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ABSTRACT
Introduction: The advancement of precisionmedicine into routine clinical practice has been highlighted as
an agenda for national and international health care policy. A principle barrier to this advancement is in
meeting requirements of the payer or reimbursement agency for health care. This special report aims to
explain the economic case for precision medicine, by accounting for the explicit objectives defined by
decision-makers responsible for the allocation of limited health care resources.
Areas covered: The framework of cost-effectiveness analysis, a method of economic evaluation, is used
to describe how precision medicine can, in theory, exploit identifiable patient-level heterogeneity to
improve population health outcomes and the relative cost-effectiveness of health care. Four case
studies are used to illustrate potential challenges when demonstrating the economic case for a
precision medicine in practice.
Expert commentary: The economic case for a precision medicine should be considered at an early
stage during its research and development phase. Clinical and economic evidence can be generated
iteratively and should be in alignment with the objectives and requirements of decision-makers.
Programmes of further research, to demonstrate the economic case of a precision medicine, can be
prioritized by the extent that they reduce the uncertainty expressed by decision-makers.
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1. Introduction

Precision medicine, and related concepts including personalized
and stratified medicine, is growing in prominence within the
scientific literature and clinical practice [1]. Precision medicine
is inclusive of, but not limited to, the targeting of health care
interventions to patients that share a specific and identifiable set
of characteristics [2]. Most applications to date have used a single
test, as a companion diagnostic, to target a definedmedicine to a
known subgroup of patients. Applications of precision medicine
may also include algorithm-based prescribing [3], risk-stratifica-
tion within population screening programmes [4], and the use of
genomic-based diagnostics for rare inherited conditions [5].

The advancement of precision medicine into clinical prac-
tice has been highlighted as an agenda for national and
international health policy [6,7]. A principal barrier to this
advancement is in addressing the requirements of the payer
or reimbursement agency for health care [8,9]. The economic
case for precision medicine within this context rests, ulti-
mately, on demonstrating value to decision-makers responsi-
ble for allocating finite resources for health care. The
comparison of relevant alternatives in terms of their costs
and consequences, within an economic evaluation, is one
method to generate evidence that can inform health care
resource allocation decisions [10].

An extensive literature of published economic evaluations of
health technologies for precision medicine is developing [11–19]
and, in 2016, some 45 systematic reviews on this topic were

identified [20]. The specific challenges in designing and conduct-
ing economic evaluations of precision medicine have also been
described [21–27]. This Special Report aims to build on this
literature and explain the economic case for precision medicine
within a framework (cost-effectiveness analysis [CEA]) for the
economic evaluation of health technologies used by decision-
makers in England [28]. Section 2 describes the theory of the
economic case within this framework. Definitions of key eco-
nomic terms are provided in Table 1. Four case studies illustrative
of precision medicine (see Table 2) are presented in Section 3 to
highlight if, and how, evidence to support their economic case
exists in practice. The report concludes by discussing the gen-
eration of evidence to demonstrate the economic case for pre-
cision medicine.

2. The economic case: in theory

The maximization of population health is viewed to be a funda-
mental objective of any health care system; decision-makers
responsible for recommending health technologies are assumed
to pursue health maximization, subject to a finite budget for the
provision of health care [29]. Any resource allocation decision,
therefore, has an opportunity cost, expressed in terms of health
forgone, such that those same resources could have otherwise
been used to provide an alternative health technology [30].
Population health is subsequently maximized by recommending
health technologies if their expected health benefit exceeds their
opportunity cost [31,32].
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CEA is a method of economic evaluation that compares the
expected incremental (cost and health) outcomes derived from
relevant alternative health technologies [10]. Health outcomes
may be expressed using a generic measure, such as quality-
adjusted life years (QALYs), to facilitate comparability between
different diseases [33]. Judgments regarding the relative cost-
effectiveness of a health technology can be made with reference
to decision rules that comprise incremental costs, QALYs, and a
cost-effectiveness threshold [34,35]. A health technology with a
positive expected incremental net benefit versus its relevant
comparator(s) is indicative of (average) population health max-
imization and relative cost-effectiveness [36] (see Table 3).

Heterogeneity in expected costs and QALYs is also likely to
exist, conditional on patient-level characteristics, such that
subgroups of patients within a population may derive
incremental net benefits from the health technology that
differ systematically from expected population-level outcomes
[37–39]. Precision medicine involves using a mechanism to
reveal between-patient heterogeneity that was unobserved
previously, for example, using a diagnostic test to measure

the quantity of a biomarker predictive of differential treatment
response and, consequently, incremental cost and health out-
comes [40]. The economic case for precision medicine, in
theory, is contingent on whether the expected net benefit of
treating patients according to their subgroup is greater than
that obtained from a relevant alternative strategy [39,41,42].
The cost-effectiveness plane [43] in Figure 1 illustrates three
scenarios of incremental outcomes that may characterize a
precision medicine and also be consistent with a positive
incremental net benefit.

Table 1. Glossary of key terms.

Term Definition

Cost-effectiveness analysis. A method of economic evaluation that compares the expected incremental cost and health outcomes derived from relevant
alternative health technologies [10].

Cost-effectiveness plane. A plot to illustrate the incremental outcomes derived from an intervention health technology versus a relevant comparator [43].
Cost-effectiveness threshold. The additional cost that must be imposed on the budget for health care to displace one QALY [30].
Decision-analytic model. A series of mathematical relationships that represent the progression of a patient’s diagnosis or disease and the impact of a health

technology on diagnosis and/or disease progression. Model-based cost-effectiveness analyses can synthesize all available
evidence to inform resource allocation decision-making [51].

Decision uncertainty. The probability of recommending a health technology that is not cost-effective [35].
Heterogeneity. The variation in expected costs and consequences that can be explained by patient-level characteristics [37].
Methodological uncertainty. The uncertainty with respect to the appropriate methods of performing an economic evaluation [83].
Microcosting Estimation of the specific resources and associated unit costs of a health technology [71].
Opportunity cost. The (health) benefits forgone due to a change in the allocation of health care resources [30].
Parameter uncertainty. The uncertainty in the true value of each input within a decision-analytic model [87].
Structural uncertainty. The uncertainty with respect to the structure (care pathways, model type) of an economic evaluation [86].
Quality-adjusted life years. A generic measure of outcome that has reference points of one (for full health) and zero (for death) [33].
Reference case. Pre-defined preferred criteria for performing an economic evaluation [84].
Value of information. A set of methods to quantify the value of further research to reduce decision uncertainty [89].

Table 2. Case studies of precision medicine.

Diagnostic test and source of
heterogeneity Relevant population and decision Potential source of value

Challenge when establishing the
economic case

Companion diagnostic for activating
mutations of epidermal growth
factor receptor tyrosine kinase.

To inform the prescribing of gefitinib for patients
with non-small cell lung cancer.

Improved clinical effectiveness. ● Limited evidence from test
result to cost and health
outcomes for all diagnostics.

Thiopurine S-methyltransferase
mutation genotyping or enzyme
phenotyping.

To inform the prescribing of azathioprine for
patients with eligible autoimmune diseases.

Reduced adverse drug
reactions.

● Clinicians may implement
testing strategy imperfectly.

Assays to detect anti-drug antibodies
and to measure drug levels.

To inform the prescribing of monoclonal antibody
tumor necrosis factor-α inhibitors for patients
with eligible autoimmune diseases.

Improved health outcomes
and/or reduced health care
resource use.

● Different permutations of
multiple tests are possible;

● Position of tests in care path-
way may be uncertain;

● The cost of novel testing stra-
tegies may be unknown.

Next generation sequencing gene
panel test.

To inform the diagnosis of inherited retinal
dystrophies.

Improved diagnostic accuracy
and potentially reduced
health care resource use.

● Capacity constraints may
restrict the number of tests
performed;

● Non-health consequences may
be considered by decision-
makers.

Table 3. Decision rules for relative cost-effectiveness.

Decision Rule Formula

Incremental net monetary benefit λ Q1 � Q0ð Þ � C1 � C0ð Þ > 0
Incremental net health benefit Q1 � Q0ð Þ � C1�C0ð Þ

λ > 0

λ: cost-effectiveness threshold; Q1: expected consequences derived from new
technology, Q0: expected consequences derived from comparator technology;
C1: expected cost derived from new technology; C0: expected cost derived
from comparator technology. Equivalent decision rules can be expressed as
incremental net monetary or health benefits [34,35].
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3. The economic case: in practice

Four case studies illustrative of clinical applications of preci-
sion medicine (see Table 2) are now presented. These case
studies were selected to highlight specific examples of the
process and challenges of demonstrating their economic
case in practice.

3.1. Case study 1: testing activating mutations of EGFR-
TK and gefitinib

Gefitinib is a first-generation tyrosine kinase inhibitor for non-
small cell lung cancer (NSCLC) tumors known to have activat-
ing mutations of epidermal growth factor receptor tyrosine
kinase (EGFR-TK). In 2005, the Food and Drug Administration
(FDA) restricted gefitinib from being used to treat all patients
with NSCLC [44]. Subsequent trial evidence revealed hetero-
geneity in response to gefitinib that was unobserved pre-
viously, with respect to EGFR-TK mutation status [45]. The
FDA and European Medicines Agency, consequently, granted
marketing authorization for gefitinib in patients with NSCLC
that had activating mutations of EGFR-TK [46]. The economic
case for gefitinib is based on the premise of improved clinical
effectiveness by stratifying the population of NSCLC patients
by EGFR-TK mutation status.

In 2010, the National Institute for Health and Care
Excellence (NICE) in England published a technology appraisal

of gefitinib [47]. The technology appraisal recommended gefi-
tinib as first-line treatment for locally advanced or metastatic
NSCLC with activating mutations of EGFR-TK, based on the
results of an economic evaluation that suggested this was a
cost-effective use of health care resources [47]. The diagnostic
test to identify mutation status, however, was not specified
within the product license of gefitinib [48]. As a consequence,
different diagnostic tests were used within the health care
system to establish mutation status [49], with unknown impli-
cations for the relative cost-effectiveness of gefitinib.

In response, in 2013, NICE evaluated 10 different testing
strategies to identify activating mutations of EGFR-TK as part
of the Diagnostics Assessment Programme [48]. A subset of
testing strategies (n = 5) was recommended for routine clinical
practice according to evidence of relative cost-effectiveness
[49,50]. The economic case for using these tests was a chal-
lenge to establish, in practice, because cost and health out-
come data were not available for every strategy. A de novo
decision-analytic model-based CEA [51–53], therefore,
addressed deficiencies in the evidence base by (i) assimilating
all available evidence and (ii) ‘linking’ test accuracy and long-
term outcome data from different studies or by assuming that
the tests had ‘equal prognostic value’ [48,54]. NICE recom-
mended that future studies could address these evidence
limitations by comparing different methods to test activating
mutations of EGFR-TK directly and to link these findings to
patient outcomes.

Incremental Cost
(+)

Incremental Cost
(-)

Incremental
QALY

(+)

Incremental
QALY

(-)

A

B

C

Example
Incremental 
Cost

Incremental 
QALY Decision rule

A Increase Increase Refer to cost-effectiveness threshold
B Decrease Increase Dominant
C Decrease Decrease Refer to cost-effectiveness threshold

Cost-effectiveness Threshold

Figure 1. Three incremental outcomes consistent with a positive net benefit.
The cost-effectiveness plane [43] illustrates the incremental costs (Y-axis) and incremental consequences (X-axis) between a new health technology (for example, a precision medicine) and
a relevant comparator (for example, current practice). The dashed line through the origin of the plane represents the cost-effectiveness threshold. Incremental outcomes that are below the
dashed line graphically have a positive incremental net health benefit (see accompanying table). The figure illustrates that different combinations of incremental outcomes are possible for
a precision medicine to be a relatively cost-effective use of health care resources.
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3.2. Case study 2: testing TPMT status and azathioprine

Azathioprine is an effective treatment for autoimmune conditions
such as Crohn’s disease and rheumatoid arthritis; however, a sub-
set of patients may experience dose-limiting adverse drug reac-
tions (ADR) such as severe profound neutropenia [55]. Patients
exhibit potentially identifiable heterogeneity in developing ADR to
azathioprine according to thiopurine S-methyltransferase (TPMT)
enzyme activity. Defined pretreatment genotyping (to identify
mutations in the gene that codes for TPMT) or phenotyping (to
measure the levels of active TPMT enzyme) can be used to identify
patients at high-risk of severe neutropenia [55]. The economic case
for testing TPMT is based on the premise that identifying such
patients will improve population health outcomes by reducing the
quantity of ADRs and the associated cost of managing these
harms.

Several published model-based cost-effectiveness analyses
concluded that TPMT testing, to inform azathioprine prescribing
decisions, was a dominant intervention (see Figure 1) that pro-
duced more health benefit at a lower cost compared with not
testing [56]. However, a subsequent pragmatic randomized con-
trolled trial found that the relative cost-effectiveness, suggested
by these model-based studies, may not be realized in routine
clinical settings because clinicians, potentially, failed to adjust
their prescribing behavior according to the diagnostic information
regarding the genotype of each patient [57]. The testing protocol
suggested that clinicians should prescribe a higher starting dose
of azathioprine (for example, 2–3mg/kg/day) to patients at low-
risk of ADR, and a reduced starting dose of azathioprine (for
example, 25–30mg/day) to those patients at-risk of ADR. In the
trial, however, patients at-risk of ADR (heterozygous for the TPMT
gene) received the same dose as those patients at a lower-risk
(wild-type) and, consequently, there was no difference in the rate
of azathioprine discontinuation due to ADRs between the arms of
the trial (p = 0.59) [57,58]. The expected outcomes from the study
concluded that TPMT testing to inform azathioprine prescribing
decisions, rather than being a dominant intervention, reduced
both health care costs by £421.06 and health outcomes by 0.008
QALYs simultaneously [57].

The potential economic case for precision medicine is reliant
on the amenability of clinicians to follow a protocol for testing
[25,27,59]. Model-based economic evaluations may assume
implicitly that diagnostic testing protocols are followed.
However, evidence of how diagnostic information, obtained
from a test result, is used by clinicians within their routine
decision-making is not always clear [60]. For example, clinical
decisions may be challenging if the cut point for a continuous
test result is disputed or if multiple treatment strategies are
possible following a particular test result. In practice, therefore,
the imperfect implementation [61] of a testing strategy, through
clinicians’ prescribing behavior, may contribute to overestimat-
ing the net health gain obtained from a precision medicine [20].

3.3. Case study 3: monitoring therapeutic drug levels
and/or anti-drug antibodies of tumor necrosis factor-α
inhibitors

Monoclonal antibodies that inhibit tumor necrosis factor-α
(TNFi), such as adalimumab, are a class of biologic therapies

used widely in the management of autoimmune conditions
such as rheumatoid arthritis, Crohn’s disease, and psoriasis
[62]. All medicines require circulating levels of the active
drug to remain within a known therapeutic range for treat-
ment effectiveness and safety (and, consequently, cost-effec-
tiveness) [63]. Patients may develop immunogenicity against
monoclonal TNFi antibodies, by producing anti-drug antibo-
dies, resulting in drug levels reducing below the minimum
required by the therapeutic range to be effective [64,65].

Detecting the presence of anti-drug antibodies and/or mea-
suring the level of TNFi in the serum are two potentially useful
sources of heterogeneity in treatment response between
patients [66]. The measurement of these biomarkers may be
used to inform if, and how, a monoclonal TNFi antibody is
prescribed most appropriately in patients with relevant autoim-
mune conditions [67]. The economic case of using one, or both,
of these biomarkers is based on the premise that improved
health outcomes and/or reduced health care resource use may
be achieved by identifying whether treatment should continue
and/or dose adjustment is required. In 2016, NICE conducted a
model-based CEA of adalimumab and infliximab anti-drug anti-
body and drug level testing for patients with Crohn’s disease, as
part of the Diagnostics Assessment Programme [68]. The assess-
ment concluded that there was insufficient evidence to recom-
mend testing in routine clinical practice, driven by uncertainties
in the accuracy, timing, and (health and cost) outcomes derived
from testing [68].

Establishing the economic case for measuring more than
one biomarker is a challenge, in practice, because different
permutations of tests are possible, at different points along a
care pathway, resulting in different expected cost and health
outcomes [22]. For example, the NICE assessment of TNFi anti-
drug antibody and drug level testing evaluated concurrent
testing (both biomarkers measured at the same time) and
reflex testing (anti-drug antibodies only measured if drug
levels were not detected) in patients that had maintained
response, or lost response, to their TNFi [68]. Model concep-
tualization methods may, therefore, be appropriate to inform
the relevant comparator strategies and structure of a model-
based economic evaluation [69,70].

In addition, the cost of a new test or prescribing algorithm
may be unknown if it is not already being used in routine
practice. Therefore, microcosting studies, which take a ‘bottom-
up’ approach by measuring and valuing all resources required to
use a health technology, can help to estimate the cost of a new
diagnostic test in routine clinical practice [71]. For example, one
manufacturer of the anti-drug antibody and drug level tests
charged approximately £35 per patient for both tests (2015
prices, UK); however, a microcosting study estimated the cost
of these tests to approximate £152.52 per patient if all resources
to perform testing in routine clinical practice (such as an addi-
tional appointment, the analysis of samples, and the time to
make a treatment decision) were accounted for [71].

3.4. Case study 4: next generation sequencing panel for
inherited eye disease

Massively parallel sequencing technologies have supported
the development of a next generation sequencing (NGS)
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gene panel test for the diagnosis of inherited retinal dystro-
phies (IRD) [72]. Historically, IRD were diagnosed by perform-
ing a single Sanger sequence test for each gene ‘known’ to
cause vision loss. The single gene tests were subject to
national variation in availability and service delivery [73] due,
in part, to the cost, technical, and practical complexities of
testing [74]. NGS gene panels are now being used to diagnose
IRD in clinical practice. The ‘Gene Dossier’ submitted to the UK
Genetic Testing Network estimated that the gene panel test
would require a total incremental investment of £5,244 com-
pared to conventional single gene testing. Downstream cost
savings may also be possible due to fewer consultant appoint-
ments for sequential testing [75]. However, to date, the cost-
effectiveness of using gene panels to diagnose IRD has not
been investigated.

The use of gene panels facilitates substitution away from
time-consuming single-gene testing and, in turn, may enable
more individuals to be tested [74,75]. However, short-term
capacity constraints within the health care system may impose
a limit the number of tests that can be performed. Capacity
constraints are, typically, not accounted for within model-
based cost-effectiveness analyses [76]. Therefore, in practice,
the total net health benefit derived from a precision medicine
may be overestimated if the capacity to perform a testing
strategy is restricted.

The anticipated benefit of the gene panel test, in the
absence of treatments to prevent loss of vision, is the achieve-
ment of an accurate and timely diagnosis with information on
prognosis and risk to family members [77]. Gene therapies are
being developed for subtypes of IRD, which will require an
accurate diagnosis for trial participation and eligibility for any
subsequent licensed therapy [78]. The gene panel test will also
reveal the mutation status of those patients with IRD that are
ineligible for gene therapy. This diagnostic information may
have value to patients themselves, for example, by improving
their own capability to make informed life decisions [79]. In
practice, however, if decision-makers were to account for such
consequences as a ‘benefit’ (in addition to health gain) to
inform population health care resource allocation decisions,
the opportunity cost of those consequences must also be
accounted for in terms of the (health) benefit forgone [79,80].

4. Generating evidence to support the economic
case for precision medicine

The economic case for precision medicine rests on demonstrat-
ing value to decision-makers according to their explicit objec-
tives. Diagnostic tests may improve population health by
exploiting patient-level heterogeneity in cost and health out-
comes. CEA within an economic evaluation is one method to
generate evidence that demonstrates precision medicine may
provide an incremental net health benefit. The four case studies,
however, highlighted potential challenges when estimating the
relative cost-effectiveness of precision medicine in practice.

The decision-making context for any health technology,
supported by evidence from an economic evaluation, is inher-
ently uncertain [81]. Limitations in the clinical and economic
evidence base, for example, such as those highlighted by the

preceding four case studies, serve to increase this uncertainty.
The probability of recommending a health technology that is
not cost-effective can be expressed as decision uncertainty [82].
The uncertainty present within an economic evaluation has
been characterized in the literature as methodological, struc-
tural, and parameter uncertainty [83].

Methodological uncertainty describes the uncertainty with
respect to the methods of performing an economic evaluation;
for example, whether resource allocation decisions ought to
account for the non-health outcomes described in Case Study 4
[26]. In practice, methodological uncertainty is resolved by the
normative value judgments of a decision-maker, which may be
expressed within preferred criteria for performing an economic
evaluation, known sometimes as a 'reference case' [10,84].
Structural uncertainty refers to uncertainty with respect to the
structure of an economic evaluation; for example, how a de novo
decision-analytic model represents the uncertain positioning of
the anti-drug antibody and drug level tests (Case Study 3) within
an existing care pathway. The choice of decision-analytic model
(for example, a Markov model or discrete event simulation) that
best addresses the decision problem may itself be uncertain [85].
Methods exist that enable the impact of structural uncertainty on
estimates of relative cost-effectiveness to be estimated, such as
model averaging and the parameterization of structural assump-
tions [86]. Parameter uncertainty refers to the uncertainty in the
true value of each input of an economic evaluation; for example,
the accuracy and clinical effectiveness of the strategies to test for
activating mutations of EGFR may be uncertain (Case Study 1). A
probabilistic analysis is, therefore, necessary to handle parameter
uncertainty by characterizing input parameters as distributions
and simulating expected outcomes over these distributions
[87,88].

Additional research has the potential benefit of reducing
decision uncertainty and ‘value of information’ methods can
provide a quantitative estimate of whether such research has
value in reducing uncertainty in the economic evidence base
[89,90]. Further research has value, in the context of relative
cost-effectiveness, if its expected cost is less than its expected
benefit. The upper-bound on the cost of further research can
be estimated as the expected value of perfect information
(EVPI) [90]. The expected value of partial perfect information
(EVPPI) can estimate the upper-bound on the cost of research
for specific (sets of) input parameters, such as long-term
health outcomes, QALYs, or resource utilization [90]. The
expected net benefit of sampling (ENBS) may estimate the
value of specific study designs, for example, to inform the
sample size of a trial, by accounting for the cost of research
itself [91]. The ability of these methods to inform the design of
future research may facilitate iterative economic evaluation
[92], such that a de novo decision-analytic model may be
built during the early development phase of a health technol-
ogy, and subsequently refined, repopulated, and re-analyzed
as more evidence is generated over the life cycle of the health
technology [93–95].

Programmes of scientific research, such as biomarker dis-
covery, can support the application of precision medicine and
public resources for research have been diverted toward such
programmes internationally [96]. Value of information
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methods can be used to ensure that the evidence generated
to support precision medicine is aligned with demonstrating
value to decision-makers responsible for the allocation of
limited resources for health care [97]. National funding
schemes exist, such as those provided by Genome Canada
[98], that encourage the development of an economic case
for targeted treatment strategies or new diagnostics. The ear-
lier the economic case for a new precision medicine is con-
sidered by manufacturers of diagnostic and pharmaceutical
health technologies, and by organizations that fund research,
the more likely the subsequent evidence base will be gener-
ated to inform health care decision-makers that the example
of precision medicine is consistent with their objectives, such
as population health maximization, and should be recom-
mended for use in routine clinical practice.

5. Expert commentary

Precision medicine has the potential to improve population
health outcomes and the relative cost-effectiveness of health
care. The economic case for precision medicine should consider
both the cost and consequences of revealing patient-level
heterogeneity in a target population. Consideration of cost
alone is not sufficient to inform population resource allocation
decision-making. The benefits forgone, due to changes in the
allocation of resources, must also be quantified. Generating
evidence to support the economic case of a precision medicine
in practice, however, can be a challenge. Manufacturers, ana-
lysts, and funders of research may improve their research and
development activities by considering the evidenced required
by later-stage decision-makers at an earlier time period in the
process of evidence generation.

The economic evaluation of precision medicine, and the gen-
eration of further evidence, should be an iterative process rather
than a one-time stand-alone activity. Decision-analytic modeling
and the prospective collection of data, therefore, both have an
important role in estimating the impact of using a diagnostic test
in clinical practice on patients’ long-term cost and health out-
comes. Value of information analyses can be used to prioritize
programmes of research, in the presence of competing deficien-
cies in the evidence base of a precision medicine, according to
their potential to reduce decision uncertainty.

6. Five-year view

Precision medicine may evolve further in the future by increasing
the utilization of prescribing algorithms that incorporate multiple
biomarkers predictive of a specific outcome in clinical practice.
Developments in the methods to estimate the accuracy, effective-
ness, and cost of testing multiple biomarkers would, in turn, be
valuable to estimate the opportunity cost of such algorithmsmore
appropriately. The production and application of genomic-based
diagnostics (for example, whole-genome sequencing and whole-
exome sequencing) within routine clinical practice may also pro-
gress in the future. Substantial investment in capital (for example,
laboratory facilities or an IT infrastructure) may be required, or the
existing capacity to implement testing may be insufficient, which
imposes constraints on the delivery of health care and an oppor-
tunity cost on population health. Developments in themethods to

evaluate the economic case for precision medicine, in the context
of such capacity constraints, would also likely be informative to
decision-makers. Increasing claims on finite resources for health
care may also result in decision-makers supporting activities to
disinvest in certain health care expenditures, which may be
informed by precision medicine strategies. Decision-makers
should, therefore, consider exploring social value judgments
with respect to resource allocation decisions for health care,
informed by members of the public, to support such disinvest-
ment activities.

Key issues

● The economic case for a health technology can be made by
comparing its cost and (health) consequences with those
derived from a relevant alternative, according to the explicit
objectives of a decision-maker responsible for the allocation
of health care resources.

● In theory, the economic case for precision medicine can
improve the relative cost-effectiveness of care by exploiting
patient-level heterogeneity in cost and health outcomes.

● In practice, deficiencies in the (clinical and economic) evi-
dence base, and the plausibility of assumptions, may make
the economic case for precision medicine a challenge to
demonstrate.

● Early consideration of the requirements expressed by deci-
sion-makers can improve the likelihood that appropriate
evidence is produced to inform resource allocation deci-
sion-making. The economic case for precision medicine can
be developed iteratively and the generation of further (clin-
ical and economic) evidence can be prioritized according to
the extent to which it reduces the uncertainty expressed by
decision-makers.
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