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ABSTRACT
Whether it is possible to ignore a physically salient distractor has been a topic of active debate over
the past 25 years, with empirical evidence for and against each of the theoretical stances. We put
forward that predictive processing may provide a unified theoretical perspective that can account
reasonably well for the empirical literature on attentional capture. In this perspective, capture is a
logical consequence of the overall imperative of the brain to predict what sensory signals provide
precise information to achieve goal-directed behaviour.
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We applaud Luck et al. (2021) for their comprehensive
historical overview of the attentional capture debate
and for delineating the current theoretical consensus
and remaining disagreement. Such adversarial discus-
sion is key to scientific progress and ultimately, for
explaining the nature of distraction. We contend
that in moving the debate forward it is also critical
to consider why each of the opposing theoretical
stances is supported by data. We posit that an essen-
tial key towards answering this question lies in under-
standing attentional capture from the perspective of
the predictive brain (Friston, 2010). This perspective
explains how selectivity naturally emerges in a
system that needs to adaptively interact with its
environment, that must select one action over the
other, and that to do so, must learn to predict
which aspects of the environment are overall informa-
tive. Within this perspective, attentional capture is an
ineluctable consequence of prediction, and con-
structs like goal-directed attention, implicit learning
and physical saliency (i.e., the three main selection
influences identified in Luck et al., 2021) are logically
united by the continuous drive of the brain to reduce
long-term prediction errors associated with sensory
exchanges (Friston, 2009). First, we discuss the predic-
tive processing perspective and review how an appeal
to predictive processing may allow for an integrative
understanding of the attentional capture literature
and reinterpretation of recent findings. We then

briefly review recent neuroscientific findings that
shed light on how predictions may reduce distractor
interference. In doing so, we suggest important
avenues for future research.

The dominant view in cognitive neuroscience,
taught in the vast majority of text books, is that the
brain, like a computer, processes information in
stages: from sensory encoding to decision making
to action selection. This is also how the brain is typi-
cally empirically studied: participants are presented
with stimuli to which they have to respond and the
externally induced neural activity is correlated to
their behavioural responses. Yet, in recent years, it is
increasingly recognized that because the brain has
no direct access to the external world, only to the
incoming signals conveyed by the senses (i.e., its
own activity patterns), in order to adaptively interact
with its environment, the brain must instantiate pre-
dictive models about the hidden causes of its
sensory input (Friston, 2010). Moreover, to construct
reliable models, the brain must rely on action, as it
is only through action that the brain can, like a scien-
tist, manipulate the incoming signals and determine
whether the action-induced changes in its sensory
activity align with its model’s predictions of what is
out there. By, for example, taking a closer look, the
brain can verify the accuracy of its predictions. In
this view, the brain is thus in charge of generating
information, to give sensations meaning and guide
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actions, and continuously aims to minimize prediction
errors to ensure model fitness. Plasticity is empha-
sized, as the brain constantly adapts based on
changes in input structure. Yet, the aim is not to
create a mirror-like copy of the outside world per se,
if at all, but to best predict action-induced sensory
outcomes across multiple time scales, so that the
larger system that the brain is intrinsically part of
(i.e., the body), can sustain itself as a living organism
(Allen & Friston, 2018). Brains are ultimately about
organizing action (Hommel et al., 2019). Indeed, a
growing body of research shows that even in early
sensory brain regions, responses also reflect predic-
tions (Kok et al., 2013) and actions (Schneider, 2020).

In a brain engaged in predictive processing, unex-
pected external events will generate large prediction
errors, that it needs to explain. Yet, it would be detri-
mental if predictive models would simply be at the
whim of external influences, as the world is full of stat-
istical noise or uncertainty. The brain hence also has
to deal with statistical volatility and predict the pre-
cision (inverse variance) of sensory evidence (predic-
tion errors) (Friston, 2009). Precision weighting
ensures that only prediction errors with high
expected precision, that provide high-quality
sensory information, can revise predictive models.
This provides the brain with a mechanism to control
the relative influence of top-down predictions vs.
bottom-up input in a context-sensitive manner. It
has been proposed that attention maps onto pre-
cision weighting, in line with empirical findings that
attention can modulate sensory gain (Feldman &
Friston, 2010; Hohwy, 2012).

Although it is far from clear if predictive processing
can account for all mental phenomena, this frame-
work may provide a unified explanation for seminal
findings in the attentional capture literature, as the
three main selection factors (physical salience,
implicit learning, explicit goals) simply relate to the
same mechanism: precision weighting. It can firstly
explain why it is so difficult to ignore a physically
salient distractor to begin with. Strong sensory input
(e.g., driven by large spatial contrast and/or temporal
contrast (abrupt onset) stimuli) is expected to have a
better signal-to-noise ratio (higher precision) than
weaker input (Feldman & Friston, 2010). Thus, high-
contrast, physically salient stimuli are by default
assigned high precision, rendering it more likely
that they will capture attention. It may also explain

why it is so difficult to overcome their capture. The
expectation that strong input is precise is grounded
in a life-time of learning across many different exter-
nal environments, and thus relatively stubborn or
insensitive to new experiences. Yet, in new task con-
texts with statistical structure, precision expectations
can develop that restructure information sampling
and reduce or even eliminate attentional capture.
For example, the statistical structure of contexts in
which the distractor is predictable across trials (Gas-
pelin & Luck, 2018) allows for the downweighting of
distractor signals, as the brain learns that they
convey low-quality information to the task at hand.
Similarly, in feature search mode, when target fea-
tures are predictable across trials, the precision of
target signals can be upregulated, reducing the pre-
cision assigned to other stimuli. Yet, in statistically
volatile contexts, as for example in mixed-feature var-
iants of the additional singleton paradigm, in which
targets and distractors randomly swap features
across trials (singleton detection mode), precision
expectations cannot develop, leaving physically
salient stimuli the floor. Furthermore, the overarching
nature of the expectation of the brain that strong
sensory input is precise can explain why implicit dis-
tractor learning is task specific and does not transfer
to novel tasks contexts (Britton & Anderson, 2020).
Finally, predictive processing can also explain why a
distractor is more likely to capture attention when it
matches prioritized information (contingent involun-
tary orienting hypothesis (Folk et al., 1992)): its
matched features are assigned higher precision.

Thus, within the predictive processing framework,
the brain not only recapitulates the (statistical) struc-
ture of how sensations are caused, but simultaneously
incorporates estimations of levels of uncertainty that
can be adjusted on the basis of new learning. On
the one hand, this can explain the seemingly involun-
tary nature of bottom-up, exogenous attention (over-
arching expectation that high-contrast stimuli are
precise), as well as why the attractiveness of objects
initially favoured by physical salience can reduce
with new implicit learning (precision reweighting),
as described above. On the other hand, it also
explains why we can volitionally direct our attention,
based on explicit goals (i.e., facilitated target proces-
sing in response to a cue), regardless of our previous
experiences with a given visual environment or
context. We have oriented our attention in space to
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many different objects in many different visual
environments, and to an object in many different pos-
itions in many different contexts. These conditional
independencies in the external world are mirrored
in the functional anatomy of the brain (Friston &
Buzsáki, 2016) and allow the brain to generate expec-
tations of reliable information at a particular location
in space regardless of what it is or the precise context,
and to expect reliable object information regardless
of its location and specific context. That is, the statisti-
cal structure incorporated by the brain of how sen-
sations are caused and their estimated noise level
(precision) can also abstract across specific contexts.
This gives top-down attention its volitional character.
Yet, in the external world, where and what are often
conflated, such as when objects are more likely to
occupy a particular location in space in a given
visual setting (e.g., microwave in a kitchen). These
context-related statistical dependencies are reflected
in precision weighting, causing context-specific
implicit biases in top-down attention. This account
is in line with empirical findings that goal-driven
attention is task general, but implicitly learned atten-
tion is not (Addleman et al., 2018).

Within the predictive processing framework, learn-
ing is hence a pervasive feature of attention, as opti-
mizing precision expectations necessarily relies on
integrating information over time, within and across
contexts. This can explain both the seemingly volun-
tary nature of top-down attention and the apparent
involuntary nature of bottom-up attention, as well
as the effects of new statistical regularities on atten-
tional orienting as these permit the development of
precision expectations that restructure information
sampling (i.e., attentional biases). In this unified
account, attentional capture is an emergent property
of prediction, an overgeneralization of an adaptive
principle, and the various factors (salience, implicit
learning and explicit goals) are naturally connected
by the overall imperative of the brain to sample the
most informative sensory signals.

We also appeal to predictive processing to inform
the current debate, delineated in Luck et al. (2021),
whether (1) only implicit biases or also explicit goals
can induce proactive suppression, and (2) whether it
is at all possible to overcome capture by a highly
salient distractor. As to the first theoretical disagree-
ment, Folk and Remington posit that explicit goals
can proactively suppress distracting features, while

the signal suppression theory and the stimulus-
driven account argue that only learned (implicit)
biases can prevent attentional capture based on
studies showing that suppression is not possible
when the distractor is cued on a trial-by-trial basis.
Within the predictive processing framework, explicit
goals can only indirectly prevent attentional capture
when informative about the upcoming target (e.g.,
an explicit cue informing about the colour or location
of the upcoming target), as in this scenario, target
signals can be assigned higher precision than distract-
ing input. This may explain observations that in many
situations, stimuli do not grab attention when they do
not contain target properties (Folk et al., 1992). By
contrast, physically salient distractors are by default
assigned high precision and overcoming this overge-
neralized expectation takes time such that in the
absence of precise target expectations, suppression
of physically salient stimuli is dependent on implicit
learning. The predictive processing account makes
the additional prediction that benefits of implicit dis-
tractor learning are context- or task-specific, as also
shown by recent studies (Britton & Anderson, 2020).
To support their claim, Folk and Remington reference
two studies, which in our view do not provide unequi-
vocal evidence for explicit proactive suppression. In
the first study by Lien et al. (2010), equal capture by
distractors was found in blocks in which the target
colour was fixed versus randomly cued from trial to
trial. Thus, only target foreknowledge was manipu-
lated, and their results hence cannot provide evidence
for the notion of direct top-down suppression by expli-
cit distractor foreknowledge. Although the study by
Moher et al. (2011) showed reduced capture by
colour singleton distractors after cues signalling a
high distractor probability relative to low probability
distractor cues, critically, response times were also
slowed on distractor absent displays following high
probability distractor cues. This strategic slowing of
response times indicates that results reflect slow
endogenous shifts of attention rather than the
absence of exogenously driven attentional capture
(Hickey et al., 2010). Moreover, participants were first
trained with a version of the task in which the high
and low distractor probability cues were not randomly
intermixed within a block, permitting statistical learn-
ing that may have induced implicit biases in the sub-
sequent task. To univocally show suppression by
explicit goals, one needs to demonstrate suppression
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when the distractor is cued on a trial-by-trial basis in
the absence of any possibility of prior implicit learning
or information about the target stimulus.

While there is a general consensus that implicit
learning shapes capture, a second theoretical dis-
agreement concerns whether implicit learning-
related proactive suppression of distractor features
can be strong enough to overcome capture by
highly physically salient distractors. Luck and Gaspelin
summarize convincing evidence, from behavioural,
eye tracking and ERP studies, that implicit learning
can prevent attentional capture (Gaspelin & Luck,
2018). Yet, Theeuwes argues that capture cannot be
overcome in all cases, largely based on a recent
study by Wang and Theeuwes (2020). This study
showed that while capture by a singleton distractor
could be proactively suppressed in a small, set size
4 condition, replicating seminal work by Gaspelin
and colleagues (Gaspelin et al., 2015), capture
returned when set size was increased to six or ten
items. Wang and Theeuwes reasoned that in the
larger set size conditions, the singleton distractor
was physically more salient, due to increased local
feature contrast, and increased similarity to non-sin-
gleton distractors. Theeuwes therefore posits that
proactive weighting of non-spatial features is poss-
ible, but cannot overcome high levels of physical sal-
ience. This is certainly plausible, given the
stubbornness of the expectation that strong sensory
signals generate reliable information. However, from
the predictive processing perspective, it is also
notable that the conditions differed in the extent to
which distractor learning could occur. That is, in the
small set size condition, the distractor could occur
at fewer locations (4 vs. 6 or 10) and in fewer possible
display configurations (72 vs. 900 or 56,700) than in the
larger set size conditions. Thus, this condition was stat-
istically much less variable. Moreover, only in the small
set size condition, the distractor singleton had a unique
shape, which likely also enhanced the ability to antici-
pate the distractor in this condition. Thus, in the
larger set size conditions, the strength of the “attend-
me” signal triggered by the singleton distractor may
have been stronger, not simply because it was phys-
ically more salient, but also because of reduced famili-
arity with the distractor and its context. To
unequivocally demonstrate that capture by a highly
physically salient stimulus is inevitable, future studies
will need to control for potential differences between

conditions or experiments in overall distractor predict-
ability and contextual learning. One testable prediction
that derives from the above is that provided enough
opportunity for learning, attentional capture will also
disappear in the larger set size conditions. If observed,
this would argue against the stimulus-driven account
put forward by Theeuwes that capture by highly phys-
ically salient cannot be overcome. Indeed, other work
shows that capture by highly physically salient,
abrupt-onset stimuli can disappear (Turatto et al.,
2018), already nuancing this claim.

The above illustrates the strong influence of
implicit learning on capture, and the difficulty of
examining the individual selection influences in iso-
lation, indicative of their intertwined relation. It also
raises the question how distractor expectations are
neurally implemented. As visualized in Figure 2 in
Luck et al. (2021), it is currently unclear how, if at all,
the gain of non-spatial features can be modulated
prior to saliency computations. Supporting the
notion that the brain continuously predicts upcoming
input, recent studies show that predictions tune
sensory processing towards the expected stimulus,
and this tuning becomes more precise when the
expected feature is also attended (Walsh et al.,
2020). However, it is currently highly controversial
whether the brain also implements “templates for
rejection,” and if so, whether such templates can be
flexibly instantiated (through explicit goals) or only
manifest itself as a function of implicit learning.
While to date, in line with the behavioural literature,
there is no neural evidence yet in support of flexible
distractor templates (i.e., when the distractor is cued
on trial-by-trial basis; de Vries et al., 2019; Reeder
et al., 2018), we recently showed that with implicit
learning both the expected spatial frequency of the
target, and that of the distractor could be decoded
from pre-stimulus brain activity (van Moorselaar
et al., 2020). Strikingly, the classification algorithm
did not generalize from distractors to targets,
suggesting that while the brain continuously predicts
upcoming input based on sensory regularities in the
environment, target and distractor expectations are
qualitatively different in nature. Although this war-
rants confirmation, learning what is relevant may
induce feature upweighting, whereas distractor learn-
ing results in feature downweighting.

Figure 2 of Luck et al. (2021) also illustrates that all
models agree that through implicit learning, likely
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distractor locations can be proactively suppressed.
Yet to date, there is little evidence that spatial expec-
tations are actually encoded in pre-stimulus neural
tuning. Although one study observed proactive
changes in distractor location representation, as
reflected in pre-stimulus alpha-band asymmetry
(Wang et al., 2019), four other EEG studies in which
the distractor location became predictable across
trials did not observe any anticipatory changes in
the representation of this location (Noonan et al.,
2016; van Moorselaar et al., 2020, 2021; van Moorse-
laar & Slagter, 2019). One possibility is that distractor
location learning is implemented via an activity-silent
mechanism or synaptic plasticity, and only becomes
apparent once distractor foreknowledge can be inte-
grated with bottom-up sensory input. Indeed, distrac-
tor location learning has been associated with
modulations of the Pd, an event-related potential
linked to distractor inhibition. Thus, feature and
spatial distractor expectations may be differentially
implemented in the brain as a function of implicit
learning. Future work is necessary to further under-
standing of how the brain learns to expect (ignore)
irrelevant, distracting information.

To conclude, we put forward that predictive pro-
cessing may provide a unified theoretical perspective
that can account considerably well for the empirical
literature on attentional capture. In this perspective,
capture is the logical consequence of the overall
imperative of the brain to predict what sensory
signals provide precise information to achieve goal-
directed behaviour. There is no homunculus that
directs attention or inhibits distractors, but simply a
brain that attempts to incorporate the structure of
the world in a reliable and meaningful way.
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