms, but these mechanisms need further research to confirm.

Although our study provides a new method to explore the 
relationship between E2F7 and the prognosis of lung adeno-
carcinoma, it still has many limitations. First of all, although 
we have adopted the GEO database to verify the results of the 
TCGA database analysis, the study object is still only patients in 
the public database, which will lead to bias. Secondly, due to the 
limited sample size and clinical indicator, our research conclu-
sions need to be further confirmed by a large sample of research. 
Finally, we need further experiments to explore the role of E2F7 
in tumor progression and its mechanism of affecting tumors.

In short, high expression of E2F7 is an independent risk fac-
tor for OS in LUAD patients, and has a high diagnostic value. 
cell cycle checkpoints, DNA damage telomere stress-induced 
senescence, DNA methylation, chromosome maintenance and 
mitotic prophase may be the key pathways through which 
LUAD is regulated by E2F7.
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