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seizure detection, respectively. For neonatal seizure detec-
tion, the classifier trained on EEG from adult patients per-
formed significantly worse compared to both the classifier 
trained on EEG data from neonatal patients and the classier 
trained on both neonatal and adult EEG data. For adult sei-
zure detection, optimal performance was achieved by either 
the classifier trained on adult EEG data or the classifier 
trained on both neonatal and adult EEG data. Our results 
show that age-independent seizure detection is possible by 
training one classifier on EEG data from both neonatal and 
adult patients. Furthermore, our results indicate that for 
accurate age-independent seizure detection, it is important 
that EEG data from each age category are used for classi-
fier training. This is particularly important for neonatal sei-
zure detection. Our results underline the under-appreciated 
importance of training dataset composition with respect to 
accurate age-independent seizure detection.

Keywords  Age independent · Electroencephalography · 
Epilepsy · Classification · Support vector machines

1  Introduction

In intensive care units (ICU), many vital parameters are 
recorded. However, monitoring brain function by electro-
encephalography (EEG) is rare, mainly because signal 
interpretation requires expert visual inspection which is 
very labour intensive. One to six per cent of newborns in 
the neonatal ICU experiences (sub clinical) seizures. The 
figures for premature and low-birth-weight children are 
even higher [30]. It is estimated that the incidence of non-
convulsive seizures (NCS) in adult patients with coma can 
be up to 48 % which is much higher than suggested by clin-
ical suspicion alone [5, 8, 18, 22, 28]. Automated seizure 

Abstract  Automated seizure detection is a valuable asset 
to health professionals, which makes adequate treatment 
possible in order to minimize brain damage. Most research 
focuses on two separate aspects of automated seizure detec-
tion: EEG feature computation and classification methods. 
Little research has been published regarding optimal train-
ing dataset composition for patient-independent seizure 
detection. This paper evaluates the performance of classi-
fiers trained on different datasets in order to determine the 
optimal dataset for use in classifier training for automated, 
age-independent, seizure detection. Three datasets are used 
to train a support vector machine (SVM) classifier: (1) 
EEG from neonatal patients, (2) EEG from adult patients 
and (3) EEG from both neonates and adults. To correct for 
baseline EEG feature differences among patients feature, 
normalization is essential. Usually dedicated detection sys-
tems are developed for either neonatal or adult patients. 
Normalization might allow for the development of a single 
seizure detection system for patients irrespective of their 
age. Two classifier versions are trained on all three data-
sets: one with feature normalization and one without. This 
gives us six different classifiers to evaluate using both the 
neonatal and adults test sets. As a performance measure, 
the area under the receiver operating characteristics curve 
(AUC) is used. With application of FBC, it resulted in per-
formance values of 0.90 and 0.93 for neonatal and adult 
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detection is a valuable asset to health professionals, which 
makes early treatment possible in order to minimize brain 
damage. In past years, numerous neonatal seizure detec-
tion methods have been developed [1, 2, 7, 12, 17, 24]. 
Although reported seizure detection performance is often 
good enough for clinical application, there is still room 
for improvement. Furthermore, performance is often much 
worse when a classification method is actually applied in 
a real clinical setting [14]. Automated EEG-based seizure 
detection research has mainly focused on two separate 
aspects: EEG feature computation and classification meth-
ods [20]. As far as the authors are aware, little research has 
been published regarding optimal training dataset compo-
sition for epileptic seizure detection. As seizure detection 
performance depends on what a classifier has learned dur-
ing training, the importance of an optimal training data-
set is evident. To compose an optimal training dataset for 
epileptic seizure detection, two distinct EEG datasets were 
used: neonatal and adult EEG registrations. Neonatal sei-
zure detection is considered much more difficult compared 
to adult seizure detection. This is because adult seizures 
are generally characterized by less complex waveforms, 
mainly due to the completed maturation of the adult brain 
[9]. Until now, most neonatal seizure detection procedures 
are based on adapted adult seizure detection systems [12]. 
Regarding the marked EEG differences between neonates 
and adults, the development of a specific neonatal classi-
fier is warranted [4]. It has been shown that a support vec-
tor machine (SVM) classifier trained on neonatal EEG data 
can successfully be used for the detection of epileptic sei-
zures in adults [9]. Moreover, our recently introduced fea-
ture baseline correction (FBC) technique compensates for 
differences in feature values between neonatal patients [3]. 
This FBC technique might also reduce differences in EEG 
features values between adults and neonates. If so, neonatal 
and adult EEG datasets can be combined to train an SVM 
classifier for accurate seizure detection in both adults and 
neonates. The objective of this paper is to evaluate the neo-
natal and adult seizure detection performance of three dif-
ferent SVM classifiers trained on: one trained on neonatal 
EEG, one trained on adult EEG, and one trained on both 
neonatal and adult EEG. This evaluation is carried out with 
and without FBC to investigate the relevance of FBC in 
age-independent seizure detection. Our overall goal is to 
gain insight into optimal training set composition for age-
independent seizure detection. We hypothesize that FBC 
enables optimal age-independent seizure detection using 
an SVM classifier trained on the combination of neonatal 
and adult EEG. In addition to comparing classification per-
formance, specific properties of the classifiers themselves 
will be investigated to gain more insight into the compat-
ibility of neonatal and adult datasets. An SVM classifier 
consists of support vectors (SVs), i.e. those training vectors 

considered most relevant for classification. By analys-
ing the SV composition of the classifiers trained on both 
adult and neonatal EEG, further insight can be gained into 
the relative importance of each patient subset for classifier 
training. Because of the more complex seizure waveforms 
seen in neonates, the neonatal dataset will likely contribute 
more SVs to the SVM classifier than the adult dataset.

2 � Materials and methods

2.1 � Dataset

The dataset used in this study consists of two different 
subsets. The first dataset titled Neo consists of 54 routine 
EEG registrations from 39 different neonates with a mean 
post-conceptional age of 39  weeks (range 28–59  weeks). 
The second dataset titled Adults consists of 41 routine 
registrations from 39 adult patients (mean age: 53  years, 
range 22–84  years). The only inclusion criterion used for 
both datasets was the presence of at least one epileptic sei-
zure per recording. The EEGs were recorded between 2000 
and 2014 in the Maastricht University hospital, MUMC+, 
in the Netherlands. Further information about the patients 
used in this study is available in the supplementary infor-
mation. The recordings for the Neo dataset were made 
according to the international 10–20 electrode configu-
ration system for neonates (nine electrodes) [6]. For the 
Adults dataset, the recordings were made using the full 
10–20 electrode set (19 electrodes).

2.2 � Feature extraction

EEG recordings were recorded at a sample frequency of 
250 Hz, band-pass filtered between 0.5 and 32 Hz and sub-
sequently down-sampled to 25 Hz. The EEG is then parti-
tioned into 10-s epochs with 5  s (50  %) overlap between 
epochs. Table  1 lists the 103 quantitative EEG features 
computed per epoch for each uni-polar EEG channel 
as described in the literature for neonatal seizure detec-
tion [13, 25]. These features are not only used for neona-
tal seizure detection but in many different subject groups 
[15]. They stem from different signal description domains 
such as time, frequency and information theory. Each EEG 
epoch is now described by a feature vector per channel. The 
Neo dataset is composed of 21,855 seizure and 141,277 
non-seizure feature vectors (FVs). The Adults dataset is 
composed of 13,043 seizure and 265,470 non-seizure FVs.

2.3 � Feature baseline correction (FBC)

To correct for differences in EEG features, normalization 
is essential in patient-independent algorithms [3, 16]. EEG 
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characteristics change with brain maturation and may dif-
fer among EEG channels [21, 27]. Furthermore, not only 
seizure EEG properties may differ among subjects but 
also their ‘baseline’ non-seizure EEG and may therefore 
hamper optimal SVM classifier training. Optimally, every 
single feature detection threshold should be the same for 
each patient and EEG channel. Since this is not true, FBC 
attempts to achieve this equality by estimating each fea-
ture’s optimal detection threshold. FBC can be seen as a 
form of normalization and is performed for every feature 
per EEG channel for each patient separately. It involves 
the calculation (in training phase) or estimation (in test 
phase) of a feature-specific (optimal) detection threshold 
which is then subtracted from the calculated feature value. 
In the training phase in case of a channel containing sei-
zure epochs, the feature-specific threshold is calculated 
using the seizure annotations. For nearly every feature, a 
linear relation exists between the optimal threshold (Tr) 
and the average non-seizure feature values (aNS). This 
relation is quantified from the training dataset by fitting a 
linear regression model through the aNS-Tr points. Using 
this relation, Tr can be estimated when some non-seizure 
epochs are available to calculate aNS. A small number of 
visually selected (seizure and artefact free) EEG epochs 
from the first 3  min of the registration are used to calcu-
late the aNS values. The number of epochs used for this 

baseline depends on the availability of suitable artefact and 
epileptiform-free EEG but are usually but not necessarily 
taken from the first 3 min of the registration.

2.4 � Training datasets and test procedure

This study evaluates three different training datasets: (1) 
neonatal EEG (Neo), (2) adult EEG (Adult) and (3) Neo 
and Adult combined (Combi). Neo consists of 4500 sei-
zure FVs and 9000 non-seizure FVs randomly selected 
from 39 neonatal patients. The number of selected seizure 
and non-seizure FVs per patient is weighted such that each 
patient contributes equally to the training dataset. This is 
accomplished by the random selection of a maximum 
of 24 seizure FVs per patient per channel. This results in 
2–4-min ‘seizure’ EEG depending on the number of over-
lapping epochs. Adult is composed similarly resulting in 
8235 seizure and 9000 non-seizure FVs. The Combi train-
ing dataset is the combination of Neo and Adult resulting in 
12,735 seizure and 18,000 non-seizure FVs. Since random 
sampling of training data may have an effect on classifier 
performance, ten Monte Carlo simulations of the complete 
training and testing procedure are performed. In this way, 
performance measure robustness and its variance are evalu-
ated. Each Monte Carlo simulation runs with a new ran-
domly selected set of training FVs. Final classifier perfor-
mance metrics are reported as the average of all ten Monte 
Carlo simulations.

Training and classification are performed using ‘leave 
one patient out’ cross-validation (LOO) meaning that in 
each LOO run an SVM classifier is trained on all but one 
patient’s data. This classifier is then used to classify the 
left out patient’s data. In this way, no information from the 
test patient is taken into account by the training algorithm, 
resulting in non-biased results. It is evident that when a 
classifier trained on the Neo dataset is evaluated using the 
Adult dataset and vice versa, LOO is not applicable. Hence, 
only a single classifier is trained on one dataset and its per-
formance evaluated using the other dataset.

2.5 � SVM classifier training

The classification algorithm described in this paper has 
been developed at the Maastricht University hospital, 
MUMC+ [3]. It is an improved version of the algorithm 
introduced to the field of neonatal seizure detection by 
Temko et al. [24], which is based on SVM. The improve-
ments consist of patient-specific EEG feature baseline cor-
rection (FBC) and classifier output post-processing using a 
Kalman filter. A more detailed description can be found in 
our recent paper [3].

An SVM is a discriminative model which uses a sub-
set of the training data to construct a surface that separates 

Table 1   EEG features extracted for each epoch

EEG features

Total power (0–12 Hz)

Peak frequency of spectrum

Spectral edge frequency (SEF 80 %, SEF 90 %, SEF 95 %)

Power in 2 Hz width subbands (0–2, 1–3,…10–12 Hz)

Normalized power in same subbands

Wavelet energy (Db4 wavelet coefficient corresponding to 1–2 Hz)

Curve length

Number of maxima and minima

Root mean square amplitude

Hjorth parameters (activity, mobility and complexity)

Zero crossing rate (ZCR), ZCR of the Δ and the ΔΔ

Variance of Δ and ΔΔ

Autoregressive modelling error (AR model order 1–9)

Skewness and kurtosis

Nonlinear energy

Shannon entropy—spectral entropy, singular value decomposition 
entropy

Fisher information

Linear filter bank: 15 subband energies (0–2, 1–3,…14–16 Hz)

15 Cepstral coefficients

15-s order frequency filtered bank energies

Peak–peak voltage
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seizure from non-seizure feature vectors [23, 29]. Using a 
Gaussian kernel, the data are transformed from the original 
N (number of epochs) by M (number of features, N > M) 
dimensional feature space to a higher N by N dimensional 
space where a complex classification problem can be 
solved with linear discrimination functions. In this higher 
dimensional space, each epoch is characterized by N ‘new 
features’. Owing to the nature of the Gaussian kernel, each 
new feature equates to a similarity score between two 
epochs. Only the feature vectors that are close to the deci-
sion surface are used by the SVM. In the training dataset, 
each feature is normalized by subtracting the mean and 
dividing by the standard deviation to ensure that each fea-
ture has contributed equally to the model. The test data are 
normalized with the normalizing parameters from the train-
ing set. Optimal SVM classifier parameters C (box con-
straint) and σ (Gaussian spread parameter) are identified 
using a grid search for each train–test scenario. Without 
FBC, optimal combinations of C and σ were scattered over 
the grid. However, for FBC classification, the grid searches 
did result in a more restricted range of optimal C and σ 
values. Therefore, these optimal C and σ values found for 
FBC classification were also used for no FBC classification 
(Table 2). Differences in performance were relatively small 
and statistically not significant for a range of different C 
(10–40) to σ (5–8) values.

2.6 � Classifier output post‑processing

Post-processing is applied to the classifier outputs and 
consists of several steps. Each EEG epoch is represented 
by a feature vector for each channel. The SVM classifier 
calculates an output for each feature vector. This output 

represents the signed distance from the decision surface. 
For each epoch, the outputs are then sorted in ascending 
order. The sorted output time series are subsequently fil-
tered with a Kalman filter to remove random noise. The fil-
tered and sorted output is finally compared to a threshold to 
make the final classification decision.

2.7 � Performance evaluation

Seizure detection performance is evaluated in two ways: 
epoch-based metrics and event-based metrics. In case of 
epoch-based metrics, each epoch is treated as an indi-
vidual observation which is classified as either seizure 
or non-seizure. In the testing stage, the SVM classi-
fier is applied separately to each EEG channel. A multi-
channel score is obtained by simply selecting the highest 
SVM classifier output of all channels. This multi-channel 
score is then compared to a detection threshold to obtain 
a binary decision: 0—non-seizure; 1—seizure. This is 
equivalent to requiring seizure detection in at least one 
EEG channel. To obtain receiver operating characteris-
tics (ROC) curves, sensitivity is plotted versus specificity 
at all possible detection thresholds [10]. The area under 
this curve (AUC) is used to quantify the classification per-
formance of a system and has a value of 0.5 for random 
classification and 1 for perfect classification. ROC curves 
of the ten Monte Carlo simulations are combined using 
vertical averaging which means that ten sensitivity val-
ues are averaged at fixed specificity values [10]. Another 
important factor among patients to take into account is 
differences in number and duration of seizures. Because 
AUC values are calculated for the complete dataset, it is 
important that final performance values are not skewed 

Table 2   Classifier performance 
evaluated on the Adults dataset 
(Table 1A) and the Neo dataset 
(Table 1B), with and without 
FBC

Performance is expressed as average ROC AUC value and its standard deviation. The relative increase in 
performance due to FBC is expressed as percentage of the maximal achievable performance gain. SVM 
parameters C and σ were identified using a grid search for each train–test scenario. Bold values indicate 
which classifier results in optimal seizure detection performance. Superscript symbols indicate statistically 
significant differences (P < 0.05) between classifiers (within a column in each table) and do not apply to 
differences between no FBC and FBC

* Adult classifier performance (ACP) versus neonatal classifier performance (NCP)

^ ACP versus combined classifier performance (CCP)

A: Adults test set No FBC FBC Performance  
increase (%)

C, σ

ACP 0.85 ± 0.005 0.93 ± 0.002 52 40, 7

NCP 0.84 ± 0.014 0.92 ± 0.005 52 40, 5

CCP 0.83 ± 0.04 0.93 ± 0.009 57 50, 6

B: Neonatal test set No FBC FBC Performance  
increase (%)

C, σ

ACP 0.70 ± 0.004*^ 0.86 ± 0.002*^ 54 20, 8

NCP 0.76 ± 0.042* 0.90 ± 0.009* 59 20, 8

CCP 0.78 ± 0.028^ 0.90 ± 0.009^ 53 50, 6
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due to patients with more or longer lasting seizures. This 
is in particular because longer lasting seizures are usu-
ally easier to detect [26]. To prevent the results to be 
skewed towards patients with more and longer seizures, 
the dataset was balanced prior to the calculation of the 
AUC values. Let Nmax-S and Nmax-NS denote the num-
ber of epochs of the patient with the largest number of 
seizure and non-seizure epochs, respectively. A balanced 
dataset was achieved by randomly taking multiple cop-
ies, Nmax-S and Nmax-NS, of seizure and non-seizure 
epochs, respectively, per patient. As a result, each patient 
was weighted equally in the AUC calculation. Relative 
classification performance differences between FBC and 
no FBC are calculated as a percentage of the maximally 
achievable gain defined as 100  ×  (FBC-no FBC)/(1-no 
FBC). For example, an increase in AUC from 0.8 to 0.9 
corresponds to 50 % relative increase.

Classification performance can also be quantified by 
so-called event-based metrics, i.e. ‘false detection per 
hour’ (FD\h) and ‘seizure detection rate’ (SDR). These 
metrics are clinically more relevant because the final job 
of an automated seizure detection algorithm is to alarm 
only when a seizure is detected. Whether only part of a 
seizure is detected is therefore of secondary importance. 
A false detection is defined as a single epoch or continu-
ous segment of epochs classified as seizure without over-
lap with an actual annotated seizure. A seizure is detected 
when at least one of its epochs is classified as such.

2.8 � Statistical analysis

To apply adequate statistical testing, performance metric 
distributions generated by the Monte Carlo simulations are 

first checked for normality using the Shapiro–Wilk test as 
well as visual inspection [11].

In case of normal distributions, a two-sample t test is 
used; otherwise, a Wilcoxon rank sum test is used to com-
pare classifier performance differences. P values below 
0.05 are considered statistically significant.

2.9 � Ethical approval

All procedures performed in studies involving human par-
ticipants were in accordance with the ethical standards of 
the institutional and/or national research committee and 
with the 1964 Helsinki Declaration and its later amend-
ments or comparable ethical standards. For this type of 
study, formal consent is not required.

3 � Results

Seizure detection performance of three SVM classifiers is 
evaluated with and without FBC on two test datasets: neo-
natal EEG and adult EEG. The average AUC values with 
and without FBC are shown in Table  2. Several observa-
tions can be made when the different classifier and test data 
combinations are evaluated. First, FBC results in a relative 
performance increase between 52 and 59  %. Because of 
this distinct with and without FBC difference between clas-
sifier performance, only classification results with FBC will 
be presented next.

The average ROC curves (sensitivity versus 1−speci-
ficity) for the three classifiers are shown in Fig.  1. The 
ROC curves of the neonatal test set (Fig.  1b) were 
skewed towards higher specificity. This indicates that 

Fig. 1   ROC curves for adult seizure detection (a) and neonatal seizure detection (b)
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for neonatal seizure detection, classification of seizure 
epochs is more difficult compared to non-seizure epochs. 
This was not the case for adult seizure detection where 
the ROC curves were symmetric around the diagonal line 
(0 1, 1 0).

In addition to the epoch-based metrics, the event-
based metric FD\h is provided. The FD\h distributions 
corresponding to a sensitivity of 80  % are shown in 
Fig. 2.

The results show that neonatal seizure detection is opti-
mal using either the neonatal SVM classifier or the com-
bined classifier. This follows from the significantly higher 
AUC values (Table  2), and significantly lower number of 
FD\h (Fig. 2b) is found compared to the adult classifier. For 
adult seizure detection, the results were less unambiguous 
as shown in Fig. 1 and Table 2. Based on the AUC values, 
all three classifiers performed equally well. However, in 
Fig. 1a, it can be seen that the three ROC curves intersect. 
If high specificity is desired, the combined classifier per-
formed best. If high sensitivity is desired, the adults clas-
sifier performed best. Furthermore, in the 60–90  % sensi-
tivity range, NCP was lower compared to ACP and CCP. 
This lower NCP was also reflected in a higher FD\h rate, as 
shown in Fig. 2a.

In addition to classification performance, the SV compo-
sition of the combined classifier is evaluated.

SVs are those training feature vectors considered to be 
the most relevant for classification. It is assumed that the 
larger a subset’s percentage of training vectors (neonatal or 
adult) that become SV, the more diverse information is con-
tained in this subset.

Without FBC, both the neonatal (49 %) and the adult 
(51  %) datasets account for approximately half the 
number of the SVs. With FBC, the amount of neonatal 
SVs increases to 55 %. When the SVs are evaluated per 
class (seizure and non-seizure) as well, the high neo-
natal seizure and lower adult seizure class importance 

becomes apparent. Of the neonatal dataset, 64  % of 
the seizure FVs becomes SV versus only 38 % for the 
adults FVs.

4 � Discussion

4.1 � Adult versus neonatal seizure detection

As reviewed by Ramgopal [20], scientific research mainly 
focuses on different EEG classification methods and fea-
tures used to detect epileptic seizures. Recent research 
has focused on feature normalization techniques for age-
independent seizure detection [3, 16]. However, little atten-
tion has been given to methods for optimal training dataset 
selection with respect to age-independent seizure detection 
[9].

This study shows that an age-independent SVM sei-
zure detection system can successfully be used for seizure 
detection in both adult and neonatal patients. Despite a sig-
nificant performance increase when applying FBC, neona-
tal seizure detection was still suboptimal using a classifier 
trained on adult EEG data. The same holds for adult sei-
zure detection using a classifier trained on neonatal EEG 
data. However, differences in adult seizure detection per-
formance, between the three classifiers, were much smaller 
compared to differences in neonatal seizure detection 
performance. Although AUC values for NCP (0.92), ACP 
(0.93) and CCP (0.93) did not differ significantly for the 
adult test set, FD\h was significantly lower for ACP com-
pared to NCP and CCP. However, the metric FD\h should 
be approached with caution because it does not take into 
account the duration of each false detection [26]. Over-
all, in terms of both AUC values and FD\h, neonatal sei-
zure detection performance was lower compared to adult 
seizure detection performance. Furthermore, we observed 
that when an SVM classifier was trained on both EEG 

Fig. 2   FD\h distributions belonging to a sensitivity of 80 % for adult seizure detection (a) and neonatal seizure detection (b)
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data from adult and neonatal patients, more neonatal fea-
ture vectors become support vector as compared to adult 
feature vectors. These findings are in support of neonatal 
seizure detection being a more difficult task compared to 
adult seizure detection. This underlines the importance of 
including EEG data in the training data from patients with 
age matched to the age of the test patients, especially when 
used for neonatal seizure detection.

As a primary performance measure, the epoch-based 
area under the ROC curve was used. Monte Carlo simula-
tion of the random training data selection provides insight 
into the variation in the AUC performance measures. In 
light of the relatively small gains in improving seizure 
detection, AUC variations caused by random training 
dataset selection can be quite significant. By using Monte 
Carlo simulations, variations are averaged out resulting in 
more robust performance measures. Without Monte Carlo 
simulations, one might risk drawing conclusions based 
on random chance. We therefore strongly recommend to 
quantify and to minimize variance in performance metrics 
when developing and evaluating seizure detection meth-
ods. Another relevant aspect is the fact that the number and/
or duration of seizures among patients may differ consid-
erable. For this reason, we corrected our results to be not 
skewed towards patients with more and longer duration 
seizures. Based on our study, we strongly recommend that 
with regard to seizure detection performance evaluation 
such a correction procedure must be applied.

4.2 � Implications and limitations

Our work shows the importance of training dataset selec-
tion for age-independent seizure detection in EEG. In a 
data-driven classification approach such as SVM, an EEG 
dataset is both used to develop and test a classification 
method. The role the training dataset plays in the eventual 
classifier performance is often neglected. As a result, it is 
very difficult to compare different classification methods 
trained on different datasets even when evaluated on the 
same test set. Since the availability of seizure annotated 
EEG registrations is often a limiting factor in the devel-
opment of seizure detection algorithms, it is important to 
know which EEG data are the most valuable for classifier 
training. Our results show that FBC enables accurate age-
independent seizure detection and underline the importance 
of neonatal seizure EEG for optimal classifier training. In 
this study, we have analysed a large dataset of 78 patients 
(adult and neonatal) with a total of 592 seizures. A limi-
tation lies in the relatively short (~20  min) EEG registra-
tions each containing minimally one seizure. This might 
not reflect a real intensive care setting where a patient is 
monitored for several days.

Based on the results of this study, our future research 
will address several matters to further improve (long term) 
seizure detection. The SVM–FBC classifier trained for 
neonatal seizure detection will be tested on a large dataset 
(N = 53) consisting of multiple day EEG registrations from 
adult intensive care patients as part of a neuromonitoring 
study. Slow changes in the EEG due to medication, level 
of awareness and clinical status might influence detection 
performance. Indeed, feature differences between patients 
are of similar magnitude to those within a patient over 
time [16]. It therefore goes without saying that using FBC 
with a fixed baseline is not optimal for long-term moni-
toring. To correct for EEG baseline variations, our future 
research will be focussed on the development of an auto-
mated baseline update algorithm. Moreover, it is possible 
to incorporate more or less online patient-specific informa-
tion into the detection algorithm during long-term moni-
toring. When a seizure is detected, it can be added to the 
original training set and used to train a new, more patient-
specific, classifier. Such a patient-specific classifier can be 
trained to detect patient-specific seizures but could also be 
trained to detect patient-specific false detections caused by 
for example periodic discharges [19]. Eventually, it might 
be possible to replace the non-patient-specific classifier by 
a patient-specific one as more information about a patient 
becomes available during a monitoring session. Moving 
from patient-independent towards patient-specific seizure 
detection during a monitoring session will also be part of 
our further research.
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