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Unique function words characterize genomic proteins
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Between 2009 and 2016 the number of protein sequences from
known species increased 10-fold from 8 million to 85 million.
About 80% of these sequences contain at least one region recog-
nized by the conserved domain architecture retrieval tool (CDART)
as a sequence motif. Motifs provide clues to biological function
but CDART often matches the same region of a protein by two or
more profiles. Such synonyms complicate estimates of functional
complexity. We do full-linkage clustering of redundant profiles by
finding maximum disjoint cliques: Each cluster is replaced by a
single representative profile to give what we term a unique func-
tion word (UFW). From 2009 to 2016, the number of sequence pro-
files used by CDART increased by 80%; the number of UFWs
increased more slowly by 30%, indicating that the number of UFWs
may be saturating. The number of sequences matched by a single
UFW (sequences with single domain architectures) increased as
slowly as the number of different words, whereas the number of
sequences matched by a combination of two or more UFWs in se-
quences with multiple domain architectures (MDAs) increased at the
same rate as the total number of sequences. This combinatorial
arrangement of a limited number of UFWs in MDAs accounts for
the genomic diversity of protein sequences. Although eukaryotes
and prokaryotes use very similar sets of “words"” or UFWs (57%
shared), the “sentences” (MDAs) are different (1.3% shared).

protein universe | genomic sequences | functional profiles |
domain architecture | shared function

he size of protein sequence space as measured by the number

of combinations of the 20 natural amino acids is essentially
unlimited. Not every combination of amino acids can form a
protein with a unique and stable fold and only a tiny part of full
sequence space is occupied by protein sequences found in nature
(1). Nevertheless, the number of protein sequences in the protein
universe is still considerable (2, 3). Thanks to high-throughput
sequencing (4), genomic sequences have been accumulating rap-
idly, leaving researchers struggling to comprehend the complexity
of the almost 100 million nonredundant (NR) protein sequences
known. Protein sequences, the building blocks of life, have been
studied intensively. For some proteins, we know their structure,
biological function, specificity, and reaction kinetics, but most of
the vast protein sequence universe remains unexplored. Under-
standing how these proteins function and interact is indispensable
for deciphering the language of life.

Given that functional and structural information on the protein
sequence universe is so sparse, we need computational procedures
to provide functional and/or structural information for unknown
sequences. A powerful method for inferring function of a protein
sequence is by relating it to similar proteins thereby allowing in-
formation on unknown family members to be deduced from
known members. While such sequence clustering seems straight-
forward, it is complicated by the huge number of sequences and
the difficulty of establishing a best way to match sequences. Con-
sider the string of amino acids in a protein as analogous to the
string of letters in an English sentence. For example, the two
sentences “DOG IS BAD” and “BAD IS DOG” have very similar
meanings and contain the same three words, but the sequences of
letters themselves are different and cannot be made to match in
more than 4 of 10 positions. This analogy suggests that the use of
“words” is a better way to cluster protein sequences (5).
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Words can be taken as the names of sequence profiles (6), which
are derived from multiple sequence alignments to encapsulate in-
formation on amino acids occurring at each position along the se-
quence. Sequence profiles are often associated with a particular
biological function giving them a meaning in analogy to words. The
most common models for sequence profiles are hidden Markov
models (HMMs) (7) and position-specific scoring matrices (PSSMs)
(8). HMM-based profiles are used in PFAM (9) and SMART (10);
PSSM-based profiles are used in CD (11) and PROSITE (12).

Sequence profiles from the different sources are used in two
main databases: InterPro (13) and conserved domain architecture
retrieval tool or CDART (14). Here we focus on the CDART re-
source (14) at the National Center for Biotechnology Information
(NCBI), a PSSM-based database that includes profiles from seven
different sources and matches sequences using RPS-BLAST (15), a
variant of the widely used PSI-BLAST algorithm (16). Preliminary
analysis of InterPro showed it less suitable than CDART for our
purposes. In CDART, all profiles are matched by RPS-BLAST to
all sequences using a consistent threshold, whereas in InterPro
different thresholds as reported by each data source are used to
match profiles to sequences. This lack of a consistent threshold
makes it impossible to cluster profiles and so deduce a minimum set
of unique function words as we do here. In both cases, the region of
protein sequence matched by a profile is considered to be a domain.

In this study we have two classes of objects: sequences and pro-
files. The sequences and profiles are those matched every month or
so to one another by CDART. This gives rise to domains, which are
a length of a particular sequence matched to one or more profiles.
The domains are named after the profile they match and this gives
structural and functional information about the sequence. The pat-
terns of domains along the polypeptide chain is called “domain ar-
chitecture” and sequences can be characterized as having no domain
architecture (dark matter), single (SDA), or multiple (MDA) do-
main architecture. The profiles are linked by strongly overlapping
on the same region of sequence enabling them to be clustered by
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clique-based full-linkage clustering. Each cluster can be repre-
sented by the name of just one profile in it, hence our unique
functional words (UFWs).

In 2009 (17) we used CDART profiles to describe the organi-
zation of the protein universe in terms of the order of the domains
in N- to C-terminal direction along the amino acid chain, a pattern
that is termed “the domain architecture of a protein sequence.”
Our study analyzed sequences in the protein universe in terms of
families that have SDAs or MDA:s. It found that MDAs grew very
fast with number of added sequences while SDAs seemed to have
saturated. In addition, there were known structures for a quarter of
the single domain families and another quarter of sequences were
dark matter (no profile matches). Inspired by our work, Chub et al.
(18) confirmed a decline in the rate of discovery of new protein
families. Another study (19) explored the success of structural
genomics efforts in providing structural coverage of the protein
universe and concluded that over the last 10 y, structural coverage
at a residue level increased from 30% to 40%, with half of novel
structures coming from the Structural Genomics Initiative.

Here we study how CDART has changed over 8 y since 2009.
With our improved clique-based clustering, all members of a
cluster are similar to one another and each cluster is represented
by one unique function word, avoiding confusion caused by syn-
onyms. The number of UFWs increases more slowly than the
number of profiles. As almost all UFWs occur alone in at least one
sequence, the number of SDAs is close to the number of UFWs.
The trends predicted in 2009 remain valid: number of different
MDAs containing two or more UFWs increases with time expo-
nentially fast, whereas the number of SDAs containing one UFW
increases very slowly. We further find that eukaryotes and pro-
karyotes use the same “words” (the SDAs) but combine them into
different “sentences” (the MDAs).

Results

Finding UFWs. We use profiles as an indicator of function, assigning
to a sequence matching a profile the properties of the particular
profile. We use the matches between profiles and protein se-
quences provided by the CDART database. Because this database
includes profiles from seven different sources, a particular region of
a protein sequence can be matched by several profiles. Such re-
dundancy hinders our attempt to comprehend the complexity of all
of the proteins in the known protein universe. The matches in the
CDART database offer a way to eliminate the redundancy: if two
different profiles match the same region of sequence, then these
profiles overlap and are synonymous names for the same function.

Fig. 1 illustrates how we eliminate redundant profiles by clus-
tering. We judge whether two profiles overlap using the lengths of
the profiles, and the length of the match (only a part of the profile
may match the sequence). CDART provides two parameters to
assess the strength of the match, the E value (Eval) and the bit
score (Bscore). We tested values of both Eval and Bscore com-
bined with values for PDL,, the maximum percent difference in
profile lengths, and Frac,, the minimum fraction of profile length
matched. We use Eval, = 0.001, PDL, = 10%, and Frac, = 0.9, but
other values gave similar results.

When two profiles satisfy these conditions, they overlap and
are considered to be linked, forming a network with possible
cliques. In graph theory, a clique is a subset of vertices such that
all vertices are connected to each other. Clique finding is a hard-
to-solve nondeterministic polynomial time (NP)-complete prob-
lem (21). We clustered linked profiles by full-linkage clustering
using a powerful and efficient algorithm to find disjoint maximum
cliques of linked profiles (20).

In 2009 there were 27,038 profiles in CDART and 795 did not
match any NR sequence; in 2016 there were 48,932 profiles in
CDART and 426 had no match. Thus, the number of used
profiles increased 85%, from 26,243 to 48,506. Increases in the
number of UFWs were smaller going from 17,072 to 24,212, an
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Fig. 1. Profile merging procedure. CDART profiles can be redundant in that
different profiles may match the same region of a protein sequence. Such
overlapping profiles need to be removed to avoid confusion and give a
unique set of function words. (4) Nine profiles (Pr—Pr3 in blue, Pr,—Pr; in pink,
and Prg-Prg in orange) are matched to the protein sequence A (light gray).
Seven profiles (Prg—Prq in orange and also matching sequence A, Prig—Prq4 in
green) are matched to the protein sequence B (dark gray). S; and F; denote the
start and final residue number of the profile matched to the sequence. Two
profiles are considered linked if: (/) both profiles are matched to a particular
sequence with an E value better than Eval,; (ii) the percent difference in
profile lengths is less than PDLx; and (iii) the profile overlap ratio (O, ) exceeds
Frac,, where O;; = Match_Length; /max{Length; Lengthj, Match_Length;; the
length of sequence matched by both Pr; and Pr; is (F; — S; + 1) and the longest
possible match is max{Length; Lengthj}, with Length; = F; — S; + 1. (B) Linked
profile pairs can be clustered in many ways. In single linkage clustering (SLC,
Top), each cluster member is connected to other members by at least one link.
In full linkage clustering (FLC, Bottom), each cluster is a clique with every
cluster member directly linked to every other member; we use Roded Sharan’s
(20) method to find the disjoint maximum cliques for FLC. Profiles belonging to
the same cluster are consequently represented by one unique function word,
which is selected for name consistency for different years of analysis.

increase of 42% (SI Appendix, Table S2). For our most recent
CDART dataset (2016), clustering reduces the number of dif-
ferent profiles from 48,506 to 24,212, a reduction of 50%. Similar
reductions are seen for all eight CDART releases analyzed here
(SI Appendix, Fig. S1 and Table S2).

Combinatorial Growth of MDAs. The predicted massive combinato-
rial growth of MDAs and very slow growth of SDAs (17) is con-
firmed after 7 y and with 11 times more nonredundant sequence
data. Fig. 2 shows that the number of MDAs is growing rapidly
with time (or added sequence data) while the number of SDAs is
almost constant and seems to have saturated. Between 2009 and
2016, the number of deposited sequences increased 11-fold (from
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Fig. 2. Growth of SDAs and MDA:s is very different. (A) As the number of
sequences in the NR database grows, the number, n, of different multiple
domain architecture (MDA) families (purple triangles) found by CDART in-
creases exponentially with time in years. Specifically, n = 108,000°-3038( — 2009
with R? = 0.994 for all profiles or n = 77,000e%2%5% ~ 2009 ith R? = 0.984 for
unique profiles). By contrast, the number of single domain architecture (SDA)
families (orange squares) increases slowly and saturates with increasing time; B
shows the same SDA plots on an expanded y scale. In A, fractional sequence
coverage, the number of sequences in a SDA or MDA family divided by the
total number of NR sequences, is shown on the right axis (red and black lines).
It is high (over 70%) and increases with time as profiles are added to CDART. In
2009, 72.6% (5,947,106 of 7,877,467) of the sequences contained a domain
recognized by a known sequence profile. By 2016, this percentage had in-
creased to 80.1% (68,715,466 of 85,180,481), which is equivalent to a 28%
drop in the amount of dark matter (unmatched sequences) from 27.5% to
19.9%. In all cases, dotted lines use all the original CDART profiles and solid
lines use unique CDART sequence profiles.

7.8 million to 85.3 million), the number of MDAs increased 8-fold
(from 88,905 to 717,727), but the number of unique SDAs in-
creased by only 1.42-fold (from 17,072 to 24,212). While the
number of MDAs grows exponentially with time, the number of
SDAs remains almost unchanged (Fig. 2). Interestingly, among
the 24,212 unique function words, 20,241 (83.6%) are shared
between both types of families, whereas 3,625 (14.9%) are seen
only in SDAs and very few UFWs (341 or 1.4%) are only seen in
MDAs. The corresponding values for all CDART profiles are
41,269 (80.4%), 6,496 (16.3%), and 794 (1.4%) with a total of
48,506 profiles.

Comparing Kingdoms of Life. We analyzed the growth of SDAs and
MDAs in the three main kingdoms of life (Fig. 3). In both
prokaryotes and eukaryotes, the number of MDAs is much
higher than the number of SDAs and these MDAs are growing
fast, while SDAs are saturating. Eukaryote sequences are 2.7
times more likely to give rise to a new MDA than are prokaryote
sequences. This is offset by the fact that prokaryote sequences
are being determined at a much faster rate, especially since 2014
when prokaryote sequences are growing 2.5 times faster than
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eukaryote sequences. Overall, this means that the numbers of
added MDAs in eukaryotes and prokaryotes are similar (8%
higher in eukaryotes as 2.7/2.5 is 1.08).

Both prokaryotes and eukaryotes use about three-quarters of
the UFWs: 74% (17,915 of 24,212) in prokaryotes and 68%
(16,558 of 24,212) in eukaryotes. Less than half of the UFWs occur
in both prokaryotes and eukaryotes (48%, 11,674 of 24,212). By
contrast, eukaryotes use more of the MDAs than do prokaryotes:
61% (436,273 of 717,727) of the MDAs are seen in eukaryotes,
only 40% (285,302 of 717,727) are seen in prokaryotes. Just 2% of
MDAs (13,290 of 717,727) are shared between prokaryotes and
eukaryotes, which supports the finding that domain combinations
give rise to new functions (22-25). Another reason for more MDAs
in eukaryotes could be to ensure that functional domains are
coexpressed in different cell types of these multicellular organisms.

Unlike prokaryotes and eukaryotes, viruses do not have more
MDAs than SDAs (Fig. 3C). There are 3,223 SDAs and 3,380
MDAs with UFWs and 4,445 and 3,739, respectively, with all
profiles. Both SDAs and MDAs are growing at a comparable
rate. Many viruses integrate their sequences into the genome of
their host for replication (26) so it is not surprising viruses would
not need many MDA architectures.

Dark Matter Is Shrinking. We define dark matter as those sequences
that do not match any profile in CDART. In our previous work
(17) we suggested that one of the reasons for the existence of dark
matter sequences could be that labor-intensive discovery of new
sequence profiles lagged behind the increase in the number of
sequences and many sequence profiles remained to be discovered
in the dark matter. Our present analysis of seven additional
CDART releases reveals that with the discovery of new profiles,
more of the older sequence is being annotated. This is confirmed
by the drop of the overall fraction of dark matter (number of dark
matter sequences/number of NR sequences) from 27.5% in 2009
to 19.9% in 2016 (Fig. 24). While the number of sequences in-
creased 11-fold from 7.8 million to 85.2 million in these 7 y, a
significant decrease in dark matter was caused by the increase of
UFWs from 17,072 to 24,212 (SI Appendix, Fig. S8). The fall in
dark matter from 27.5% to 19.9% of all sequences means that
over 6 million sequences are no longer classified as dark matter
(7.6% of 85.2 million). Our previous analysis found that the dark
matter contained equal numbers of prokaryote and eukaryote
sequences (951,101 and 927,211, respectively), but there were
more eukaryote residues. In 2016, we find there are more pro-
karyote than eukaryote dark matter sequences: of 16.9 million
dark matter sequences, 11.4 million are prokaryotes and 4.7 mil-
lion are eukaryotes. This is in accord with the number of pro-
karyote and eukaryote sequences in the entire NR database (63.5
million prokaryotes and 20.4 million eukaryotes). Despite having
more sequences—and more dark matter sequences—fewer of the
prokaryote sequences do not match a recognized profile (17.2%)
than for the eukaryote sequences (20.4%). The majority of the
virus sequences (93%) match a known sequence profile; their dark
matter fraction is just 7%. Two recent studies of half a million
Swiss-Prot sequences report similar results, with slightly higher
fractions of eukaryotic sequences in the dark proteome (27, 28).

Structural Coverage Is Increasing. In 2009 we made a wild extrap-
olation concerning possible scenarios for the structural coverage
of sequence families in 2050. Today with the benefit of many
more data we can confirm some of those predictions. The NR
sequence database has continued growing exponentially, doubling
its size every 25 mo. Back in 2009, we presented two scenarios for
the structural coverage: (i) Assuming continuous investment but
no improvement in either experimental or computational meth-
ods, we predicted that the coverage by 2050 would reach 70%.
This seems to be on the right track (SI Appendix, Fig. S4, cyan line)
with 26% of the families containing at least one known structure
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Fig. 3. Comparing growth of families in three kingdoms of life. The growth of SDA (squares) and MDA (triangles) families in prokaryotes (pink) and eu-
karyotes (green) shows the same trends seen for all species combined (Fig. 2). (A) MDAs are growing exponentially with time, whereas SDAs are saturating. In
2017, most of the MDAs are from eukaryotes (436,273 or 60.5% compared to 285,302 or 39.5% for prokaryotes). This is due to the faster growth of MDAs in
eukaryotes during the last 2 y. The fractional coverage (defined as 1 — number dark matter sequences/number of sequences) is slightly higher in prokaryotes
(82.8%) than in eukaryotes (79.5%). The majority of the virus sequences (92.9% or 1,041,468 of 1,126,166) have at least one match to a known profile so that
the fractional coverage is very high at 93%, leaving just 7% dark matter. (B) The data for SDAs with an expanded y scale. About the same number of SDAs
(18,514 or 76.4%) are seen in prokaryotes and in eukaryotes (17,287 or 71.4%). The corresponding values for all sequence profiles (dashed lines) are 560,577
or 59% and 390,640 or 41% for MDAs and 38,054 or 78.5% and 36,791 or 75.8% for SDAs. Saturation of SDAs in the three kingdoms is more evident when
using unique profiles (solid lines) than original CDART profiles (dashed lines). Viruses (blue) have more SDA than MDAs, but this is difficult to see as both types
of families occur much less often than in the other kingdoms of life. They are better seen in C with expanded y axis scale. In all panels, solid filled lines were
obtained using unique CDART profiles, whereas dashed lines use all CDART profiles. E, eukaryotes; P, prokaryotes; and V, viruses.

in the Protein Data Bank (PDB) by July 2016. (ii) We also pre-
dicted that the structural coverage for structures not solved by the
Protein Structural Genomics Initiative, referred to here as non-SG
structures, would fall. We were unduly pessimistic. As shown in S/
Appendix, Fig. S3, nonstructural genomics projects (no-SG) pro-
vided 65% of the 4,414 unique SDA structures solved during the
last 6 y, whereas structural genomic (SG) projects provided just
35% of the unique SDA structures (SI Appendix, Fig. S3, yellow
line). Although recent growth in unique coverage still benefits
from structural genomics programs, the fraction of non-SG
structures is rising faster than the SG structures (SI Appendix,
Fig. S3, brown line). Lack of dependence of structural coverage on
structural genomics programs is welcome as the NIH has phased
out the program.

Common SDAs and Unique MDAs. While most SDAs are found in
both prokaryotes and eukaryotes, the situation for MDA is very
different as clearly seen in the overlapping area of the Venn di-
agrams in Fig. 4. In 2016, a large fraction of SDAs (57% all
profiles, 50% UFWs) are shared by eukaryotes and prokaryotes,
while only a small percentage of MDAs (1.3% all profiles, 2.1%
UFWs) are common to both kingdoms. This is not surprising since
one would expect the more complex multidomain proteins to have
more sophisticated functions and hence be more specific to a
certain organism. As more sequences are identified, we speculate
that the overlap of SDAs and MDA s between the three kingdoms
of life will maintain the trends seen in Fig. 4 and SI Appendix, Fig.
SS. Specifically, we expect to see almost all of the SDAs shared
between prokaryotes and eukaryotes. Interestingly, viruses show
the same behavior as prokaryotes and eukaryotes: the majority
(77%) of their SDAs overlap with SDAs in either prokaryotes,
eukaryotes, or both, but much fewer (23%) of their MDAs are
seen in other kingdoms.

Databases of Sequence Profiles. To keep up with the rapid growth in
the number of protein sequences, frequent updates of sequence

6706 | www.pnas.org/cgi/doi/10.1073/pnas.1801182115

profile databases are essential. We analyzed how the profiles and
unique profile datasets have changed with time (SI Appendix,
Tables S6 and S7). The four main sources of profiles in CDART
are PFAM, PRK, CD, and COG. In 2009, most of the profiles in
CDART came from PFAM (32.4%). This percentage has remained
almost unchanged (33.31% in 2016). The second most common
source of profiles in CDART has been PRK, and its percentage has
decreased from 20.4% in 2009 to 15.8% in 2016. COG profiles
represented 15.3% of CDART profiles in 2009 but dropped to
9.9% in 2016. The percentage of profiles coming from CD has
increased from 12.5% in 2009 to 23.3% in 2016. We see similar
trends when considering UFWs, but the contribution of PFAM is
even more dominant. In 2009, 53.5% of the UFWs came from
PFAM, and this percentage has remained almost unchanged at
54.1% in 2016. The changes for PRK, COG, and CD profiles are
from 14.9% to 9.3%, from 18.4% to 10.1%, and from 8.4 to 10.2%,
respectively.

Among all different profiles in CDART, PFAM and CD profiles
seem to be updated more frequently than the others. Although
the number of SMART profiles almost doubled since 2009, the
SMART database seems to be updated less frequently (once
a year) than the PFAM and CD databases. Note, the PSSM
models we use are less well suited than HMMs to patterns
containing insertions or deletions, of variable length, and with
positional dependencies.

Our Clustering to Get UFWs Is Stable. In all eight independent analyses,
clustering and the use of UFWs reduced the number of SDAs by
approximately half but had a smaller (30%) effect on the number of
MDAs probably because of the specific combinatorics (SI Appendix,
Fig. S1). Puzzled by this difference, we simulated randomly sampled
MDAs using the UFWs in our data. SI Appendix, Fig. S10 shows
that simulated domain architecture plots are very similar to those of
the real data and confirm that merging profiles into UFWs has a
stronger effect on MDAs.
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Fig. 4. Percent of SDAs used by both prokaryotes and eukaryotes increases
with time, whereas percent of MDAs decreases. (A) The percentage of single
domain architecture (SDA) and multiple domain architecture (MDA) families
that are found in both eukaryotes and prokaryotes for seven different
analyses. For SDAs, the percentage found in both prokaryotes and eukary-
otes (P&E commonality) has increased from 40% (in 2009) to 57% (in 2016).
Despite being fewer in number, SDAs in viruses behave similarly: the per-
centage of SDAs shared between viruses and the other two kingdoms has
also increased from 56% (in 2009) to 79% (in 2016). For MDAs, the situation
is very different in that there is little commonality of MDAs used in eu-
karyotes and prokaryotes. In 2009 only 3.1% of the MDAs were common to
eukaryotes and prokaryotes and by 2016 this number has dropped to 1.3%.
This suggests the commonality of MDAs is a better measure of evolutionary
diversity than is the commonality of SDAs. Viruses share a much larger
portion of MDAs with other kingdoms, with an increase from 18.8% in 2009
to 21.3% in 2016. Viruses also share more SDAs with other kingdoms, which
is in accordance with the fact that many viruses integrate their host's ge-
nome into their genome. The Venn diagrams for 2009 (Left) and 2016 (Right)
illustrate the number of SDA (Top) and MDA (Bottom) families for pro-
karyotes (pink), eukaryotes (green), and viruses (blue). Diagrams are scaled
to keep the prokaryotes disk a constant size. The corresponding values using
CDART unique profiles are 39-48% for SDAs (P&E), 54-74% (V and others),
4-2% for MDAs (P&E), and 20-24% (V and others). (B) MDA commonality
decrease can be better appreciated (enlarged at Bottom).

Extrapolating the Sequence Growth. We attempted to answer the
simple but important questions: What is the size of the protein
universe? How many UFWs exist? How many unique sentences
can be formed with these UFWs? We extrapolated the slowly
growing number of SDAs as well as the exponentially growing
number of sequences, all-length MDAs, and two-word MDAs
over the next 50 y (Fig. 5). Assuming unchanged data trends, our
data suggest that by 2066, the protein universe will contain 10"
nonredundant sequences. We estimate there will be between
30,000 and 50,000 SDAs, which combine to form 3 x 10'> MDAs
(3 x 10" of these composed by two SDAs).

Discussion

We characterized the protein universe—the collection of all
proteins of every biological species that lives or has lived on
earth—by classifying 85 million known sequences into families
based on their having the same domain architectures. The two
main types of domain architectures, SDAs and MDA, are the
main components of the language of life. Proteins speak using
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words (UFWs or SDAs) linked in an ordered way into sentences
(MDAs). All 85 million NR sequences are characterized by just
24,212 UFWs and short sentences are made by combining these
words. The number of UFWs in the language of proteins is satu-
rating, and it looks like there are very few to be discovered.
Structural coverage of the existing UFWs is high (27% of the UFWs
have structures) and increasing rapidly (about 1% per year), thanks
to equal contributions from both structural genomic projects and
conventional crystallography. However, the number of sentences,
which are mainly different combinations of words, is growing line-
arly with the number of sequences, but it too is expected to saturate.
Although initial estimates of the protein universe size were much
smaller (29, 30), fewer data were available.

These findings are consistent with the concept of protein evo-
lution proceeding in large part by the creation of new proteins by
new arrangements of existing protein domains to form novel
multidomain proteins (25, 31). One can estimate the age of a
domain family by finding the largest group of organisms within it
(32). Different kingdoms of life share the same vocabulary, but use
different sentences. Most words are used in both prokaryotes and
eukaryotes, and this commonality increases with time, or number
of sequences added. However, sentences made by combining
words are much more organism specific and are rarely shared,
with only 1.3% of the sentences used both in prokaryotes and
eukaryotes. Sharing drops from 57% to 1.3% in going from SDAs
to MDAs, which supports the finding that domain combinations
give rise to new function (33-36). Remarkably, viruses share the
majority (93%) of their words with either prokaryotes, eukaryotes,
or both, but far fewer (7%) of their sentences are seen in other
kingdoms. Viral proteins have a comparable number of single and
multiple domain architectures. Many viruses integrate their ge-
nome into the host cell, which exempts them from carrying refined
MDA machinery. On the other hand, for completing a successful
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Fig. 5. Extrapolating growth over next 50 y. The number of sequences (NR),
number of multiple domain architectures (MDAs), and number of two-word
multiple domain architectures (MDA, L = 2) shown on the Left axis all grow
exponentially with time as evidenced by the linear growth of their loga-
rithms. The number of unique single domain architectures (SDAs) shown on
the Right axis grows linearly and slowly with time. By the year 2066, we
predict that there will be 10'® known sequences, 3 x 10'2 different MDAs,
3 x 10" different MDAs of length 2. For the number of unique SDAs, the
expected number is between 30,000 and 50,000. More precisely, the linear
plots of logqo of NR, MDA) and MDA, L = 2 against time have different slopes
of 0.1442, 0.1319, and 0.1197, respectively. The fact that MDA and MDA, L =
2 grow more slowly that NR means that there is a finite but very large
number of MDAs and a smaller finite number of MDAs, L = 2. In 2016, an
average of 17 different MDA = 2 occur for each UFW, far fewer than the
maximum possible value of 24,212 (the number of UFWs).
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infection cycle, viruses must cope with the cell machinery for entry,
replication, and translation while hiding from the host immune
system so they still need some MDAs (37).

The dark matter of the protein universe are those sequences
that do not have any match to a known sequence profile, or, fol-
lowing the language analogy, silent proteins. Although the abso-
lute size of the dark matter in the protein universe has been
growing with the number of deposited sequences in NR, its rela-
tive size is slowly decreasing. CDART and NR databases are well
maintained and updated. Due to the admirable computational
coverage of the protein sequence space, the unexplored regions of
the protein sequence universe is slowly but consistently being re-
duced in its relative size. Although the protein universe has been
increasing its size at a very fast pace, we still are orders of mag-
nitude away from covering the entire feasible sequence space. Our
insights about the protein universe are based on the sample of
organisms that have been sequenced and we do not know how well
this subset represents the protein universe. Still, the steady trends
we have seen during a period when data increased 11-fold lend
support to the views suggested here.

Conclusions

The functional language of proteins uses few words (fewer than
25,000 UFWs) and new words are added very slowly. Complexity
of protein sequences comes for sentences made with these words.
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Different kingdoms of life use the same words but in different
sentences. For UFWs, new sentences are being discovered rap-
idly with one per 196 added NR sequences in eukaryotes and one
per 312 added NR sequences in prokaryotes. Corresponding
values for all profiles are 156 and 227, respectively. Although our
conclusions are based on the development of 7 y of protein se-
quencing data, we attempted to extrapolate these findings to
millions of years of evolution across the entire protein repertoire;
this could benefit from targeting sequencing efforts toward more
diverse species.

Materials and Methods

We downloaded from ftp:/ftp.ncbi.nih.gov/pub/mmdb/cdart/ the CDART
data and from ftp:/ftp.ncbi.nIm.nih.gov/blast/db/FASTA/nr.gz the NR se-
quences. PDB entries solved by structural genomics were downloaded
from targetdb.rcsb.org/target_files and taxonomy from ftp:/ftp.ncbi.nih.
gov/pub/taxonomy/gi_taxid_prot.dmp.gz. We did our analysis on: (/) February
17, 2009; (ii) June 16, 2010; (iii) June 15, 2011; (iv) September 24, 2012; (v) January
9, 2013; (vi) January 13, 2014; (vii) January 1, 2015; and (viii) July 3, 2016.
Each analysis used a different version of NR, CDART, PDB, and taxonomy
files, downloaded on that day.
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