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Identification of a multi-cancer 
gene expression biomarker for 
cancer clinical outcomes using a 
network-based algorithm
Emmanuel Martinez-Ledesma1,2, Roeland G.W. Verhaak2,3 & Victor Treviño1

Cancer types are commonly classified by histopathology and more recently through molecular 
characteristics such as gene expression, mutations, copy number variations, and epigenetic 
alterations. These molecular characterizations have led to the proposal of prognostic biomarkers 
for many cancer types. Nevertheless, most of these biomarkers have been proposed for a specific 
cancer type or even specific subtypes. Although more challenging, it is useful to identify biomarkers 
that can be applied for multiple types of cancer. Here, we have used a network-based exploration 
approach to identify a multi-cancer gene expression biomarker highly connected by ESR1, PRKACA, 
LRP1, JUN and SMAD2 that can be predictive of clinical outcome in 12 types of cancer from The 
Cancer Genome Atlas (TCGA) repository. The gene signature of this biomarker is highly supported 
by cancer literature, biological terms, and prognostic power in other cancer types. Additionally, the 
signature does not seem to be highly associated with specific mutations or copy number alterations. 
Comparisons with cancer-type specific and other multi-cancer biomarkers in TCGA and other datasets 
showed that the performance of the proposed multi-cancer biomarker is superior, making the 
proposed approach and multi-cancer biomarker potentially useful in research and clinical settings.

Cancer is typically classified by tissue-specific scores such as the Gleason score in prostate cancer1, the 
Dukes or Astler-Coller in colon cancer2, or Figo in cervical cancer3. These have been generalized by 
TNM staging4. More recently, high-throughput technologies have generated unprecedented molecular 
characterizations of cancer types, such as the genomic portrayals provided by The Cancer Genome Atlas 
(TCGA) research network5–7. Several cancer types have been divided into subtypes using TCGA data 
about gene expression8, mutations9, copy number alterations10, microRNA expression11, pseudogenes12, 
or even biological processes such as inflammation13. Nevertheless, specific subtypes across cancer types 
seem to share common gene expression properties such as correlations14,15, stromal and immune sig-
natures16, or mesenchymal signatures17. Clinically, better or alternative methods to identify cancer risk 
groups are always needed.

Although point mutations and chromosomal alterations are currently the subject of active research, 
a large reservoir of public research has been devoted to the study of gene expression18,19, which is the 
most broadly studied class of molecular data for cancer so far. More importantly, gene expression is 
a consequence of cumulative genetic and epigenetic alterations. With the goal of clinically stratifying 
samples into risk groups, several gene expression biomarkers have been proposed for a large variety of 
cancer types20–25.
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However, most biomarkers have been identified and designed for a specific type of cancer. Moreover, 
some biomarkers can be applied only to specific subtypes; for example, biomarkers exist specifically for 
grade 2 in colon cancer26 and estrogen receptor-positive and lymph node-negative in breast cancer27. 
Many proposed gene signatures may not even be considered for clinical use because they could not be 
reliably validated in other cohorts28. In some cases, a lack of agreement has also been reported among 
gene expression signatures obtained for the same type of cancer29. In addition, it was recently shown 
that biomarkers identified for only one cancer type perform modestly or poorly even when clinical data 
are considered30.

Gene expression biomarkers that can be applied for a broad range of cancers could be highly useful in 
research and clinical settings. In clinics, such biomarkers may serve as a standard assessment for facilitat-
ing the interpretation and broad application of laboratory test results, simplifying laboratory protocols, 
and reducing costs. In research, these biomarkers may help to elucidate broadly observed biological 
mechanisms and possible drug targets. Nevertheless, gene expression biomarkers that can be applied to 
more than one cancer type are scarce. Most studies exploit specific properties to identify multi-cancer 
signatures. For example, signatures have been identified from metastasis-specific solid tumors31, or found 
to be associated with chromosomal instability32, therapy-failures33, proliferation signatures34, subsequent 
cancers35, and embryonic stem-cell like gene expression36.

Distinct algorithms and strategies have been used to identify biomarkers for more than 10 years. These 
methods include variable selection by shrinkage37,38, penalization39,40, clustering41, differential expres-
sion42,43, or simply by selection of the top-ranked genes using a univariate Cox score21, among many 
others44. Most of these methods nevertheless do not consider a priori biological information to identify 
gene signatures. The use of biological information adds a layer of validation and prioritization45 that can 
be exploited for biomarker discovery. Common approaches that consider biological information use net-
works such as protein-protein interactions (PPI) or gene ontologies, which drives the search for modules 
or terms that could function as gene signatures. For example, a set of significant subnetwork biomarkers 
to classify breast cancer metastasis was identified by performing a greedy search starting from seed genes 
and then adding neighbor genes46. These subnetworks were then compared with a null distribution of 
random subnetworks. Similarly, this algorithm was adapted for a web server that provides network-based 
biomarkers for survival data47. A network module-based approach applied a Markov clustering algorithm 
to the correlation of the PPI matrix identifying modules associated with patient survival48. An algorithm 
similar to that used by Google for ranking web pages has been proposed to order genes according to their 
association with survival outcomes49. Modularity has also been suggested as an indicator of breast cancer 
prognosis as determined by an algorithm to find intramodular highly co-expressed and highly inter-
connected “hub” genes and intermodular hub genes with low co-expression50. Moreover, gene ontology 
has also been used to identify metastasis network modules combining highly predictive gene ontology 
sets51. To the best of our knowledge, these network-based approaches have not been tailored to produce 
network-based multi-cancer biomarkers.

Here we describe a network-based approach that explores, in parallel, gene-to-gene connections in 
multiple cancer datasets while maximizing the overall association of the subnetwork with clinical out-
comes. We implemented this network-based algorithm using, as a proof of concept, the Human Protein 
Reference Database (HPRD)52, 12 TCGA cancer types53, and a composite Cox-based model54. In these 
training datasets, the results showed that a gene signature of 41 genes was capable of predicting risk 
groups across cancer types with high precision. Analysis of a large collection of clinical outcome cancer 
datasets that included cancers types reported by several authors and many cancer types that were not 
included in the training datasets validated these results. The predictive power of the biomarker was 
higher than that of clinical information alone and improved when combined. Our results suggest that it 
is possible to identify general, compact, and biologically driven gene expression biomarkers for multiple 
cancer types.

Material and Methods
Datasets. We used data from 12 cancer types that belong to the TCGA pan-cancer project reposi-
tory53 accessed in January 2013, compiled in 11 datasets (http://nature.com/tcga). Detailed lists of data-
sets, genes and samples used are shown in Table 1 and Supplementary Table 1. Level 3 data were used. 
Only gene symbols present in all cancer types were used. Microarray data (Agilent and Affymetrix) were 
transformed using quantile normalization. RNA-Seq data were Log2 transformed and quantile normal-
ized.

Biological networks. We used the protein-protein interaction (PPI) network from the Human 
Protein Reference Database (HPRD)52 accessed in March 2013. The network covered 9,465 genes and 
37,080 interactions. Only genes found in both the TCGA datasets and the network were used.

Performance of network modules. We used gene expression values from each cancer type fitting 
a Cox model to measure the level of association of a given gene signature. For biomarkers specific to 
a cancer-type, the negative logarithm of the log-rank test (NLLRT) was used to assess and drive the 
network-based search. For the multi-cancer biomarker, we used the NLLRT of a reference cancer-type 
minus the range of the NLLRT from the remaining cancer-types. Subtracting the range of values gave 
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preference to less variable signatures, helping to avoid over-fitting to specific cancer types. We used GBM 
as the reference cancer-type because its performance was the lowest across the cancer type-specific runs. 
Nevertheless, we also used other cancer types as reference and compared the results. To assess the overall 
performance of the prediction after biomarker identification, we used the concordance index (C-index) 
measure, which is similar to the area under the receiving operating curve55. C-index values close to 0.5 
are referred to as random risk predictions whereas C-index values close to 1 are interpreted as nearly 
perfect risk predictions. To represent the performance of biomarkers graphically, we split the samples by 
the median of the prognostic index to designate low- and high- risk groups. The prognostic index is the 
linear component of the exponential function in the Cox model.

Network clinical association (NCA) algorithm. Figure  1 shows a graphical representation of the 
NCA algorithm. The algorithm proceeds in cycles, starting with the determination of the performance 
of an isolated gene (a seed gene) across all datasets. Then, a module growth cycle is performed, in which 
all connected genes are explored, one gene at a time, generating as many grown modules as connections. 
In the exploration, the performance of the module is evaluated using the NLLRT value described above. 
Afterwards, only the top 5% of the modules whose NLLRT value improved after the addition of new 
connections are considered for the next growth cycle. The procedure continues until no improvement 
is observed. The algorithm starts by using each gene as a seed. This algorithm functions as a type of 
hill-climbing algorithm. Scripts or executables of this algorithm are available from the corresponding 
author.

Validation analysis. To determine the significance of the C-index values, we generated a null dis-
tribution composed of 10,000 random models of 41 genes for the TCGA datasets we used. To assess 
the C-index prediction of the biomarkers in datasets other than TCGA, we used SurvExpress56, which 
provides evaluations of gene lists across cancer types. For this, we used normalized datasets that included 
overall survival times (without considering recurrence, metastases, or relapse) and only those stud-
ies containing more than 30 samples. For replicated genes, we selected the highest expressed probe. 
Analyses were performed in R (http://cran.r-project.org/). For biological validation, we used MSigDB 
and DAVID57,58 to determine which biological terms were associated with the biomarker gene lists. We 
also compared the C-index values of our multi-cancer biomarker with those of other multi-cancer bio-
markers reported in the literature. For model comparisons including clinical features (e. g. cancer stag-
ing), we used the “other factors” option in SurvExpress.

Results
Identification of biomarkers for specific cancer types. We first executed the NCA algorithm 
(Fig.  1) for each of the 11 cancer datasets. We focused on the network modules with the highest per-
formance value. The results shown in Table 2 suggest that, in general, several network modules existed 
for each cancer type, from 84 for LUSC to 10,303 for BLCA. Most cancer types generated modules with 
about 9 genes, ranging in size from 4 for KIRC to 14 for LUSC. To generate a biomarker that is repre-
sentative of all modules for a specific cancer type, we used the genes that most frequently occurred in 
modules (around 41 genes for comparisons with the multi-cancer biomarker). The list of genes obtained 
is provided in Supplementary Table 2. Comparisons of the genes used for these biomarkers across cancer 
types showed that the pairwise gene overlap was low (ranging from 0 to 5, see Fig. 2A). Although the 

ID Type
Samples/ 
Censored Platform

BLCA Bladder Urothelial Carcinoma 54/35 RNA-Seq

BRCA Breast Invasive Carcinoma 502/437 Agilent

COADREAD* Colon and Rectum Adenocarcinoma 151/134 Agilent

GBM Glioblastoma 538/116 Affymetrix

HNSC Head and Neck Squamous Cell 283/164 RNA-Seq

KIRC Kidney Renal Clear Cell 468/313 RNA-Seq

LAML Acute Myeloid Leukemia 168/60 RNA-Seq

LUAD Lung Adenocarcinoma 255/175 RNA-Seq

LUSC Lung Squamous Cell 205/120 RNA-Seq

OV Ovarian Serous Cystadenocarcinoma 578/276 Affymetrix

UCEC Uterine Corpus Endometrial Carcinoma 333/305 RNA-Seq

MULTI All cancers above 3535/2135

Table 1.  Cancer datasets used for our study. *Colon and rectal adenocarcinoma datasets (COADREAD) 
were fused as in the TCGA pan-cancer analyses.
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specific genes used for each biomarker were clearly different, indicating that the biomarkers are cancer 
type-specific, the prediction across cancer types was surprisingly satisfactory; the average C-index values 
were higher than 0.75 (Fig. 2B and Supplementary Table 3). Almost all cancer type-specific biomarkers 
showed C-index values higher than 0.70 for about 8 cancer types (Fig.  2C). We observed consistent 
C-index values within each cancer type almost irrespective of the network-based biomarker (Fig. 2D). 
For instance, all biomarkers had a C-index value about 0.97 for BLCA and 0.95 for COADREAD but 
about 0.65 for OV and 0.62 for GBM. Nevertheless, a random signature analysis indicated that only 
14 of the 121 C-index values (11.5%) were significant, mainly those of cancer type-specific biomarkers 
within the same cancer type dataset (excluding BLCA and COADREAD, see Fig. 2A and Supplementary 
Table 3).

Identification of a multi-cancer biomarker. To generate a broadly predictive biomarker, we used 
the NCA algorithm and considered the 11 datasets in the same run. We estimated a composite perfor-
mance score based on the individual performance of all cancer types. We maximized the overall per-
formance by taking the NLLRT of a reference cancer type (glioblastoma) and subtracting the range of 
NLLRT values of the other cancer types. In this way, genes generating large deviances for specific cancer 
types were avoided in favor of the inclusion of genes that improved the prediction in many cancer types. 

Figure 1. Schematic representation of the network clinical association algorithm (NCA). Starting from 
a single seed gene (black), the first cycle generates modules that include the seed gene and each of the 
connected genes (blue). The 6 modules of 2 genes are then evaluated by their goodness of fit in a Cox 
survival model. Only those grown modules that improve (filled blue circles) the evaluation are considered 
for the next grow cycle. Only a proportion of the best improved modules are further explored in the next 
cycle (represented by a percentage of the distribution of all modules, shown in green, evaluated in the 4th 
cycle). This procedure continues until no improvement is observed. The NCA algorithm was run for each 
cancer type and for all cancer datasets (multi-NCA).
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Two very similar modules consisting of 44 genes were identified (Table 2). Only 6 genes were not pres-
ent in both modules (JDP2, KIF5B, NTRK3, MMP13, TGFB1, and TGFBRAP1). Therefore, we used the 
genes present in both modules as the overall multi-cancer biomarker.

The identified network biomarker was composed of 41 genes highly connected by ESR1, PRKACA, 
LRP1, JUN and SMAD2 (Fig.  3A). This gene signature was able to discriminate between low- and 
high-risk groups efficiently in the 11 cancer datasets (Fig. 3B and Table 3) through the statistical asso-
ciation of specific genes (Fig.  3C). The log-rank test and the Cox model fitting were highly significant 
across cancer types (Table 3). The average C-index value across cancer types was 0.81 ranging from 0.65 
to 1. Eight of these 11 predictions were significant according to a randomization analysis (Fig. 2B and 
Supplementary Table 3). The highest C-index predictions were observed for BLCA and COADREAD, 
whereas the lowest C-index predictions were observed for GBM and OV.

In a comparison of the predicted low- and high-risk groups (splitting the prognostic index by the 
median), we observed several genes differentially expressed across cancer types, except in BLCA (Fig. 3C 
and Table  3). Apart from LMO4 and DDX5, the other 39 genes were differentially expressed between 
risk groups in two or more cancer types. LMO4 was not differentially expressed in any cancer but was 
significantly associated with GBM, LUAD, and LUSC according to the Cox model. DDX5 was highly 
differentially expressed in LUAD and associated with three cancer types according to the Cox model. 
Similarly, 36 genes were associated with the Cox model for two cancer types or more. Surprisingly, ESR1 
was not associated with Cox models but was differentially expressed in two cancer types and served as 
a hub for connecting 10 genes.

An overrepresentation analysis of the 41 genes using MSigDB57 and DAVID58 revealed important bio-
logical associations across pathways, transcriptional control, gene ontologies, and other biological terms 
(Fig.  3D). Some of these pathways are well known to be associated with cancer, such as the MAPK59, 
LKB160, ERα 61, and NGF62 pathways. Some genes were highly associated with transcription factors such 
as SP163, gene ontologies such as signaling, and other biological terms such as immune system, copy num-
ber gains in cancer, and MIR-18 targets. In addition, at least 36 of the 41 genes have been associated in 
the literature with one or more cancer types (Fig. 3D).

These findings support the utility of determining which genes predicted specific cancer types and 
suggest that the signature we generated is robust across cancer subtypes.

Comparison of the multi-cancer and cancer type-specific biomarkers. It has been proposed 
that molecular processes may be similar across cancer types14,15,64. Consequently, a biomarker of clinical 
outcomes in a specific cancer type may be a good biomarker in a different cancer type. Therefore, we 
compared our 12 biomarkers to identify similarities. In terms of gene content (Supplementary Table 
2), the multi-cancer (multi-NCA) biomarker was not particularly similar to the cancer type-specific 
biomarkers (Fig. 2A). Indeed, the biomarker most similar to others was OV, which contained 17 genes 
(29 occurrences) that overlapped with other biomarkers out of the 418 unique genes. This similarity was 
considerably higher than that of the multi-NCA, which had 9 genes (17 occurrences) overlapping and 
that of the most specific biomarker, GBM, which had only 4 genes (5 occurrences) in common with the 
other biomarkers.

Type Modules
Module 

Size

Network-based Biomarker

Size Top Genes*

BLCA 10,303 10 41 SMAD2, RUNX2, ABTB1, ST5, CEBPB, SETDB1, CEBPG

BRCA 485 9 42 JAK2, NFKBIA, TBP, RXRA, VAV1, HES5, NFKBIB

COADREAD 252 13 36 EEF1A1, FOXG1, GADD45G, MAPK9, MYOC, SMAD2

GBM 2,142 9 42 EFEMP2, MAPK3, TP53, TOP1, CCDC6, SREBF1, GJA1

HNSC 661 9 41 DUSP16, KRT8, RAF1, MED1, PPARG, YWHAB, FABP1

KIRC 2,841 4 41 AR, HGS, RUNX1, BCL3, BRCA1, STAT2, ITGA8

LAML 584 8 42 GUCY2C, PTPRA, SRC, STAT5B, WAS, KCNQ5, CALM1

LUAD 808 9 42 DOK1, FUT4, INSR, ITGB2, SHC1, PTPRC, KHDRBS1

LUSC 84 14 37 BRCA1, ETS2, HIF1A, JUN, LMO4, PIAS3, RBBP7

OV 421 9 42 TBP, LCK, ESR2, RB1, JUN, EEF1A1, BCL3

UCEC 1,570 10 41 CREBBP, GTF2B, CSNK2A1, CTNNB1, HOXD4, HIPK1, PTEN

MULTI 2 44 41 **ESR1, PRKACA, LRP1, JUN, SMAD2, SNAP25, ITNS1

Table 2.  Networks modules obtained for each cancer type using the NCA algorithm. *The complete 
lists of genes and samples used are shown in Supplementary Table 1. **Highest connected genes. Genes in 
boldface type are repeated more than once in this list.
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A comparison of the average C-index values across biomarkers and cancer types showed that the 
multi-NCA biomarker was, overall, the best (average C-index =  0.81) but it was closely followed by OV 
and BRCA (average C-index of 0.80 and 0.79 respectively; Fig. 2). The C-index of the multi-NCA bio-
marker was almost always better than those of the cancer type-specific biomarkers (Fig. 2D). Nevertheless, 
in each cancer type, the C-index was higher using the cancer type-specific biomarker than using the 
multi-NCA biomarker (by 0.047 on average). Despite this, an analysis of 10,000 random biomarkers 
showed that 8 of 11 C-index predictions of the multi-NCA biomarker were significant (Fig.  2B and 
Supplementary Table 3) whereas the C-indexes in most cancer type-specific biomarkers were significant 
only in one or two cancer types (OV in three and marginally in two more). In terms of prediction power 
per cancer type, the BLCA and COADREAD average C-index values were, by far, the highest (both 0.98). 
In contrast, the C-indexes for GBM and OV were the lowest (0.62 and 0.65 respectively).

Comparisons with clinical features. Although biomarkers can be a useful clinical tool to predict 
outcomes, some of the generated biomarkers may not actually be useful in clinical practice if the gene 
signature does not add predictive power beyond that of the usual clinical features30. To assess this, we 
determined the C-index of the multi-NCA biomarker and the available clinical features per cancer type. 

Figure 2. Comparison of biomarkers generated by the network clinical association (NCA) algorithm. 
Panel A shows the number of genes that were included in any two biomarkers. Underlined numbers 
represent the number of genes per biomarker. Red indicates high overlaps and blue indicates no overlap. 
The “Sum” row shows the total number of overlaps with other biomarkers while the “Unique” row shows 
the number of unique genes that overlap. Panel B shows the C-index evaluation of NCA biomarkers (rows) 
across cancer datasets (columns). Underlined numbers represent the biomarkers evaluated within the cancer 
dataset. Red indicates high values within the cancer dataset (column) and blue indicates low values. Boldface 
and framed values represent significant predictions using 10,000 random models of the same length. The 
“Average” row shows the average C-index per cancer type and the “Average” column shows the mean 
C-index per biomarker. Panel C shows the NCA biomarkers (horizontal) evaluated in all datasets using 
C-index (vertical axis). The mean is shown as a horizontal line. Panel D shows cancer types (horizontal) 
evaluated with all biomarkers using C-index (vertical axis).
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Figure 3. The multi-NCA biomarker identified when all databases were combined. Panel A shows the 
genes and network identified. The connections correspond to data from the PPI database used. The most 
connected genes were PRKACA, ESR1, LRP1, SMAD2 and JUN. Panel B shows the risk group prediction 
(splitting the prognostic index by the median) of the multi-NCA biomarker across cancer datasets. Panel 
C depict the color-coded differential expression of genes between risk groups. Darker red indicates more 
significant differences. The scales were estimated in -Log10 of the t test p value. Only p values < 0.01 are 
highlighted. Darker purple indicates more significant hazard ratio associations within the Cox model. The 
scales were expressed in -Log10 of the Z p value. Only p values < 0.05 are highlighted. Panel D shows, in 
the top, the curated biological terms and pathways associated with the genes composing the biomarker. The 
associations of genes with specific cancers based on the literature are shown at the bottom.
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The Supplementary Figure 1 shows that the multi-NCA biomarker adds between 0.04 and 0.30 of pre-
diction power over clinical features alone. In contrast, the clinical features add only between 0 and 0.075 
over the biomarker alone. Overall, in most cancer types (except KIRC) the biomarker makes better 
predictions than clinical features alone. These results suggest that the multi-NCA signature adds a con-
siderable level of predictive power to clinical features.

We also determined whether the multi-NCA signature was sensitive to stratifications using cancer 
features. For this, we used the widely used cancer staging system for each cancer type to compare the 
performance of C-indexes across cancer stages. As shown in Supplementary Figure 2, C-index values var-
ied somewhat across stages, perhaps influenced by the number of TCGA samples available per stage. Of 
note, in BRCA stage IIIA, in KIRC stage III and IV, OV stage IIIB, and UCEC stage IIIC, the C-indexes 
were lower than 0.05 relative to the overall C-indexes for corresponding cancer types (in these cases the 
estimation considered more than 20 samples). Nevertheless, the C-index value is still acceptable for most 
stages. This stratification provides an estimation of the response of markers across a wide spectrum of 
subtypes.

External comparison and validation of biomarkers. For external validation of the multi-NCA bio-
marker, we compared the C-index with other 5 multi-cancer biomarkers proposed by other authors32,65,66 
representing signatures of chromosome instability (CIN70)32, multiple cancer-related pathways (poised 
gene cassette, PGC)65, mesenchymal transition (MES)66, mitotic chromosomal instability (CIN)66, and 
lymphocyte infiltration (LYM)66. The 41 genes in the multi-NCA biomarker did not overlap with any of 
the genes in CIN70, PGC, MES, CIN, and LYM (Supplementary Table 2). The average C-index for the 
LYM biomarker was 0.796, just below that of our multi-NCA biomarker, which was 0.809 (Supplementary 
Table 3). The C-index for LYM was nevertheless significant in only 3 TCGA datasets compared with 8 
datasets for the multi-NCA biomarker, suggesting that our multi-cancer biomarker is superior to the 
LYM biomarker.

To evaluate the prediction accuracy of the biomarkers in cancer data other than TCGA, we used 
SurvExpress56 to analyze the multi-NCA and the cancer type-specific biomarkers we generated, and the 
multi-cancer biomarkers generated by other-authors. We used 122 cancer datasets containing 19,105 
samples spanning about 20 types of tissues (Supplementary Table 4). These datasets covered cancer types 
not used to develop the NCA-based biomarkers such as cancer of the bone, esophagus, eye, liver, pros-
tate, pancreas, and skin, as well as medulloblastomas and astrocytomas, and others. We performed two 
analyses, the first averaging all 122 datasets, and the second normalizing the average per tissue. The sec-
ond analysis was more important because some tissues have been more studied than others such as lung, 
ovary, breast, brain, and colon. In addition, some cohorts are reported in various datasets. The results 
showed that our multi-NCA biomarker was one of the top biomarkers evaluated; it was the most accurate 
in the per-tissue analysis and close to the most accurate in all datasets (Fig. 4 and Supplementary Table 
4). Compared with other multi-cancer biomarkers, our multi-NCA signature was more accurate in the 
per tissue analysis than the CIN, CIN70, PGC, LYM, and MES signatures. Among these, the MES was 
the best in the per-tissue analysis while LYM was first considering all datasets.

Comparison of multi-cancer module evaluation functions. The results reported here represented 
by the multi-NCA biomarker were obtained using GBM as the reference cancer type minus the range 
of all other cancer types examined. We also explored the performance of the network-based marker 
generation using other functions and other cancer types as reference. We first tested the obvious average 

Cancer Type C-index

Log 
Rank 
Test

Cox 
p-Value

Significant 
Genes

Differential 
Expressed Genes

BLCA 1.00 6.3 3.3 0 0

BRCA 0.80 9.4 7.8 11 17

COADREAD 1.00 4.7 2.5 7 8

GBM 0.65 5.8 5.7 8 19

HNSC 0.75 7.7 7.0 9 15

KIRC 0.74 8.7 8.1 5 21

LAML 0.77 11 9.6 9 10

LUAD 0.81 5.1 4.7 13 16

LUSC 0.77 8.5 7.4 13 9

OV 0.66 9.2 5.8 11 18

UCEC 0.92 5.7 3.5 19 13

Table 3.  Cox model results showing how well the multi-NCA cancer biomarker fit across datasets.
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function, followed by the average minus the range. As demonstrated in Supplementary Figure 4, using 
only the average function generated the poorest performance, which was improved by subtracting the 
range but still lower than using GBM as the reference minus the range. Then, we tested the other three 
cancer types used as references: LUAD, OV, and BRCA. Interestingly, using LUAD as the reference gen-
erated a lower performance than that of GBM in all cancer types, whereas using OV generated almost 
the same overall performance as GBM. Surprisingly, using BRCA as the reference resulted in a better 
performance than that of GBM in 7 cancer types (only LUAD showed a decrease; the overall increase in 
performance was 0.025).

Discussion
We used NCA, a network-based algorithm, to identify biomarkers highly predictive of survival outcomes 
in cancer. We first identified biomarkers for specific cancers and then identified a multi-cancer biomarker 
for 12 cancer types. Interestingly, the gene content varied greatly across biomarkers but the performance 
was similar when evaluated in each cancer type (Fig. 2D). These results suggest that C-index values are 
more dependent on cancer type than on gene content of the biomarker. Consequently, survival outcomes 
may be more difficult to predict in some cancer types than in others. For instance, survival was easier to 
predict in BLCA and COADREAD than in OV and GBM. This is also supported by the fact that C-index 
values close to 1 for BLCA and COADREAD were not significant since random markers also showed 
high C-index values while C-indexes of 0.66 for OV and 0.65 in GBM were highly significant compared 
with random markers.

The OV-NCA biomarker was the second most accurate biomarker across cancer types (Fig. 2C) even 
though it was developed using the ovarian serous cystadenocarcinoma dataset only. A comparison of 
the OV biomarker (Supplementary Figure 3) with the multi-NCA biomarker (Fig. 3) showed that, sur-
prisingly, the ovarian biomarker had more connections than the multi-NCA biomarker. However, the 
number of differentially expressed genes, the Cox model statistics, and the biological terms associated 
with the signature were more appropriate in the multi-NCA biomarker than in the OV biomarker. The 
multi-NCA was able to significantly predict survival outcomes in 5 more cancer types than the OV 
biomarker (Fig. 2B), and it was more accurate in the per-tissue analysis (Fig. 4) than the OV biomarker. 
These findings indicate that the multi-NCA biomarker was more suitable for multi-cancer predictions 
than the OV biomarker. Nevertheless, it would be interesting to explore why the OV biomarker was 
highly predictive of outcomes across cancers. Although ovarian cancer was hard to predict, glioblastoma 
was even harder but the GBM biomarker was less accurate than the OV biomarker (Figs 2C and 4), so 
it cannot be easily linked to prediction difficultness. Ovarian serous cystadenocarcinoma can be divided 
into various subtypes defined by immunoreactive, mesenchymal, proliferative, and differentiated char-
acteristics6. These characteristics represent universal tumorigenic processes and are observed in other 
types of cancer as well6. This heterogeneity is reflected in the relatively high number of individuals (578) 
included in the TCGA ovarian dataset16, although a similar number of samples was included in glio-
blastoma and invasive breast carcinoma (Table 1). In addition, the five genes (JUN, PRKACA, SMAD2, 
ESR1, and BCL3) shared by the OV and multi-NCA biomarkers form a small network module and are 

Figure 4. Evaluation of all biomarkers in SurvExpress using C-index. PGC biomarker derived from other 
authors is not shown (0.74 for all datasets and 0.81 for per tissue) to emphasize biomarkers with higher 
C-index values.
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recognized as cancer-related genes. Further analysis is needed to explore the reasons for the apparently 
high inter-cancer accuracy of the OV biomarker.

None of the C-index values in BLCA or in COADREAD were significant in the random model test 
even though the C-index values reached 1 because 46% and 12% of the random models respectively 
were equally predictive. Moreover, in BLCA, none of the genes were differentially expressed between risk 
groups. Although the low number of samples could influence these results (only 54 samples in BLCA and 
151 in COADREAD), confirmed results in larger cohorts would imply that many predictive signatures 
may exist. In our study, the multi-NCA did not depend on the number of samples per cancer type but 
in the NLLRT of each cancer type. Thus, the selection of the best signature was imposed by other cancer 
types rather than by BLCA and COADREAD. This may explain why none of the genes was significant in 
BLCA. Nevertheless, these findings do not necessarily indicate that these genes in BLCA are not impor-
tant. For instance, high expression of CALR has been associated with high risk in bladder cancer67. HRAS 
gains have been found in bladder cancer cell lines and have been related to urothelial tumorigenesis68. 
ITGA4 is part of a methylation gene set used for the detection of bladder cancer69. In COADREAD, AKT 
isoforms (including AKT1) are associated with high expression of CD133 and CD44 (cancer stem cell 
markers) and radiation resistance in colon cancer cells70. High expression of DDX5 (previously known 
as p68) is related to the transition from polyp to adenoma and then to adenocarcinoma71. High levels 
of DUT protein expression are predictive for tumor resistance to chemotherapy in colorectal cancer72. 
Finally, up-regulation of JUN is related to the invasiveness of colorectal cancer cells. These findings 
clearly indicate that the biomarker genes are biologically related to BLCA and COADREAD.

The performance comparisons of the multi-NCA with clinical features suggest that the multi-NCA 
signature adds predictive power to clinical features. Nevertheless, these comparisons also showed that the 
predictive power of the multi-NCA biomarker might vary across cancer stages. This may indicate that the 
biomarker is somehow influenced by the high representation of specific cancer subtypes in the TCGA 
studies. For example, the results in BRCA were highly influenced by stage II samples, which accounted 
for more than 50% of total samples, whereas stage IV samples represented only 3% of samples. Other 
cancer types showed similar staging biases. Inclusion of more samples (as is happening with the TCGA 
and the International Cancer Genome Consortium datasets) and prefiltering of data to balance stage 
representation may be good strategies to improve the identification of multi-cancer biomarkers.

The C-index value of our multi-NCA biomarker was higher than that of other previously reported 
multi-cancer biomarkers, but not substantially. The C-index values of MES and CIN70 were just below 
that of our multi-NCA biomarker. Some of the other multi-cancer biomarkers however use more genes 
for the prediction (Supplementary Table 2). Still, these comparisons highlight the fact that our multi-NCA 
biomarker is highly competitive among the others reported.

The network-based strategy that we used emphasizes the fact that using biological information cou-
pled with gene selection is a powerful strategy to generate biomarkers; this conclusion is consistent with 
results from other studies46–51. However, the network-based strategy that we used is different from other 
approaches in various ways (Supplementary Table 5). First, we directly evaluated a Cox model that is 
capable of identifying combinatorial features more robustly than univariate-oriented approaches47, clas-
sifiers46,49,51 or components48. Second, unlike in other algorithms, we did not prefilter genes to decrease 
the complexity of the exploration47. Third, we used population-dependent selection of the most improved 
models allowing us to explore more combinations than would be possible using other algorithms46,47. 
Finally, to generate a multi-cancer biomarker, we expanded the Cox evaluation to multiple datasets by 
subtracting the range of all NLLRT values from the NLLRT value of a reference cancer.

We used the HPRD protein-protein interaction network in our approach. In principle, however, the 
NCA approach can be applied to other biological networks such BioGrid73, iRefWeb74, STRING75, and to 
genetic regulatory networks such as MotEvo76 and the conserved transcription factor binding sites track 
in UCSC (https://genome.ucsc.edu). The NCA algorithm is not limited to gene expression data or to 
survival analysis as the response variable. The exploration of diverse biological networks, genomic data, 
and response variables may lead to the identification of better or alternative multi-cancer biomarkers.

The identification of novel or alternative multi-cancer biomarkers is also valuable because such bio-
markers can represent different biological phenomena that may help to elucidate specific cancer features. 
For example CIN70 was identified from chromosome instability32, MES from mesenchymal transition66, 
and LYM from lymphocyte infiltration66. Our multi-NCA biomarker represents a protein-network-based 
biomarker. In this context, our multi-NCA biomarker does not share genes with other multi-cancer 
markers and shares only 5 genes with the OV biomarker also identified here.

We tested diverse module evaluation functions in which we varied the reference cancer type. We 
observed that the biomarkers found, and their performance depended on this evaluation. These results 
have deep implications: the choice of the module-growth function is critical, the function used can be 
improved, and the approach can generate alternative markers. It would be interesting to explore other 
functions combined with more cancer types.

Recent results have explored the correlation between gene expression and genomic changes such as 
copy number alterations77. In this context, the predictive power of the multi-NCA biomarker appeared 
to be specific for gene expression because mutations and copy number alterations were not highly related 
(Supplementary Table 6). The search for mutation signatures associated with clinical outcomes is start-
ing30. Given the sparseness of the mutational spectrum across cancers, it is difficult to realize that a 

https://genome.ucsc.edu
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general mutation signature could be found. It would be exciting to see whether approaches like our 
proposal are capable of providing interesting solutions.

The identification of multi-cancer biomarkers may lead to proposals of novel diagnostic tools and ther-
apeutic schemes. In this context, using DGIdb78 we observed that 22 of the 41 genes of the multi-cancer 
biomarker were known drug targets (Supplementary Table 7). Thus, our approach may also shed light 
on which targets can be assayed in future experiments.
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