
Introduction

Only primates have in the cortex of adrenal glands a reticular zone,
which produces dehydroepiandrosterone (DHEA) and its sulphate;
lower animal species lack these precursor sex steroids. Peripheral
tissues, like the male prostate, process DHEA further to active 
sex steroids. This research has led to clinical applications, 5�-
reductase inhibitors, which are used in benign prostatic hyperplasia
and prostatic cancer.

Bone cells contain steroid sulfatase and 17�-hydroxysteroid
dehydrogenase (17�-HSD types 2 and 4). Aromatase has been

described in human osteoblast-like cell line and 5�-reductase was
reported in first passage human osteoblasts [1, 2]. Two groups
have reported aromatase in human bone marrow mesenchymal
stem cells (hMSCs) [3, 4] capable of differentiating towards
osteogenic, adipogenic and chondrogenic lineages [5–7].
Aromatase is required for the conversion of testosterone to 
17�-estradiol and of androstenedione to oestrone. Lack of type 2
3�-HSD and type 3 17�-HSD in hMSCs has also been reported,
which casts some doubt if these cells contain a complete steroido-
genic apparatus [8].

Based on the potential of osteoblasts to catalyse several
intracrine reactions and of MSCs to catalyse at least aromatization,
we suggested that bone marrow derived hMSCs might contain a
more complete palette of enzymes for intracrine DHEA processing.
We focused on the pathway necessary for the conversion of DHEA
to dihydrotestosterone (DHT) (Fig. 1).
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Abstract

It was suggested that human mesenchymal stromal cells might contain an intracrine enzyme machinery potentially able to synthesize
the cell’s own supply of  dihydrotestosterone (DHT) from dehydroepiandrosterone (DHEA) pro-hormone produced in the adrenal cortex
in the reticular zone, which is unique to primates. Indeed, 3�-hydroxysteroid dehydrogenase (3�-HSD) and 5�-reductase enzyme pro-
teins were expressed in resting mesenchymal stromal cells (MSCs) in vitro. However, the ‘bridging’ enzymes 17�-HSDs, catalysing
interconversion between 17�-ketosteroids and 17�-hydroxysteroids, were not found in resting MSCs, but 17�-HSD enzyme protein was
induced in a dose-dependent manner by DHEA. Quantitative real-time polymerase chain reactions disclosed that this was mainly due to
induction of the isoform 5 catalysing this reaction in ‘forward’, androgen-bound direction (P � 0.01). This work demonstrates that the
MSCs have an intracrine machinery to convert DHEA to DHT if and when challenged by DHEA. DHEA as substrate exerts a positive, feed-
forward up-regulation on the 17�-hydroxy steroid dehydrogenase-5, which may imply that DHEA-DHT tailor-making in MSCs is sub-
jected to chronobiological regulation.
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Materials and methods

Cell culture

Three primary MSC lines were established from healthy adult donors, who
had given their informed consent and following a protocol approved by an
institutional review board. From 20 ml bone marrow aspirate samples, the
mononuclear cell fraction was isolated over a density gradient (Ficoll-Paque
Plus, GE Healthcare, Uppsala, Sweden) and plated at 4 � 106/cm2 in com-
plete culture medium consisting of DMEM (low glucose, Sigma, St. Louis,
MO, USA) and 10% foetal calf serum (Promocell, Heidelberg, Germany)
with 2 mM L-glutamine, 100 U/ml penicillin and 100 �g/ml streptomycin
(all from Euroclone, Siziano, Italy). The non-adherent cell fraction was
removed by washing after 72 hrs. Medium was changed twice weekly, and
the passage 0 cells were harvested using TrypZean (Sigma) when subcon-
fluent, usually 14 days after plating. The cells were replated at 1000/cm2 in
complete culture medium and passaged when subconfluent. Passages 3–5
were used in experiments. In addition, one set of experiments was done

using commercial human 4–5 passage Poietics® MSCs (Lonza Walkersville,
Inc., Walkersville, MD, USA), which were cultured in Poietics® Mesechymal
Stem Cell Growth Medium (Lonza Walkersville, Inc.).

For experiments, 5–6 � 103 cells per cm2 were plated to six-well plates
containing cover slips. After 48 hrs, these cells were cultured �10 or 
100 �M DHEA (�1 nM dutasteride, types I and II 5-�-reductase inhibitor)
or with 100 nM DHT (Fluka, St. Louis, MO, USA) for 6 hrs for mRNA
expression and 24 hrs for immunocytochemistry.

Three fibroblast cell lines were established using explant culture
method from synovial membrane samples. Briefly, tissue samples were
minced to pieces and left overnight in RPMI-1640 medium (BioWhittaker,
Liege, Belgium) containing 10% foetal bovine serum (BioWhittaker, Liege,
Belgium) and 10% penicillin/streptomycin. Next day the media were
changed and the concentration of antibiotics was decreased to 1%. The
media were changed twice a week and after about 60% of the dish area
was covered by monolayer of cells, the tissue pieces were removed and the
cultures were allowed to grow to confluence. The cells were fibronectin
and vimentin positive, whereas the proportion of cells positive for the
CD163 macrophage marker was �1% (data not shown) and were used at
passages 3–5 for immufluorescent staining.

Immunohistochemistry

Cells were fixed in 4% paraformaldehyde at �22	C for 20 min., washed in
10 mM phosphate buffered, 150 mM saline, pH 7.4 (PBS) with Triton X 2
� 10 min. followed by incubations in (i) 10% normal donkey serum in
0.1% bovine serum albumin in PBS for 60 min.; (ii) 4 �g/ml goat anti-
human 3�-HSD IgG, 4 �g/ml goat anti-human 17�-HSD IgG, or 20 �g/ml
goat anti-human 5�-reductase IgG (all from Santa Cruz Biotechnology,
Heidelberg, Germany) for 60 min. and (iii) 10 �g/ml Alexa Fluor 
568-labelled donkey anti-goat IgG (Molecular Probes, Eugene, OR, USA)
for 60 min. Before mounting, nuclei were stained for 5 min. in 5 �g/ml
4
,6-diamidino-2-phenylindole (DAPI, Vector Laboratories, Burlingame,
CA, USA). Non-immune goat IgG were used at the same concentration as
and instead of the primary antibodies as negative staining controls. Cells
were observed using Olympus motorized revolving AX 70 system micro-
scope (Olympus Corp., Tokyo, Japan) coupled with 12-bits Sensicam dig-
ital image camera (PCO Imaging, Kelheim, Germany).

Quantitative real time-polymerase chain reaction
(qRT-PCR)

Total RNA from cells was isolated using TRIzol reagent (Invitrogen,
Paisley, UK) and mRNA using magnetic oligo(dT)25 polystyrene beads
(Dynal, Oslo, Norway). Messenger RNA concentrations were measured
spectrophotometrically and complementary DNA (cDNA) was synthe-
sized from 50 ng mRNA using oligo(dT)12-18 primers and SuperScript
enzyme, followed by RNase H treatment (SuperScript Preamplification
System; Invitrogen). Quantitative RT-PCR was run in a LightCycler PCR
machine using LightCycler FastStart DNA Master SYBR Green I kit (Roche,
Mannheim, Germany) twice with each sample. Primers were designed
with Primer3 (SourceForge, Mountain View, CA, USA), the sequences
were searched with the NCBI Entrez search system, and sequence 
similarity search was done using the NCBI Blastn program. Primer
sequences used were 5
-agctggacgtaagggactca-3
 and 5
-gtgggcgag-
gtattggtaga-3
 for 17�-HSD-1 (476 bp), 5
-tgcgtgagattctccagatg-3
 and

Fig. 1 Intracrine conversion of dehydroepiandrosterone (DHEA) to dihy-
drotestosterone (DHT). The enzymes involved are 3�-hydroxysteroid
dehydrogenase (3�-HSD), 17�-hydroxysteroid dehydrogenase and 5�-
reductase. These reactions are unidirectional except for the 17�-HSD
catalysed reaction, which can run in forward and reverse directions in an
enzyme isoform-dependent manner. Isoforms 1, 3 and 5 catalyse this
reaction towards DHT.
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Fig. 2 Overlay figures of immunofluorescence staining of intracrine enzymes (in red colour) and 4
,6-diamidino-2-phenylindole nuclear counterstain (in
blue colour). The first column shows unstimulated human bone marrow-derived mesenchymal stromal cells (MSCs) specifically labelled for 3�-hydrox-
ysteroid dehydrogenase (A), 17�-hydroxysteroid dehydrogenase (C) and 5�-reductase (E). The second column shows the corresponding immunola-
belling results of human synovial fibroblasts. Negative control staining with normal non-immune goat IgG performed to MSCs (G) and fibroblasts (H)
confirmed the specificity of the staining results.
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5
-aatggcttgggagaaggttt-3
 for 17�-HSD-3 (358 bp), 5
-ccagttgactgca-
gaggaca-3
, 5
-tcgctaaacaggacggattt-3
 for 17�-HSD-5 (233 bp) and 
5
-tcacccacactgtgcccatctacga-3
 and 5
-cagcggaaccgctcattgccaatgg-3


for �-actin (295 bp). For the qRT-PCR standard curve, the gene of inter-
est was amplified in the PCR, extracted from an agarose gel, and cloned
into the pCRII-TOPO vector (Invitrogen). After identification of the plas-
mid by restriction enzyme analysis and sequencing, the concentrations
were determined spectrophotometrically, and serial dilutions were pre-
pared for qRT-PCR analysis. The copy numbers of mRNA were deter-
mined from triplicates and normalized against �10�6

�-actin genes. All
values are provided as mean � S.E.M. The data were processed by
unpaired Student’s t-test for statistical analysis.

Results

Studies of unstimulated hMSCs and fibroblasts

Immunofluorescence staining of unstimulated hMSCs showed the
presence of 3�-HSD (Fig. 2A) and 5�-reductase (Fig. 2E),
whereas no 17�-HSD was seen (Fig. 2C) (n � 4). Corresponding
stainings of primary fibroblasts were negative (Fig. 2B, D and F).
The staining controls confirmed the specificity of staining (Fig. 2G
and H).

Although practically no 17�-HSD immunoreactive enzyme pro-
tein was found in immunofluorescence staining in resting hMSCs,
there were some mRNA copies for the relevant 17�-HSD isoen-
zymes, 2.5 � 1.2, 1.4 � 0.4 and 298.3 � 239.7 � 10�6

�-actin
RNA copies for isotype-1, -3 and -5, respectively (n � 4).

Studies of stimulated hMSCs

As the findings on 17�-HSD were somewhat controversial further
studies were done to assess its eventual sex steroid-mediated reg-
ulation. 17�-HSD immunoreactivity was in hMSCs induced in a

dose-dependent manner (Fig. 3A–D). Addition of 1 nM dutasteride
in particular with the lower 10 �M DHEA increased this induction
further (Fig. 3E) compared to 10 �M DHEA alone. DHT (Fig. 3G)
and dutasteride by itself (Fig. 3H) did not induce 17�-HSD.

To supplement these immunohistochemical findings those
17�-HSD isoforms, namely 1, 3 and 5, which catalyse the
intracrine reaction chain in a forward, DHT-bound direction were
analysed. In accordance with the above mentioned immunohisto-
chemical findings qRT-PCR disclosed a significant increase of the
17�-HSD-5 isoform (Table 1).

Discussion

Considering the 1-day circadian, 28-day menstrual, 9-month preg-
nancy and 0-to-80-year life cycle scale hormonal changes, periph-
eral tissues and cells are subjected to considerably different and
changing concentrations of sex steroids via endocrine delivery.
These differences in endocrine sex steroid delivery over time are
further enhanced between different systemic concentrations in
men and women. A local cellular and tissue specific intracrine sys-
tem has evolved in primates to counteract (‘buffer’) the above
mentioned sex steroid changes over time.

Human adrenal glands produce high amounts of DHEA and its
sulphate pro-hormones, which are used at least in some periph-
eral tissues to tailor-make active sex steroids [9, 10]. Aromatase
has been studied in hMSCs [3, 4, 11]. It is now reported that
hMSCs are self-sufficient as to the enzymatic apparatus responsi-
ble for conversion of DHEA to oestrogen precursors (androstene-
dione and testosterone). Alternatively, they can use testosterone
to produce DHT in a 5�-reductase-catalysed reaction.

Resting hMSCs displayed 3�-HSD and 5�-reductase, but not
17�-HSD, which leaves a gap between the initial early and late ter-
minal conversion reactions. As this did not seem to make sense,
DHEA and DHT stimulation experiments were performed to assess
eventual substrate and end product regulation. Dose–response
studies on the effect of DHEA on 17�-HSD were done using 0, 1,
10 and 100 �mol concentrations of DHEA, the two last mentioned
DHEA concentrations were also tested in the presence of dutas-
teride, which is inhibitor of the 5�-reductase. Dutasteride inhibits
conversion of testosterone (produced from DHEA by 3�-HSD and
17�-HSD) to DHT. These results show that the 100 �mol DHEA
concentration, shown also using some other cells to be effective
in vitro [12], increases the isotype 5 of 17 �-HSD significantly.
Because the absolute copy numbers of this isotype were also in
absolute terms highest (and most variable of the three), this is
likely also to be the biologically most significant isotype in the
DHEA-induced conversion of DHEA-substrate in the direction to
DHT end product. Based on staining it was evident that 17�-HSD-
inducing effect of 10 and 100 �mol DHEA was further enhanced
by dutasteride, which inhibits the final conversion of testosterone
to DHT. This suggests that the intermediates between DHEA and
testosterone, which increase in the presence of dutasteride, help
to induce 17�-HSD.

Table 1 Effect of dehydroepiandrosterone (DHEA) and dihydroxytestos-
terone (DHT) on 17� hydroxysteroid dehydrogenase (17�-HSD) mRNA
expression. Data are normalized to average control group values.

*Significantly different in comparison to control group, P < 0.01; n = 4.

17�-HSD-1 17�-HSD-3 17�-HSD-5

Control 100.0 100.0 100.0

DHEA 1 �M 112.3 � 16.2 143.9 � 114.1 92.2 � 6.0

DHEA 10 �M 93.8 � 23.3 88.5 � 13.7 103.8 � 1.1

DHEA 100 �M 115.8 � 10.3 156.9 � 52.1 197.5 � 14.3*

DHT 100 nM 91.3 � 17.0 87.7 � 11.0 114.4 � 18.9
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Fig. 3 Merged immunofluorescence of 17�-hydroxysteroid dehydrogenease (red) and nuclear DAPI (blue) of mesenchymal stromal cells cultured with-
out dehydroepiandrosterone (A), with 1 �M (B), 10 �M (C) and 100 �M (D) dehydroepiandrosterone. (E) and (F) show the effects of 10 and 100 �M
dehydroepiandrosterone, respectively, in the presence of 1 nM dutasteride (which inhibits the conversion of testosterone to dihydrotestosterone [DHT]).
Culture with 100 nM DHT (G) or 1 nM dutasteride alone (H) did not induce 17�-hydroxysteroid dehydrogenease.
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