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Peak-based meta-analyses of neuroimaging studies create, for each study, a brain map of
effect size or peak likelihood by convolving a kernel with each reported peak. A kernel is
a small matrix applied in order that voxels surrounding the peak have a value similar to,
but slightly lower than that of the peak. Current kernels are isotropic, i.e., the value of
a voxel close to a peak only depends on the Euclidean distance between the voxel and
the peak. However, such perfect spheres of effect size or likelihood around the peak are
rather implausible: a voxel that correlates with the peak across individuals is more likely
to be part of the cluster of significant activation or difference than voxels uncorrelated
with the peak. This paper introduces anisotropic kernels, which assign different values to
the different neighboring voxels based on the spatial correlation between them. They are
specifically developed for effect-size signed differential mapping (ES-SDM), though might
be easily implemented in other meta-analysis packages such as activation likelihood esti-
mation (ALE). The paper also describes the creation of the required correlation templates
for gray matter/BOLD response, white matter, cerebrospinal fluid, and fractional anisotropy.
Finally, the new method is validated by quantifying the accuracy of the recreation of effect
size maps from peak information.This empirical validation showed that the optimal degree
of anisotropy and full-width at half-maximum (FWHM) might vary largely depending on
the specific data meta-analyzed. However, it also showed that the recreation substantially
improved and did not depend on the FWHM when full anisotropy was used. Based on
these results, we recommend the use of fully anisotropic kernels in ES-SDM and ALE,
unless optimal meta-analysis-specific parameters can be estimated based on the recre-
ation of available statistical maps. The new method and templates are freely available at
http://www.sdmproject.com/.

Keywords: activation likelihood estimation, anisotropic kernel, coordinate-based meta-analysis, effect size, mag-
netic resonance imaging, neuroimaging, signed differential mapping

INTRODUCTION
In order to help summarize and integrate the results of the ever-
growing number of neuroimaging studies, some groups have
developed methods to conduct voxel-based meta-analyses solely
relying on the information reported in the papers, namely the
peaks of the clusters where there were statistically significant
activations or where patients and controls showed statistically
significant differences. Activation likelihood estimation (ALE) (1–
4), (effect-size) signed differential mapping (ES-SDM) (5–7) and
(multilevel) kernel density analysis (M-KDA) (8, 9) are commonly
used methods that have already been applied to meta-analyze a
wide range of normal brain functions (10–12) and abnormali-
ties in neurological (13–15) and psychiatric disorders (16–18). As
briefly introduced in Figure 1, these methods differ substantially in
their algorithms [for a deeper review, see Ref. (19)], but one char-
acteristic they share is that all convolve an isotropic kernel with the
peak. In this context, a“kernel”is a small matrix convolved with the

peaks in order that voxels surrounding a peak have a value similar
to, but slightly lower than that of the peak. An “isotropic kernel” is
identical in all directions. In simple terms, the effect size of a voxel
close to a peak would only depend on the effect size of the peak and
the Euclidian distance between the voxel and the peak (Figure 2).
All voxels at 1 cm of a peak would have the same effect size,
independently of whether they are in the same brain region or not.

However, such perfect spheres of effect size around the peak
are probably implausible. Independently on the distance, voxels in
the same brain region as the peak are more likely to be part of the
cluster of significant activation or difference. Conversely, voxels in
other brain regions, or separated from the peak by cerebrospinal
fluid, are less likely to be part of the cluster.

Applying an isotropic kernel may thus underestimate the effect
size of voxels in the same brain region as the peak, whereas it may
overestimate the effect size of voxels from other brain regions.
Some groups have recommended the use of large kernels, thus

www.frontiersin.org February 2014 | Volume 5 | Article 13 | 1

http://www.frontiersin.org/Psychiatry
http://www.frontiersin.org/Psychiatry/editorialboard
http://www.frontiersin.org/Psychiatry/editorialboard
http://www.frontiersin.org/Psychiatry/editorialboard
http://www.frontiersin.org/Psychiatry/about
http://www.frontiersin.org/Journal/10.3389/fpsyt.2014.00013/abstract
http://www.frontiersin.org/Journal/10.3389/fpsyt.2014.00013/abstract
http://www.frontiersin.org/people/u/21549
http://www.frontiersin.org/people/u/7563
http://www.frontiersin.org/people/u/107810
http://www.frontiersin.org/people/u/11740
http://www.frontiersin.org/people/u/74270
http://www.frontiersin.org/people/u/134856
mailto:joaquim.radua@kcl.ac.uk
http://www.sdmproject.com/
http://www.frontiersin.org
http://www.frontiersin.org/Neuropsychiatric_Imaging_and_Stimulation/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Radua et al. Anisotropic coordinate-based meta-analyses

FIGURE 1 | Main steps of activation likelihood estimation (ALE) and
effect-size signed differential mapping (ES-SDM). ALE (left approach)
aims to estimate the likelihood that a peak lies in any given voxel. To this
end, it first applies a Gaussian kernel so that the likelihood is high in the
voxel where the peak is reported and similar but slightly lower in the close
voxels. Afterward, it calculates the probability of the union of the likelihoods
estimated from the different peaks and studies. ES-SDM algorithms (middle
and right approach) are different, as this method aims to estimate the effect
size rather than the peak likelihood. However, the first step also consists in
applying an (un-normalized) Gaussian kernel, this time to achieve that voxels
around a reported peak have an estimated effect size which is similar but
slightly smaller to that of the peak. Afterward, effect-sizes recreated from
the different peaks of a study are combined using a weighted average, i.e.,
when a voxel is close to two peaks, it has an effect size that depends on
both peaks. Finally, the effect size maps as well as their variance maps are
introduced in a meta-analytic random-effects general linear model.

minimizing the underestimation of the effect size, though at the
cost of a potential overestimation in some voxels (6, 20). Other
developers have recommended the use of narrow kernels, thus
minimizing the overestimation of the effect size, though at the
cost of potential underestimation in some other voxels (4).

The aim of this study was to develop anisotropic kernels for
coordinate-based meta-analyses, which would assign different val-
ues to the different neighboring voxels based on the spatial corre-
lation between them. This was specifically developed for ES-SDM,
although it might be easily implemented in other widely used
meta-analytical programs such as ALE. The paper also includes
the creation of new tissue-specific templates and a validation of
the new method. We hypothesized that the recreation of effect size
maps using anisotropic kernels would be more accurate than using
isotropic kernels.

THEORY
Previous versions of ES-SDM adopted the ALE Gaussian kernel
with the aim that, in the recreated statistical map, the voxels close
to a peak have slightly smaller effect sizes than that of the peak, and
progressively further voxels have progressively smaller effect sizes.
Specifically, the effect size of a voxel close to a peak depended on
the effect size of the peak and on the Euclidean distance between
the voxel and the peak by means of an un-normalized Gaussian
function:

dvoxel = exp

(
−D2

2 · σ2

)
· dpeak (1)

where d is the effect size, D is the distance, and σ is the standard
deviation of the kernel (approximately 0.425 of its full-width at
half-maximum, FWHM).

The new method described here is based on the correlation
between close voxels in the underlying structural image. Note that
correlated voxels (e.g., individuals with much gray matter in one
voxel tend to also have much gray matter in the other voxel) are
more likely to be from the same brain region. The method consists
of virtually deforming the distance so that highly correlated voxels
are brought closer, while uncorrelated voxels are moved further
away. A Gaussian kernel is then applied to the deformed space.
When the original space is restored, highly correlated voxels are
estimated to have larger effect sizes whereas uncorrelated voxels
are estimated to have smaller or null effect sizes (Figure 3).

DEFORMATION OF THE SPACE
Space is deformed to match the correlation of each voxel with
its neighbors. To match distances and correlations, the expression
of dvoxel in Eq. 1 is made equal the expression of dvoxel in Eq. 2,
obtaining Eq. 3 from which D may be isolated:

dvoxel = ρ · dpeak (2)

exp

(
−D2

2 · σ2

)
· dpeak = ρ · dpeak (3)

D =
√

2 · σ2 · log
(
ρ−1

)
(4)

where ρ is the coefficient of correlation between the voxel and the
peak.

The distance between a peak and its adjacent voxels is thus
deformed according to the Eq. 4, the only variables of which are
the constant standard deviation of the kernel (or equivalently the
FWHM) and the correlation between the two voxels. Figure 4
shows this correspondence between correlation and deformed
space.

To estimate the distance between the peak and a non-
contiguous voxel v, the software must sum the distances between
the pairs of contiguous voxels along the shortest path between
the peak and the voxel v. However it is difficult to know, in the
deformed space, which is the shortest path between two voxels.
A path composed of 10 voxels may be shorter than a path com-
posed of 6 voxels, if the sum of the distances between the nine
pairs of contiguous voxels of the former is smaller than the sum
of the distances between the five pairs of contiguous voxels of
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Radua et al. Anisotropic coordinate-based meta-analyses

FIGURE 2 | Recreation of clusters using isotropic kernels in previous
versions of effect-size signed differential mapping (ES-SDM) and
activation likelihood estimation (ALE). Note that the recreation of the

effect size (or the estimation of the activation likelihood) does not depend on
the strength of the spatial correlations, but only on the Euclidean distance
between each voxel and the peak.

FIGURE 3 | Recreation of clusters using the anisotropic kernel in the updated version of effect-size signed differential mapping (ES-SDM). Note that
the recreation of the effect size does depend on the strength of the spatial correlations, with the cluster being stretched toward voxels highly correlated with
the peak.

the latter. A Dijkstra’s algorithm (21) is used in the new method
to find the shortest distance between the peak and each of its
surrounding voxels. Specifically, the algorithm first calculates the

distances between the peak (“initial node”) and each of its’ 26
adjacent voxels. Second, it calculates the distances between one
of these adjacent voxels (“current node” in this step) and each its’
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FIGURE 4 | Deformed distance between two adjacent voxels
depending on the correlation between them. Deformed distances in this
example have been calculated for σ= 8.5 mm (FWHM=20 mm). Note,
however, that the recreation of effect size map does not indeed depend on
FWHM when full anisotropy is used [see text, Eq. 2 and Figure 6].

adjacent voxels. This step is repeated for each of the voxels adjacent
to the peak. Third, it calculates the distances between each of the
voxels adjacent to the voxels adjacent to the peak and their adja-
cent voxels. This is repeated until: (a) the total distance between
the peak and a voxel following a path of voxels is not shorter to
that previously calculated following another path; or (b) the total
distance is longer than the FWHM – which would correspond to
the effect size of the peak divided by 16, already negligible.

This algorithm does not restrict its calculations to voxels within
a mask of, e.g., gray matter. This is important because neuroimag-
ing studies not uncommonly show significant results outside the
expected tissue, due to, e.g., registration mismatches during pre-
processing. With this unrestricted spatial propagation: (a) peaks
outside the selected mask may be also used in the recreation
of the effect size; and (b) researchers can check whether peaks
of the recreated map match with those reported in the man-
uscript – which may be outside the mask. However, spuriously
strong correlations outside the tissue might potentially cause arti-
facts such as“bridges”between two separate brain regions. In order
to avoid such artifacts, correlations in voxels with a tissue prob-
ability lower than 0.1 in the smoothed average (see Creation of
correlation templates below) are decreased proportionally, e.g.,
are divided by 2 in voxels with a tissue probability of 0.1/2= 0.05,
and by 10 in voxels with a tissue probability of 0.1/10= 0.01.

GENERALIZATION TO VARIABLE DEGREES OF ANISOTROPY
Equation 2 can be generalized to:

dvoxel = ρ1−α
isotropic · ρ

α
· dpeak (5)

where α is the degree of anisotropy and ρisotropic is a theoreti-
cal spatially constant correlation in the isotropic scenario. Note
that α= 0 corresponds to the isotropic scenario, α= 1 to the
fully anisotropic scenario, and 0 < α < 1 to variable degrees of
anisotropic scenarios.

The theoretical spatially constant correlation in the isotropic
scenario (ρisotropic) may be isolated from (3):

ρisotropic = exp

(
−D2

real

2 · σ2

)
(6)

where Dreal is the real Euclidean distance between the two voxels.
D may be again isolated following the same steps as outlined

above:

D =
√

(1− α) · D2
real + α · 2σ2 · log

(
ρ−1

)
(7)

SUBSEQUENT PROCESSING STEPS
Once the deformed distances from a peak have been calculated,
these are used by the Gaussian kernel to estimate the effect size
of the voxels surrounding a peak. Remaining ES-SDM steps have
not been modified: (a) combination of the effect sizes of nearby
peaks by means of a weighted average; (b) estimation of the vari-
ances associated to these effect sizes; and (c) combination of the
effect sizes of the studies included in the meta-analysis by fit-
ting random-effects general linear models. Step (a) is conducted
throughout the whole volume for diagnostic purposes, but voxels
outside the tissue mask are subsequently discarded.

In ALE, the deformed distances could be used by the Gaussian
kernel to estimate the likelihood of a peak, and remaining ALE
steps (e.g., the estimation of the probability of the union) would
not need to be modified.

CREATION OF CORRELATION TEMPLATES
In order to apply the method described above, we needed to create
correlation templates for gray matter, white matter, cerebrospinal
fluid and fractional anisotropy (FA).

Raw magnetic resonance imaging (MRI) data were obtained
from the IXI dataset1. This dataset includes nearly 600 MR
images from normal, healthy subjects acquired in three different
hospitals in London. In order to avoid scanner-related differ-
ences, we only used those MR images acquired at Hammersmith
Hospital, where a Philips 3 T device was used. T1 parameters
were as follows: repetition time= 9.6, echo time= 4.6, 208 phase
encoding steps, echo train length= 208, reconstruction diame-
ter= 240, acquisition matrix= 208× 208, and flip angle= 8. Dif-
fusion tensor imaging (DTI) parameters were as follows: repetition
time= 11894, echo time= 51, two averages, 110 phase encod-
ing steps, echo train length= 0, reconstruction diameter= 224,
acquisition matrix= 112× 110, and flip angle= 90.

After exclusion of individuals younger than 20 years or older
than 80 years, the Hammersmith Hospital sample included 181
scans. A minimization script was used to select 120 of them
in order to obtain 6 equal-sized demographic groups (20–40-
year-old males, 40–60-year-old males, 60–80-year-old males, 20–
40-year-old females, 40–60-year-old females, and 60–80-year-old
females) and a relatively lower frequency of the over-represented
white and university-educated individuals (73 and 52% respec-
tively in the original sample, 60 and 40% in the selected sample).

1http://www.brain-development.org/, accessed on Oct 31 2013
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The same individuals were used to create the FA template, although
DTI data were missing for four of them.

T1 scans were pre-processed following a standard voxel-based
morphometry (VBM) algorithm with FSL2, with the excep-
tion that no study-specific template was estimated in order
that the final images were exactly in Montreal Neurological
Institute (MNI) space: brain-extraction (22), tissue segmenta-
tion (23), non-linear registration to MNI space, and smoothing
(σ= 4mm; FWHM= 9.4 mm). DTI scans were also pre-processed
following a standard voxel-based FA algorithm with FSL: brain-
extraction, Eddy correction, FA estimation, linear registration to
the T1 scans, non-linear registration to MNI space, and smooth-
ing (σ= 3mm; FWHM= 7.1 mm). Non-linear registrations were
based on the warp parameters estimated for the T1 gray matter
segments.

Finally, individual values in each voxel were correlated with the
individual values in its contiguous voxels using R (24). The gray
matter density of a voxel x in the 120 individuals, for example,
was correlated with the gray matter density of its right-contiguous
voxel y in the same individuals, with x and y being variables with
one value per subject. A strong correlation would indicate that
individuals with more gray matter density in one of the voxels also
had more gray matter density in the other voxel. For computa-
tional and memory purposes, only 13 correlations were calculated
for each voxel, as the other complementary 13 correlation were
indeed also calculated for the corresponding neighboring voxel,
e.g., “correlation with the voxel at the left” had been already calcu-
lated when calculating the “correlation with the voxel at the right”
in the voxel at the left. An example of final template is shown in
Figure 5.

VALIDATION OF THE NEW KERNEL
METHOD
In order to validate the new method, six voxel-based effect
size maps were recreated from peak information using different

2http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

degrees of anisotropy and FWHM, and compared to the effect size
maps directly obtained from the raw statistical parametric maps
(“true” effect size maps). The idea is that the lower the difference
between peak-recreated and true effect size maps, the better the
recreation.

The 120 individuals from the IXI dataset were divided six times
in two groups of 60 individuals each, with these divisions being
orthogonal between them (25). A statistical parametric map was
obtained from the comparison of the registered and smoothed gray
matter segments between the two groups of each pair of groups.
The six independent statistical parametric maps were thresholded
liberally (p= 0.001, with a minimum extent of only 10 voxels) in
order to obtain significant differences. The mean (±standard devi-
ation) number of clusters was 22± 28, and the median (±absolute
deviation) was 16± 14.

Effect-size signed differential mapping pre-processing of peak
information was then conducted with different degrees of
anisotropy (0.0, 0.2. . . 1.0) and different FWHMs (5, 10. . .

100 mm). Differences between peak-recreated and true effect
size maps were summarized with the relative mean square error
(MSE), i.e., the MSE obtained under the current degree of
anisotropy and FWHM, divided by the MSE obtained under
default ES-SDM isotropic FWHM (20 mm) (6). A relative MSE
<100% would indicate an improvement of the recreation. A
set of six MSEs (one per statistical map) was obtained for
each combination of parameters, and we assessed whether
these were lower than the MSEs obtained from the same
statistical maps under default ES-SDM isotropic FWHM by
means of a non-parametric repeated-measures Wilcoxon signed-
rank test.

RESULTS
As shown in Figure 6, the optimal FWHM in this particular dataset
ranged from 40–45 mm in the absence of anisotropy (relative
MSE= 80%, p= 0.053), to 100 mm (or more) when anisotropy
was 0.4 or higher (relative MSE= 78–92%, p= 0.030–0.053). Nar-
rower FWHMs were associated to substantial increases of the
MSE (relative MSE= 120–128%). Wider FWHM also seem to

FIGURE 5 | Main correlation maps for white matter volume. For illustrative purposes, this Figure only shows correlations along the three main directions
(left-right, back-front and bottom-up). The templates created in this study include the correlations with all 26 voxels surrounding each voxel.
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Radua et al. Anisotropic coordinate-based meta-analyses

FIGURE 6 | Relative mean square error (MSE) of the recreation of
the statistical maps used in this study depending on the degree of
anisotropy and the full-width at half-maximum (FWHM). Relative
MSE was defined as the MSE obtained with the current set of
parameters divided by the MSE obtained after applying effect-size

signed differential mapping (ES-SDM) standard isotropic kernel
(FWHM=20 mm). Please note that optimal degree of anisotropy and
FWHM were different when using other datasets (not reported here),
but use of full anisotropy was still associated to a substantial decrease
of MSE.

be associated to substantial increases of the MSE, at least in the
absence of anisotropy (relative MSE= 127%).

As expected from Eq. 2, the effects of FWHM were null when
recreations were conducted with full anisotropy, whereas there was
still a substantial decrease of MSE (MSE= 92%, p= 0.030).

Optimal degree of anisotropy and FWHM were different when
using other datasets (not reported here), but use of full anisotropy
was still associated to a substantial decrease of MSE.

DISCUSSION
This manuscript presents anisotropic kernels for peak-based meta-
analytic methods based on the spatial correlation between neigh-
boring voxels, as well as the creation of the required templates for
gray matter, white matter, cerebrospinal and FA. The empirical val-
idation showed that the optimal FWHM in the particular dataset
used was substantially larger than in previous validations (6, 20),
indicating that optimal FWHM might vary largely depending on
the data. However, it also showed that the recreation substantially
improved and did not depend on the FWHM when full anisotropy
was used. Both the method and the templates are readily available
with SDM software3.

These findings support our hypothesis that isotropic kernels
may underestimate the effect size in voxels strongly correlated
with the peak (e.g., more likely to be from the same brain region),
whereas they may overestimate the effect size in voxels weakly cor-
related (e.g., less likely to be from the same brain region). In this
regard, it must be noted that anisotropic kernels have also already
successfully been applied in other neuroimaging fields (26).

3http://www.sdmproject.com

In the absence of anisotropy, the optimal FWHM in this val-
idation was found to be 45 mm in the present study, whilst
reported to be 20–25 mm in previous work. Such difference might
be related to the extent and smoothness of the brain activa-
tions, differences or abnormalities. Spatially large and smooth
effects may be better recreated with large kernels, whilst small
and circumscribed effects with small kernels. Thus, recreation
could be optimized for each specific meta-analysis based on the
degree of anisotropy and FWHM found to optimally recreate the
available statistical maps. This optimization may be achieved fol-
lowing a series of steps analogous to those conducted in Section
“Method,” namely: (a) threshold the statistical parametric maps;
(b) conduct command-line ES-SDM pre-processing with differ-
ent degrees of anisotropy and FWHM; (c) calculate the MSE of
the differences between each peak-recreated map and the corre-
sponding effect size map under each combination of parameters;
(d) choose the optimal parameters based on a plot similar to
Figure 6. Robustness should be taken into account when deciding
which is the optimal combination of parameters, e.g., ensuring
that slight variations in anisotropy or FWHM are not associated
with large increase in MSE. On the absence of available statistical
parametric maps, however, the use of full anisotropy may rep-
resent a robust choice given that results do not depend on the
FWHM.

There is at least one situation in which isotropic and anisotropic
kernels may be probably equivalent, namely when meta-analyzing
studies using tract-based spatial statistics (TBSS) (27). These stud-
ies limit their statistical analysis to a FA skeleton, but skeletons
of different studies do not overlap. To overcome this difficulty,
TBSS protocol in ES-SDM consists in retrieving a mass number
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of liberally thresholded local peaks from the statistical maps and
incorporating them into the ES-SDM TBSS map in order to recon-
struct the effect size maps in a common skeleton (28). Given the
extreme proximity of the retrieved local peaks, no difference is
expected between using one or another kernel. Conversely, the
effects of anisotropy may be larger than those found in this paper,
in studies reporting few but high peaks, as the shape and intensity
of the recreated clusters may differ substantially.

Selecting one or another kernel is obviously irrelevant when
the ES-SDM meta-analysis does not include any effect size map
recreation from peak information. This could be the case in
the rare situations in which statistical parametric maps can be
obtained from all the studies in a field. Similarly, this is also the
case in the more common situation in which a meta-analytic
approach is used to combine data from different sites. This “mega-
analytic” approach improves upon simpler covariate-based mega-
analyses in that results may be extrapolated to sites other than
those included in the multi-site study. Finally, selecting one or
another kernel is also irrelevant when combining meta-analytic
maps from different modalities (e.g., gray matter volume and
BOLD response) to obtain a multi-modal meta-analysis (29–
31), as again it does not involve any map recreation from peak
information.

Two limitations of this study must be acknowledged. First,
the validation showed that the use of full anisotropy may be
sub-optimal as compared to some combinations of degree of
anisotropy and FWHM. However, full anisotropy is still associated
with a significant improvement as compared to default isotropic
kernels whilst it is more robust because results do not depend on
the FWHM. Second, we did not create a specific correlation tem-
plate for functional MRI (fMRI) or positron emission tomography
(PET). Unfortunately, creation of this template is not straightfor-
ward because functional correlations between voxels may depend
on the state of mind. The optimal template is likely to be different
for each specific fMRI task. Also, we do not know to which extent
the functional connectivity abnormalities reported in patients (32)
may bias the recreation of the effect size maps of task-based fMRI
studies when comparing patients with controls. Fortunately, the
use of the structural gray matter template may provide a general
correlation template, which seems unlikely to depend on the state
of mind or the functional connectivity.
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