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Abstract: In this paper, the parameter estimation problem of a truncated normal distribution is dis-
cussed based on the generalized progressive hybrid censored data. The desired maximum likelihood
estimates of unknown quantities are firstly derived through the Newton–Raphson algorithm and the
expectation maximization algorithm. Based on the asymptotic normality of the maximum likelihood
estimators, we develop the asymptotic confidence intervals. The percentile bootstrap method is
also employed in the case of the small sample size. Further, the Bayes estimates are evaluated
under various loss functions like squared error, general entropy, and linex loss functions. Tierney
and Kadane approximation, as well as the importance sampling approach, is applied to obtain the
Bayesian estimates under proper prior distributions. The associated Bayesian credible intervals are
constructed in the meantime. Extensive numerical simulations are implemented to compare the
performance of different estimation methods. Finally, an authentic example is analyzed to illustrate
the inference approaches.

Keywords: truncated normal distribution; generalized progressive hybrid censoring scheme; ex-
pectation maximization algorithm; Bayesian estimate; Tierney and Kadane approximation; impor-
tance sampling

1. Introduction
1.1. Truncated Normal Distribution

Normal distribution has played a crucial role in a diversity of research fields like
reliability analysis and economics, as well as many other scientific developments. However,
in many practical situations, experimental data are available from a certain range, so the
truncated form of normal distribution is more applicable in actual life.

The truncated normal distribution, with its characteristic of practical, has gained some
attention among researchers and interesting results have been obtained. Ref. [1] studied
the maximum likelihood estimations for singly and doubly truncated normal distributions.
Ref. [2] applied the approach of moments to estimate unknown parameters of singly
truncated normal distributions from the first three sample moments. Ref. [3] investigated
the estimators of unknown parameters from the normal distribution under the singly
censored data. Ref. [4] utilized an iterative procedure to transform singly right censored
samples into pseudo-complete samples and then estimated the parameters of interest
through the transformed data. One can refer to [5] to find more details about the truncated
normal distribution. Ref. [6] adopted the maximum likelihood estimation and Bayesian
methods to estimate the unknown parameters for the truncated normal distribution under
the progressive type-II censoring scheme. Meanwhile, optimal censoring plans under
different optimality criteria had been discussed. While the above-mentioned works are
based on the known truncation point. Ref. [7] developed a standard truncated normal
distribution. The truncated mean and variance of this distribution are zero and one,
respectively, regardless of the location of the truncation points. Ref. [8] considered the
maximum likelihood estimators of unknown parameters with the known truncation point
and the unknown truncation point respectively.
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Generally, lifetime data are non-negative and under this circumstance, the left-truncated
normal distribution (the truncation point is zero) can be applied to investigate statistical
inference of unknown parameters.

Provided that a variable X is subject to a left-truncated normal distribution TN(µ,τ),
which has a probability density function (pdf) when truncation ranges from zero to infinity.

f (x; µ, τ) =
e−

1
2τ (x−µ)2

√
2πτΦ( µ√

τ
)

, x > 0,

where µ > 0 and τ > 0, µ is the mean of the corresponding normal distribution and τ
is the variance accordingly. Φ(.) is the cumulative distribution function of the standard
normal distribution.

The corresponding cumulative distribution function (cdf) takes the form as

F(x; µ, τ) = 1−
1−Φ( x−µ√

τ
)

Φ( µ√
τ
)

, x > 0.

The hazard rate function (hrf) of the left-truncated normal distribution at zero is
expressed as below. In addition, we obtain the associated numeral characteristics such as
the expectation and variance respectively.

h(x; µ, τ) =
e−

1
2τ (x−µ)2

√
2πτ(1−Φ( x−µ√

τ
))

, x > 0.

E(X) = µ−

√
τφ( µ√

τ
)

Φ( µ√
τ
)

Var(X) = τ

1 +

µ√
τ

φ( µ√
τ
)

Φ( µ√
τ
)
−
(

φ( µ√
τ
)

Φ( µ√
τ
)

)2
Figure 1 presents the pdfs and hrfs of the left-truncated normal distributions when

the truncation point is zero with different µ and τ. It is observed that the pdf is unimodal
and the hrf is monotone increasing.
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Figure 1. the pdfs and hrfs of the left-truncated normal distributions at zero.
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1.2. Generalized Progressive Hybrid Censoring Scheme

As technology has developed by leaps and bounds in the past few years, products
are more reliable so that we can not get enough lifetime data to estimate the unknown
parameters under the constraints of time and cost. As it is unavoidable to lose some
experimental units during an experiment, an increasing number of researchers turned their
attention to censored data. The earliest censoring schemes proposed are type-I and type-II
censoring. Furthermore, combining type-I with type-II censoring schemes, researchers
developed the hybrid censoring scheme. The features of all these schemes do not enable
experimenters to withdraw any experimental unit at any stage before the experiment is
over. Ref. [9] introduced the progressive censoring scheme afterwards. However, this
scheme takes a huge amount of hours spent in conducting the experiment. In face of such
defect, Ref. [10] developed an effective method-the progressive hybrid censoring scheme.

A progressive hybrid censoring sample can be generated as follows. First of all, n
identical units are put into a test. We denote X1, X2, · · · , Xm as the ordered failure times

and R = (R1, R2, · · · , Rm) as the censoring scheme which satisfies that
m
∑

i=1
Ri + m = n.

Once the m-th failed unit happens or the threshold time T is reached, the test is stopped.
That is, the stop time T∗ = min{Xm, T}. When the first failure happens, we randomly
remove R1 units out of the test. On the occasion of the second failure, we withdraw R2
survival units randomly from the test. Analogously, Ri units are removed at random when
the i-th failure occurs. Finally, either when the m-th failure has happened or the threshold
time T has been reached, the rest of the survival units are taken out of the test together.

But in the progressive hybrid censoring scheme, we cannot get accurate estimates of
unknown parameters since there might be only few failures before the threshold time T
which is pre-fixed. For this reason, Ref. [11] introduced a generalized progressive hybrid
censoring scheme (GPHCS). This censoring scheme can realize a compromise between time
restriction and the number of failed observations by terminating the test at the random
time Tend = max{Xk, T∗}. It guarantees that at least k failures can be observed before the
terminal time Tend. Assume that a test starts with n identical units and the acceptable
minimum number k of failures and the expected number m of failures observed are pre-
fixed between zero and n, we choose the threshold time T and the censoring scheme that

satisfies
m
∑

i=1
Ri + m = n ahead of the test. Similarly, we remove R1 units randomly on the

occasion of the first failure. On the arrival of the second failure, we randomly withdraw R2
units from the rest of the experimental units. The procedure keeps repeating until the end
time Tend = max{Xk, min{Xm, T}} is reached.

Schematically, Figure 2 gives the process that how to generate the generalized progres-
sive hybrid censored data under different conditions of the pre-fixed time.

The generalized progressive hybrid censoring scheme modifies the terminal time Tend
to attain sufficient failed observations within a reasonable experimental period and brings
about more accurate estimations of unknown parameters.
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Figure 2. Three cases of the generalized progressive hybrid censoring scheme.

Since its higher efficiency of statistical inference, attention to generalized progressive
hybrid censoring scheme has mounted. Ref. [11] employed the classical and Bayesian
estimation techniques to estimate the entropy of Weibull distribution. Base on the method
he introduced previously, Ref. [12] further derived the exact confidence intervals. Ref. [13]
chose a competing risks model when data were sampled in the generalized progressive
hybrid censoring scheme from an exponential distribution and derived the estimates
through the maximum likelihood estimation approach and importance sampling method.
On the basis of GPHCS, Ref. [14] investigated the two-parameter Rayleigh competing risk
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data adopting the maximum likelihood estimation and Gibbs sampling technique was
employed to approximate the associated Bayes estimates.

The aim of our work is to obtain the classical and Bayesian estimations of the left-
truncated normal distribution at zero when data are derived from the generalized progres-
sive hybrid censoring. To begin with, the Newton–Raphson (N-R) algorithm is proposed to
compute the maximum likelihood estimates (MLEs) of unknown parameters of TN(µ, τ).
Another iterative approach—expectation maximization (EM) algorithm is also introduced
to calculate the estimates. Subsequently, the observed Fisher information matrix and
percentile bootstrap (Boot-p) method are considered to obtain the confidence interval esti-
mations. In the Bayesian framework, we employ Tierney and Kadane (T-K) approximation
and importance sampling (IS) technique to estimate Bayesian estimators. The associated
higher posterior density (HPD) intervals are developed as well. Statistical inference of the
left-truncated normal distribution at zero with the generalized progressive hybrid censored
samples has not yet been carried out previously in terms of what we know about it.

The rest of this paper is made up of the following sections. The maximum likelihood
estimators of µ and τ are theoretically derived respectively via the N-R approach and EM
method in Section 2. In Section 3, we obtain the asymptotic confidence intervals using
the asymptotic distributions of the MLEs, the asymptotic distributions of log-transformed
MLEs and the Boot-p method. In Section 4, Bayes estimates of all unknown quantities are
achieved applying T-K approximation under different loss functions. Besides, we figure
out the Bayesian estimates of parameters using the importance sampling procedure. Based
on this approach, the corresponding HPD intervals are developed. Numerical simulations
and an analysis of one authentic example are carried out in Section 5. Finally, we arrive at
some conclusive remarks in Section 6.

2. Maximum Likelihood Estimation

Our interest in this section is to obtain the maximum likelihood estimates of µ and
τ with generalized progressive hybrid censored data. Based on the pdf and cdf of the
truncated normal distribution when the left truncation point is zero, the likelihood and
log-likelihood functions of three cases are expressed as

• Case I:

L1 ∝ (2πτ)−
k
2 [Φ(

µ√
τ
)]−ne

− 1
2τ

k
∑

i=1
(xi−µ)2 k

∏
i=1

[1−Φ(
xi − µ√

τ
)]Ri

l1 ∝ − k
2

log(τ)− n log Φ(
µ√
τ
)− 1

2τ

k

∑
i=1

(xi − µ)2 −
k

∑
i=1

Ri log (1−Φ(
xi − µ√

τ
))

• Case II:

L2 ∝ (2πτ)−
D
2 [Φ(

µ√
τ
)]−ne

− 1
2τ

D
∑

i=1
(xi−µ)2 D

∏
i=1

[1−Φ(
xi − µ√

τ
)]Ri [1−Φ(

T − µ√
τ

)]R
∗
2

l2 ∝ −D
2

log(τ)− n log Φ(
µ√
τ
)− 1

2τ

D

∑
i=1

(xi − µ)2 −
D

∑
i=1

Ri log (1−Φ(
xi − µ√

τ
))

+ R∗2 log (1−Φ(
T − µ√

τ
))

• Case III:
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L3 ∝ (2πτ)−
m
2 [Φ(

µ√
τ
)]−ne

− 1
2τ

m
∑

i=1
(xi−µ)2 m

∏
i=1

[1−Φ(
xi − µ√

τ
)]Ri

l3 ∝ −m
2

log(τ)− n log Φ(
µ√
τ
)− 1

2τ

m

∑
i=1

(xi − µ)2 −
m

∑
i=1

Ri log (1−Φ(
xi − µ√

τ
))

Then the likelihood and log-likelihood functions for three kinds of cases can be
combined in a general expression as

L(µ, τ|x̃) ∝ τ−
J
2 e
− 1

2τ

J
∑

i=1
(xi−µ)2[

Φ
(

µ√
τ

)]−n J

∏
i=1

[
1−Φ

(
xi − µ√

τ

)]Ri

H(µ, τ)

l(µ, τ|x̃) = l ∝− J
2

log(τ)− n log Φ
(

µ√
τ

)
− 1

2τ

J

∑
i=1

(xi − µ)2

+
J

∑
i=1

Ri log
(

1−Φ
(

xi − µ√
τ

))
+ h(µ, τ).

(1)

where x̃ =
(

x1, x2, · · · , xJ
)

denotes the observed data and J = k, Rk = R∗1 , H(µ, τ) = 1,

h(µ, τ) = 0 for Case I; J = D,H(µ, τ) =
[
1−Φ

(
T−µ√

τ

)]R∗2 , h(µ, τ) = R∗2 log
(

1−Φ
(

T−µ√
τ

))
for Case II; J = m, Rm = R∗3 , H(µ, τ) = 1, h(µ, τ) = 0 for Case III.

Next, take the first derivatives of (1) for µ and τ respectively and make them equal to
zero. A set of score equations can be attained as follows.

∂l
∂µ

=
1√
τ

J

∑
i=1

ηi +
1√
τ

J

∑
i=1

Riφ(ηi)

1−Φ(ηi)
− n√

τ

φ(η)

Φ(η)
+ h1(µ, τ) = 0

∂l
∂τ

= − J
2τ

+
1

2τ

J

∑
i=1

η2
i +

1
2τ

J

∑
i=1

Riηiφ(ηi)

1−Φ(ηi)
+

nη

2τ

φ(η)

Φ(η)
+ h2(µ, τ) = 0

where η = µ√
τ

, ηi =
xi−µ√

τ
, ηT = T−µ√

τ
and H1(µ, τ) = 0, H2(µ, τ) = 0 for Case I and Case II;

h1(µ, τ) =
R∗2√

τ

φ(ηT)
1−Φ(ηT)

, h2(µ, τ) =
R∗2 ηT
2τ2

φ(ηT)
1−Φ(ηT)

for Case III.
The maximum likelihood estimates of unknown parameters are the solutions to the

above equations. Apparently, the expressions of µ and τ are involved in a nonlinear
problem and the analytic solutions are not available. Therefore, we have to depend on
some numerical methods such as the N-R method and EM algorithm to approximate the
values of unknown parameters.

2.1. Newton–Raphson Algorithm

Since the first and second-order derivations of the log-likelihood function are available,
the Newton–Raphson algorithm is appropriate to maximize the log-likelihood function.

The second-order derivations of (1) for the parameters are given by

l20 =
∂2l
∂µ2 = − J

τ
− n

τ

(
Q′ −Q2

)
−

J

∑
i=1

Ri
τ

(
Q′i −Q2

i

)
+ h20(µ, τ)

l11 =
∂2l

∂µ∂τ
= − 1

τ3/2

J

∑
i=1

ηi +
n

2τ3/2 Q +
nµ

2τ2

(
Q′ −Q2

)
−

J

∑
i=1

Ri

2τ3/2 Qi

−
J

∑
i=1

Riηi

2τ3/2

(
Q′i −Q2

i

)
+ h11(µ, τ)
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l02 =
∂2l
∂τ2 =

J
2τ2 −

1
τ2

J

∑
i=1

η2
i −

3nµ

4τ5/2 Q− nµ2

4τ3

(
Q′ −Q2

)
−

J

∑
i=1

3Riηi
4τ2 Qi

−
J

∑
i=1

Riη
2
i

4τ2

(
Q′i −Q2

i

)
+ h02(µ, τ)

with

h20(µ, τ) = −R∗2
τ

(
Q′T + Q2

T

)
h11(µ, τ) = − R∗2

2τ3/2

(
QT + ηTQ′T + ηTQ2

T

)
h22(µ, τ) = − R∗2

4τ2

(
3ηTQT + η2

TQ′T + η2
TQ2

T

)
where η = µ/

√
τ, Q′ = φ′(η)/Φ(η), Q = φ(η)/Φ(η), ηi = (xi−µ)/

√
τ, Q′i = φ′(ηi)/(1−

Φ(ηi)) and Qi = φ(ηi)/(1− Φ(ηi)). Similarly, ηT = (T − µ)/
√

τ, Q′T = φ′(ηT)/(1−
Φ(ηT)) and QT = φ(ηT)/(1−Φ(ηT)).

The estimates can be updated by[
µ(l+1)
τ(l+1)

]
=

[
µ(l)
τ(l)

]
− J(µ(l), τ(l))

−1
[

µ(l)
τ(l)

]
where

J(µ(l), τ(l)) =

[
l20 l11
l11 l02

]
(µ,τ)=(µ(l),τ(l))

The process repeats until |µl+1 − µl | < ε and |τl+1 − τl | < ε, where ε is pre-fixed as
the tolerance limit.

2.2. Expectation Maximization Algorithm

Here EM algorithm discussed in [15], is employed to obtain the maximum likelihood
estimates of µ and τ for the left-truncated normal distribution. It is an effective procedure
to calculate the MLEs in the case of censored data. The expectation step (E-step) and
maximization step (M-step) are two steps in the progress of the EM algorithm to calculate
estimates for the given model. The former is to compute adequate information of censored
data based on observed data, whereas the latter one is to re-estimate current parameters.

As mentioned earlier, we can only observe J failure units for three cases under consid-
eration. Assume that X = (X1, X2, · · · , XJ) stands for the observed data which is subject
to the left-truncated normal distribution at zero and Z = (Z1, Z2, · · · , ZJ)

⋃
(ZTj , j =

1, 2, · · · , RT) denotes censored data, where Zij, i = 1, 2, · · · , J, j = 1, 2, · · · , RJ is the j-th
unit that was withdrawn at the failure time Xi and ZTj , j = 1, 2,· · · , RT , is the j-th unit
that was withdrawn at the end time Tend in Case II. Thus, we denote the complete data
as C = (X, Z), then the likelihood function of complete data under the GPHCS takes the
form as

Lc(µ, τ) =
J

∏
i=1

[
f (xi)

Ri

∏
j=1

f (zij)

]
RT

∏
j=1

f (zTj)

=(2πτ)−
n
2

(
Φ
(

µ√
τ

))−n
e
− 1

2τ

[
J

∑
i=1

(xi−µ)2+
J

∑
i=1

Ri
∑

j=1
(zij−µ)2+

RT
∑

j=1
(zTj−µ)2

]
.
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Leaving out the constant term, the corresponding log-likelihood function is trans-
formed into

lc(µ, τ) = −n
2

log (τ)− n log Φ(η)− nµ2

2τ
− 1

2τ

(
J

∑
i=1

x2
i +

J

∑
i=1

Ri

∑
j=1

z2
ij +

RT

∑
j=1

z2
Tj

)

+
µ

τ

(
J

∑
i=1

xi +
J

∑
i=1

Ri

∑
j=1

zij +
RT

∑
j=1

zTj

)
.

Following two steps of the EM algorithm implemented in [16], we can get the ‘pseudo-
log-likelihood’ function by utilizing the associated expected values to take place of the
censored data.

E-step: Under the complete data, the ‘pseudo-log-likelihood’ function is

ls(µ, τ) =− n
2

log (τ)− n log Φ(η)− nµ2

2τ
+

µ

τ

 J

∑
i=1

xi +
J

∑
i=1

Ri

∑
j=1

E(zij|zij > xi) +
R∗T

∑
j=1

E(zTj|zTj > T)


− 1

2τ

(
J

∑
i=1

x2
i +

J

∑
i=1

Ri

∑
j=1

E(z2
ij|zij > xi) +

RT

∑
j=1

E(z2
Tj|zTj > T)

)
.

(2)

For i = 1, 2, · · · , J; j = 1, 2, · · · , RJ , the conditional expectations mentioned above are
deduced as

E(zij|zij > xi) = µ +
√

τQi = A(xi, µ(l), τ(l))

E(z2
ij|zij > xi) = µ2 + τ + 2µ

√
τQi + τηiQi = B(xi, µ(l), τ(l)),

(3)

By analogy, for j = 1, 2, · · · , RT ,

E(zTj|zTj > T) = µ +
√

τQT = C(T, µ(l), τ(l))

E(z2
Tj|zTj > T) = µ2 + τ + 2µ

√
τQT + τηTQT = D(T, µ(l), τ(l)).

(4)

where η = µ/
√

τ, ηi = (xi − µ)/
√

τ, ηT = (T − µ)/
√

τ, Qi = φ(ηi)/(1− Φ(ηi)) and
QT = (T − µ)/

√
τ.

By substituting (3) and (4) into (2), the ‘pseudo log-likelihood’ function becomes

ls(µ, τ) =− n
2

log τ − n log Φ(
µ√
τ
)− nµ2

2τ
+

µ

τ

(
J

∑
i=1

xi +
J

∑
i=1

Ri

∑
j=1

A(xi, µ(l), τ(l)) +
RT

∑
j=1

C(T, µ(l), τ(l))

)

− 1
2τ

(
J

∑
i=1

x2
i +

J

∑
i=1

Ri

∑
j=1

B(xi, µ(l), τ(l)) +
RT

∑
j=1

D(T, µ(l), τ(l))

)
.

(5)

M-step: The major purpose of this step is to maximize the ‘pseudo log-likelihood’
function to calculate the next iterate. Let (5) take derivatives with regard to µ and τ
respectively and equal them to zero, the corresponding score equations can be obtained
as below. Suppose that (µ(l), τ(l)) is the l-th iteration estimate of (µ, τ), (µ(l+1), τ(l+1)) is
derived afterwards.

nµ(l+1) + n
√

τ(l)

φ(
µ(l+1)√

τ(l)
)

Φ(
µ(l+1)√

τ(l)
)
−
(

J

∑
i=1

xi +
J

∑
i=1

Ri

∑
j=1

A(xi, µ(l), τ(l)) +
RT

∑
j=1

C(xi, µ(l), τ(l))

)
= 0
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nτ(l+1)−nµ2
(l+1) − nµ(l+1)

√
τ(l+1)

φ(
µ(l+1)√

τ(l+1)
)

Φ(
µ(l+1)√

τ(l+1)
)
+ 2µ(l+1)

(
J

∑
i=1

xi +
J

∑
i=1

Ri

∑
j=1

A(xi, µ(l), τ(l))

+
RT

∑
j=1

C(xi, µ(l), τ(l))

)
−
(

J

∑
i=1

x2
i +

J

∑
i=1

Ri

∑
j=1

B(xi, µ(l), τ(l)) +
RT

∑
j=1

D(xi, µ(l), τ(l))

)
= 0

Next upgrade µ(l) and τ(l) into µ(l+1) and τ(l+1) by soving the equations shown above.
The E-step and M-step continue until the precision satisfies the tolerance limit that is fixed
ahead of time

∣∣∣µ(l+1) − µ(l)

∣∣∣+ ∣∣∣τ(l+1) − τ(l)

∣∣∣ < ε. By that time, the convergence values are
seen as the estimated values of µ and τ based on EM algorithm.

3. Confidence Interval Estimation

In this section, confidence interval estimates are provided for unknown parameters µ
and τ using the MLE-based asymptotic confidence intervals (ACIs), the log-transformed
MLE-based asymptotic confidence intervals (Log-CIs) and bootstrap confidence intervals
(Boot-p CIs).

3.1. Asymptotic Confidence Intervals for Mles

Based on the asymptotic normal property of the MLEs, the asymptotic distribution
of (µ̂M, τ̂M) is (µ̂M, τ̂M) → N2

(
(µ, τ), I−1(µ, τ)

)
, where µ̂M, τ̂M are the MLEs of µ and

τ, I−1(µ, τ) stands for the inverse of the Fisher information matrix. Then the variance-
covariance Fisher information matrix of (µ, τ) is able to obtain theoretically from the
following of Fisher information matrix.

I−1(µ, τ) =

[
E
(
− ∂2l

∂µi∂τ j

)]−1

i + j = 2, i, j = 0, 1, 2 (6)

At times it’s troublesome to figure out the exact Fisher information matrix. Therefore,
I−1
obs(µ̂M, τ̂M) the inverse of the observed Fisher information matrix is employed to make

an estimation of I−1(µ, τ). Here we express the observed Fisher information matrix of
unknown variables µ and τ as the following form.

Iobs(µ, τ) = −


∂2l
∂µ2

∂2l
∂µ∂τ

∂2l
∂τ∂µ

∂2l
∂τ2


(µ,τ)=(µ̂M ,τ̂M)

. (7)

The elements of the matrix(7) are calculated in Section 2.
Subsequently, the asymptotic variance-covariance matrix is derived from

I−1
obs(µ, τ) =

(
Var(µ̂M) Cov(µ̂M, τ̂M)

Cov(τ̂M, µ̂M) Var(τ̂M)

)
=

(
v11 v12

v21 v22

)
. (8)

Based on the matrix (8), the approximate variance of two parameters µ and τ can be
derived, then we can obtain the 100(1− ζ)% ACIs for these two parameters(

µ̂M − Z1−ζ/2
√

v11, µ̂M + Z1−ζ/2
√

v11
)
,
(
τ̂M − Z1−ζ/2

√
v22, τ̂M + Z1−ζ/2

√
v22
)
.

where Z1−ζ/2 satisfies P(X ≤ Z1−ζ/2) = 1 − ζ
2 when X follows the standard

normal distribution.
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3.2. Asymptotic Confidence Intervals for Log-Transformed Mles

Occasionally, the lower bound of ACI is less than zero. To conquer this setback,
the logarithmic transformation and delta method is suggested to make sure that the lower
bound of ACI is nonnegative.

Let α = (µ, τ) denotes the unknown parameter vector, in accordance to [17], the distri-
bution of

log(α̂) =
log(α̂)− log(α)√

Var(log(α̂))

is approximately subject to the standard normal distribution, where α1 = µ and α2 =
τ. Hence, a 100(1− ζ)% logarithmic transformation confidence interval for αi is further
constructed as α̂i

exp
(

Z1−ζ/2
√

Var(log α̂i)
) , α̂i exp(Z1−ζ/2

√
Var(log α̂i))

, i = 1, 2

where α̂i is the MLE of αi and Var(log α̂i) =
Var(α̂i)

α2
i

= I−1(α̂)ii
α2

i
, i = 1, 2.

3.3. Percentile Bootstrap Approach

The methods of asymptotic confidence intervals introduced above are both originated
from the laws of large numbers. They do not perform effectively when faced with a small
sample size. We suggest the percentile bootstrap approach to overcome the drawback and
construct Boot-p CIs for µ and τ as well. According to [18], the following steps can be
implemented to generate the bootstrap samples to develop Boot-p CIs.

Step 1: Calculate the MLEs of two parameters µ and τ from the original generalized
progressive hybrid censored sample.

Step 2: Utilize the same censoring scheme (T, n, m, k, R) and µ̂M and τ̂M to generate a
generalized progressive hybrid censored bootstrap sample.

Step 3: Calculate the bootstrap estimators of µ and τ, denote as µ∗ and τ∗, from the
bootstrap sample of truncated normal distribution.

Step 4: Perform Step 2 and Step 3, N times to obtain a sequence of bootstrap estimators.
Step 5: Sort µ1∗, µ2∗, · · · , µN∗ and τ1∗, τ2∗, · · · , τN∗ in ascending order respectively. Then

we get µ∗(1), µ∗(2), · · · , µ∗(N) and τ∗(1), τ∗(2), · · · , τ∗(N).

Step 6: The 100(1− ζ)% Boot-p CIs of µ and τ are (µ∗(N(ζ/2)), µ∗(N(1−ζ/2))) and (τ∗(N(ζ/2)),
τ∗(N(1−ζ/2))) respectively.

4. Bayes Estimation

Bayes point and interval estimations can be evaluated for unknown variables µ and τ
belong to truncated normal distribution under the GPHCS in this section. All the Bayes
estimations can be deduced theoretically under symmetric and asymmetric loss functions
using Tierney and Kadane approximation and the importance sampling technique.

4.1. Prior and Posterior Distribution

Since a conjugate prior distribution for µ and τ does not exist, we make the same
assumption as in [6] that µ and τ have a conditional bivariate prior distribution as the
following form.

π(µ, τ) = π1(τ)π2(µ|τ)

where

π1(τ) =

(
d
2

)c

Γ(c)

(
1
τ

)c+1
e−

d
2τ
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π2(µ|τ) =
e−

b
2τ (µ−a)2√

2πτ
b Φ(a

√
b√
τ
)

The prior distribution of τ is the inverse Gamma distribution IG(c, d/2). While under
the circumstance that τ is known, µ follows the truncated normal distribution TN(a, τ/b)
when the truncation point is zero. Here a, b, c, and d are treated as the hyper-parameters,
whose domain range from zero to positive infinity.

Therefore the joint prior distribution is written as

π0(µ, τ) ∝
1

Φ
(

a
√

b√
τ

)( 1
τ

)c+ 3
2
e−

1
2τ [b(µ−a)2+d]. (9)

Using (1) and (9), the posterior distribution of the left-truncated normal distribution
TN(µ,τ) at zero is

π(µ, τ|x̃) = P

[
Φ
(

µ√
τ

)]−n

Φ
(

a
√

b√
τ

) (
1
τ

)(c+ 1+J
2 )+1

e
− 1

2τ

[
d+

J
∑

i=1
(xi−µ)2+b(µ−a)2

]

×
J

∏
i=1

(
1−Φ

(
xi − µ√

τ

))Ri

H(µ, τ).

(10)

where P is the normalizing constant satisfying that

P−1 =
∫ ∞

0

∫ ∞

0

[
Φ
(

µ√
τ

)]−n

Φ
(

a
√

b√
τ

) (
1
τ

)c+ 3+J
2

e
− 1

2τ

[
d+

J
∑

i=1
(xi−µ)2+b(µ−a)2

]

×
J

∏
i=1

(
1−Φ

(
xi − µ√

τ

))Ri

H(µ, τ)dµdτ.

To start with, ℵ(µ, τ) denotes a function of µ and τ. So the expectation of ℵ(µ, τ) given
x̃ is shown as

E[ℵ(µ, τ)|x̃] =
∫ ∞

0

∫ ∞
0 ℵ(µ, τ)L(µ, τ|x̃)π0(µ, τ)dµ dτ∫ ∞
0

∫ ∞
0 L(µ, τ|x̃)π0(µ, τ)dµ dτ

. (11)

4.2. Loss Functions

In the Bayesian framework, the Bayes estimate of a function ℵ(µ, τ) can be derived
based on a prescribed loss function. We discuss three kinds of loss functions, namely
squared error, general entropy, and linex loss functions.

• Squared error loss function

Squared error loss (SEL) function is the most universally applicable loss function to
obtain Bayes estimators of unknown parameters. We can express its definition as

Ls(v, v̂) = (v̂−v)2.

In the following cases, we denote v̂ as an estimator of v.
Under this circumstance, the corresponding Bayes estimator v̂s of v can be de-

rived from
vs = E(v|x̃).

Then we can obtain the Bayes estimate ℵ̂(µ, τ)s of ℵ(µ, τ) under SEL function
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ℵ̂(µ, τ)s =

∫ ∞
0

∫ ∞
0 L(µ, τ|x̃)ℵ(µ, τ)π0(µ, τ)dµ dτ∫ ∞
0

∫ ∞
0 L(µ, τ|x̃)π0(µ, τ)dµ dτ

. (12)

• General entropy loss function

The expression of general entropy loss (GEL) function is

Le(v, v̂) =

(
v̂

v

)q
− qlog

(
v̂

v

)
− 1, q 6= 0.

Under this circumstance, the Bayes estimator v̂e of v can be derived from

ve = E(v−q|X)
1
q .

Finally, the Bayes estimate ℵ̂(µ, τ)e of ℵ(µ, τ) results to be the following form based
on GEL function.

ℵ̂(µ, τ)e =

[∫ ∞
0

∫ ∞
0 ℵ(µ, τ)−qL(µ, τ|x̃)π0(µ, τ)dµ dτ∫ ∞

0

∫ ∞
0 L(µ, τ|x̃)π0(µ, τ)dµ dτ

]− 1
q

. (13)

• Linex loss function

The linex loss (LL) function is defined in the form as

Ll(v, v̂) = e}(v̂−v) − }(v̂−v)− 1, } 6= 0.

Under this circumstance, the corresponding Bayes estimator v̂l of v can be de-
rived from

vl = −
1
}E(e−}v |x̃).

Next, the Bayes estimate ℵ̂(µ, τ)l of ℵ(µ, τ) under LL function is computed by

ℵ̂(µ, τ)l = −
1
} log

[∫ ∞
0

∫ ∞
0 e}ℵ(µ,τ)π0(µ, τ)L(µ, τ|x̃)dµ dτ∫ ∞
0

∫ ∞
0 L(µ, τ|x̃)π0(µ, τ)dµ dτ

]
. (14)

Obviously, the Bayes estimatons of unknown parameters µ and τ in three kinds
of loss functions cannot be expressed in closed forms. For this reason, we derive the
Bayes estimations by the means of Tierney and Kadane method, as well as the importance
sampling procedure.

4.3. Tierney and Kadane Method

It is hard to reduce the Bayes estimations into closed forms in the shape of the ratio
of two integrals. Ref. [19] introduced an alternative method to approximate such ratio of
integrals to derive the Bayes estimates of unknown parameters. It is just a simple Taylor
approximation around the maximum a posteriori estimate up to second order (also known
as saddle-point approximation, see [20]). We regard ℵ(µ, τ) as a function of µ and τ. Then
the approximation of Tierney and Kadane approach is summarized as follows.

λ(µ, τ) =
l(µ,τ|X)+log(π0(µ,τ))

n ,

λ∗(µ, τ) = λ(µ, τ) +
log(ℵ(µ,τ))

n

Based on this method, (11) is re-expressed as
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E[ℵ(µ, τ)|x̃] =
∫ ∞

0

∫ ∞
0 enλ∗(µ,τ)dµ dτ∫ ∞

0

∫ ∞
0 enλ(µ,τ)dµ dτ

=

√∣∣Λ∗ℵ∣∣
|Λ| en[λ∗(µ̂λ∗ ,τ̂λ∗ )−λ(µ̂λ ,τ̂λ)]

(15)

where (µ̂λ, τ̂λ) and (µ̂λ∗ , τ̂λ∗) are the maximum points of λ(µ, τ) and λ∗(µ, τ), respectively.
The inverse of the negative Hessian matrix of λ(µ, τ) and λ∗(µ, τ) at (µ̂λ, τ̂λ) and (µ̂λ∗ , τ̂λ∗)
are denoted as Λ and Λ∗ repectively.

For the truncated normal distribution, we have

λ(µ, τ) =
1
n

{
−
(

c +
3
2
+

J
2

)
log(τ)− 1

2τ

[
b(µ− a)2 + d +

J

∑
i=1

(xi − µ)2

]

+
J

∑
i=1

Ri log
(

1−Φ(
xi − µ

n
)

)
− n log

(
Φ(

µ√
τ
)

)
− log

(
Φ(a

√
b
τ
)

)
+ h(µ, τ)

} (16)

Differentiating (16) with regard to µ and τ so as to obtain µ̂λ,τ̂λ, we can obtain the
following equations

∂λ

∂µ
=

1
n

− 1
τ

(
(b + J)µ− ab−

J

∑
i=1

xi

)
+

J

∑
i=1

Ri√
τ

φ(ηi)

1−Φ(ηi)
− n√

τ

φ(η)

Φ(η)
+ h1(µ, τ)

 = 0

∂λ

∂τ
=

1
n

{
−

c + 3
2 + J

2
τ

+
1

2τ2

[
J

∑
i=1

(xi − µ)2 + d + b(µ− a)2

]
+

J

∑
i=1

Riηi
2τ

φ(ηi)

1−Φ(ηi)

nµ

2τ3/2
φ(η)

Φ(η)
+

a
√

b
2τ3/2

φ(a
√

b
τ )

Φ(a
√

b
τ )

+ h2(µ, τ)

 = 0

Thus, we can calculate |Λ|, which is derived from

|Λ| =
[

∂2λ

∂µ2
∂2λ

∂τ2 −
∂2λ

∂µ∂τ

∂2λ

∂τ∂µ

]−1

(µ̂λ ,τ̂λ)

(17)

where
∂2λ

∂µ2 =
1
n

{
− b + J

τ
−

J

∑
i=1

Ri
τ

[
φ′(ηi)

1−Φ(ηi)
+

(
φ(ηi)

1−Φ(ηi)

)2
]

−n
τ

[
φ′(η)

Φ(η)
−
(

φ(η)

Φ(η)

)2
]
+ h20(µ, τ)

}

∂2λ

∂µ∂τ
=

1
n


(b + J)µ− ab−

J
∑

i=1
xi

τ2 −
J

∑
i=1

Riηi

2τ3/2

[
φ′(ηi)

1−Φ(ηi)
+

(
φ(ηi)

1−Φ(ηi)

)2
]

−
J

∑
i=1

Ri

2τ3/2
φ(ηi)

1−Φ(ηi)
+

nµ

4τ2

[
φ′(η)

Φ(η)
−
(

φ(η)

Φ(η)

)2
]
+

n
2τ3/2

φ(η)

Φ(η)
+ h11(µ, τ)

}
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∂2λ

∂τ2 =
1
n

{
c + 3

2 + J
2

τ2 − 1
τ3

[
b(µ− a)2 + d +

J

∑
i=1

(xi − µ)2

]
−

J

∑
i=1

Riη
2
i

4τ2

[
φ′(ηi)

1−Φ(ηi)

+

(
φ(ηi)

1−Φ(ηi)

)2
]
−

J

∑
i=1

3Riηi
4τ2

φ(ηi)

1−Φ(ηi)
− nµ2

4τ3

[
φ′(η)

Φ(η)
−
(

φ(η)

Φ(η)

)2
]

− 3nµ

4τ5/2
φ(η)

Φ(η)
− 3a

√
b

4τ5/2

φ( a
√

b√
τ
)

Φ( a
√

b√
τ
)
− a2b

4τ3

φ′( a
√

b√
τ
)

Φ( a
√

b√
τ
)
−

 φ( a
√

b√
τ
)

Φ( a
√

b√
τ
)

2+ h02(µ, τ)


Note that

∣∣Λ∗ℵ∣∣ and λ∗ℵ depend on ℵ(µ, τ).
For the SEL function ℵ(µ, τ) = µ, then the corresponding function λ∗µs(µ, τ) is ob-

tained as
λ∗µs(µ, τ) = λ(µ, τ) +

log µ

n
In the following, µ̂λ∗ , τ̂λ∗ are obtained by solving the following two equations.

∂λ∗µs

∂µ
=

∂λ

∂µ
+

1
nµ

= 0,
∂λ∗µs

∂τ
=

∂λ

∂τ
= 0

Then we have
∣∣∣Λ∗µs

∣∣∣, which is given by

∣∣∣Λ∗µs

∣∣∣ = [∂2λ∗µs

∂µ2

∂2λ∗µs

∂τ2 −
∂2λ∗µs

∂µ∂τ

∂2λ∗µs

∂τ∂µ

]−1

where
∂2λ∗µs

∂µ2 =
∂2λ

∂µ2 −
1

nµ2 ,
∂2λ∗µs

∂τ∂µ
=

∂2λ∗µs

∂µ∂τ
=

∂2λ

∂µ∂τ
,

∂2λ∗µs

∂τ2 =
∂2λ

∂τ2 .

Using the equations above, the Bayes estimator of µ comes to be

µ̂s =

√√√√∣∣∣Λ∗µs

∣∣∣
|Λ| en[λ∗µs(µ̂λ∗ ,τ̂λ∗ )−λ(µ̂λ ,τ̂λ)]

Going through a similar process, under the same loss function the Bayesian estimator
of τ is achieved.

As for the GEL function, we consider ℵ(µ, τ) = µ−q for µ and then the corresponding
function λ∗µe(µ, τ) is expressed as

λ∗µe(µ, τ) = λ(µ, τ)− q log µ

n

Subsequently, the following equations are solved to obtain (µ̂λ∗ , τ̂λ∗)

∂λ∗µe

∂µ
=

∂λ

∂µ
− q

nµ
= 0,

∂λ∗µe

∂τ
=

∂λ

∂τ
= 0

Then, we have
∣∣∣Λ∗µe

∣∣∣, which is given by

∣∣∣Λ∗µe

∣∣∣ = [∂2λ∗µe

∂µ2

∂2λ∗µe

∂τ2 −
∂2λ∗µe

∂µ∂τ

∂2λ∗µe

∂τ∂µ

]−1

where
∂2λ∗µe

∂µ2 =
∂2λ

∂µ2 +
q

nµ2 ,
∂2λ∗µe

∂τ∂µ
=

∂2λ∗µe

∂µ∂τ
=

∂2λ

∂µ∂τ
,

∂2λ∗µe

∂τ2 =
∂2λ

∂τ2 .
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After that, the Bayes estimator of µ is

µ̂e =

√√√√∣∣∣Λ∗µe

∣∣∣
|Λ| e−

n
q [λ
∗
µe(µ̂λ∗ ,τ̂λ∗ )−λ(µ̂λ ,τ̂λ)]

Likewise, the Bayesian estimator of τ is realized based on this loss function.
When it comes to the LL function, ℵ(µ, τ) = e}µ for µ is under consideration and then

the corresponding function λ∗µl(µ, τ) is given by

λ∗µl(µ, τ) = λ(µ, τ)− }µ

n

Later, µ̂λ∗ and τ̂λ∗ are derived by solving the following equations

∂λ∗µl

∂µ
=

∂λ

∂µ
− }

n
= 0,

∂λ∗µl

∂τ
=

∂λ

∂τ
= 0

Then, we have
∣∣∣Λ∗µl

∣∣∣, which is given by

∣∣∣Λ∗µl

∣∣∣ = [∂2λ∗µl

∂µ2

∂2λ∗µl

∂τ2 −
∂2λ∗µl

∂µ∂τ

∂2λ∗µl

∂τ∂µ

]−1

where
∂2λ∗µl

∂µ2 =
∂2λ

∂µ2 ,
∂2λ∗µl

∂τ∂µ
=

∂2λ∗µl

∂µ∂τ
=

∂2λ

∂µ∂τ
,

∂2λ∗µl

∂τ2 =
∂2λ

∂τ2 .

The Bayes estimator of µ turns into

µ̂l = −
1
} log


√√√√∣∣∣Λ∗µl

∣∣∣
|Λ| en[λ∗µl(µ̂λ∗ ,τ̂λ∗ )−λ(µ̂λ ,τ̂λ)]


Similarly, under the LL function, the Bayesian estimator of τ can be attained.

4.4. Importance Sampling Procedure

Since the T-K method fails to develop the interval estimators, an importance sampling
procedure is proposed to construct Bayesian credible intervals in this part. The importance
sampling procedure is an effective approach to attain Bayes estimates for TN(µ, τ). In the
meanwhile, the HPD intervals can be constructed through this method under generalized
progressive hybrid censored data. Recall that the posterior distribution of µ and τ for µ >
0, τ > 0 is the following form

π(µ, τ|x̃) ∝

[
Φ
(

µ√
τ

)]−n

Φ
(

a
√

b√
τ

) (
1
τ

)(c+ 1+J
2 )+1

e
− 1

2τ

[
d+

J
∑

i=1
(xi−µ)2+b(µ−a)2

]

×
J

∏
i=1

(
1−Φ

(
xi − µ√

τ

))Ri

H(µ, τ).

(18)

After some calculations, (18) is reduced to
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π(µ, τ|x̃) ∝IGτ

c +
J
2

,
1
2

 J

∑
i=1

xi + a2b + d−
(ab +

J
∑

i=1
xi)

2

b + J




TNµ|τ


ab +

J
∑

i=1
xi

b + J
,

τ

b + J

W(µ, τ)

(19)

where

W(µ, τ) = H(µ, τ)
J

∏
i=1

(
1−Φ

(
xi − µ√

τ

))Ri

Φ


ab +

J
∑

i=1
xi√

τ(b + J)


[
Φ
(

µ√
τ

)]−n

Φ
(

a
√

b√
τ

)
Through the importance sampling procedure, we attain the Bayes estimates of µ and

τ. The importance sampling procedure method is briefly described as follows:

Step 1: Generate τ1 from IGτ

c + J
2 , 1

2

 J
∑

i=1
xi + a2b + d−

(ab+
J

∑
i=1

xi)
2

b+J


;

Step 2: Sample µ1 randomly from TNµ|τ

 ab+
J

∑
i=1

xi

b+J , τ
b+J

;

Step 3: Perform Step 1 and Step 2, k times to obtain (µ1, τ1), (µ2, τ2), · · · , (µk, τk)
Step 4: Now the Bayes estimation of ℵ(µ, τ) can be derived as follows.

ℵ̂IS =
∑k

i=1 ℵ(µi, τi)W(µi, τi)

∑k
i=1 W(µi, τi)

Furthermore, the method introduced in [21] is applied to derive the 100(1 − ζ)%
Bayesian credible intervals for the given truncated normal distribution. Assume that 0
< ζ < 1 and ℵζ satisfies P(ℵ(µ, τ) ≤ ℵζ) = ζ. For a prefixed ζ, we attain the estimation of
ℵζ and use it to establish the HPD intervals for ℵ(µ, τ).

First, we substitute ℵ(µi, τi) with ℵi for simplicity and suppose

ωi =
W(µi, τi)

∑k
i=1 W(µi, τi)

, i = 1, · · · , k. (20)

Sort {(ℵ1, ω1), · · · , (ℵk, ωk)} into
{
(ℵ(1), ω(1)), · · · , (ℵ(k), ω(k))

}
, where ℵ(1) < · · · <

ℵ(k) and ℵ(i) is connected with ωi for i = 1, · · · , k. Then the estimator of ℵζ is ℵ̂ζ = ℵ(zζ )
,

where zζ is an integer satisfying

zζ

∑
i=1

ω(i) ≤ ζ ≤
zζ+1

∑
i=1

ω(i) (21)

Hence, a 100(1 − ζ)% Bayesian credible interval of ℵ(µ, τ) can be obtained by
(ℵ̂υ, ˆℵυ+1−ζ) for ν = ω(1), ω(1) + ω(2), · · · , ∑

z(1−ζ)

i=1 ω(i). Eventually, the 100(1− ζ)% HPD
interval of ℵ(µ, τ) is obtained by (ℵ̂ν∗ , ℵ̂ν∗+1−ζ) where ν∗ satisafying

ˆℵν∗+1−ζ − ˆℵν∗ ≤ ˆℵν+1−ζ − ℵ̂ν (22)

for all ν.
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5. Simulation Study
5.1. Simulation

In attempts to analyze the performance of different methods introduced in previous
sections, we utilize R software to conduct the simulation experiments. In light of the
algorithm proposed in [22], a progressive type-II censored sample under any continuous
distribution can be generated. By adopting this method, we can generate a generalized
progressive hybrid censoring sample that is subject to the truncated normal distribution.
Please see Algorithm 1.

Algorithm 1 Generate a generalized progressive hybrid censoring sample from truncated
normal distribution.

1: Pre-assign n,m and the censoring scheme (R1, R2, · · · , Rm).
2: Generate m independent observations W1, W2, · · · , Wm, all of which are subject to the

standard uniform distribution U(0, 1).

3: For pre-fixed censoring scheme, we compute Vi = W
1/(i+∑m

j=(m−i+1) Rj)

i , i = 1, 2, · · · , m.
4: Set Ui = 1−∏m

j=m−i+1 Vj, for i = 1, 2, · · · , m. Then U1, U2, · · · , Um is a progressive
Type-II censored sample with size m from a uniform distribution from zero to one.

5: For known values of parameters µ and τ, the desired progressive Type-II censored
sample out of the truncated normal distribution TN(µ, τ), is Xi = µ +

√
τΦ−1(1−

(1−Ui)Φ( µ√
τ
)), for i = 1, 2, · · · , m, where Φ−1 is the inverse cumulative distribution

function of truncated normal distribution.
6: If T < Xk < Xm, the generalized progressive hybrid censored sample is X =

(X1, X2, · · · , Xk).
7: If Xk < T < Xm, J can be obtained which satisfies XJ < T < XJ+1, the generalized

progressive hybrid censored sample is (X1, X2, · · · , XJ).
8: If Xk < Xm < T, the generalized progressive hybrid censoring sample is

(X1, X2, · · · , Xm).

Without loss of generality, we take µ = 0.5, τ = 1 for diverse values of T, n, m and k to
generate a generalized progressive hybrid censored sample from the left-truncated normal
distribution when truncation point is zero. Meanwhile, two kinds of censoring schemes
are considered, which are:

Scheme I: Rm = n−m, Ri = 0, i = 1, · · · , m− 1.
Scheme II: R1 = n−m, Ri = 0, i = 2, · · · , m.
In point estimation, we compute the MLEs and Bayes estimates. For MLEs, the EM

estimation method is employed to calculate the MLEs of µ and τ, where the nleqslv package
with Broyden method in R software is applied to solve the nonlinear equations in the
maximization step. Besides, the MLEs are derived by the N-R approach for comparative
purposes. This method can be achieved by the function ‘optim’ in R software. Here the true
values of parameters are considered as the initial values for the N-R method and the EM
algorithm. The value of the tolerance limit ε is 0.0001 for all simulations. Tables A1 and A2,
shown in the Appendix A, compare the results of the EM and N-R methods in terms of
average absolute biases (ABs), the associated mean squared errors (MSEs) and average
number of iterations (AIs) until convergence. They are

ABs =
1
N

N

∑
i=1
|v̂i −v|

MSEs =
1
N

N

∑
i=1

(v̂i −v)2.

where N stands for the simulation times, v is the true value, v̂i denotes the i-th estimate
of v.
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Besides, the Bayesian estimates against diverse loss functions including SEL, LL,
and GEL functions are obtained by the means of the T-K method and importance sampling
procedure. In order to appropriate true values better, the values of hyper-parameters
a = 0.05, b = 1, c = 8, d = 0.3 in prior distributions might be a wise choice based on
numerous experimental simulations. The desired estimates are obtained with } = 0.35, 0.45
for the linex loss function. The general entropy loss function is considered with q = 0.8
and q = 1.1 to calculate the relative estimates. The ABs and MSEs are derived to evaluate
the accuracy of the estimations. All the estimates are derived by replicating 1000 times in
each case. The simulation results, Tables A3 and A4, are shown in the Appendix A.

From these tables, some conclusions can be drawn:

(1) There is no significant difference between the EM algorithm and N-R algorithm in
terms of ABs and MSEs.

(2) The N-R method takes fewer steps until convergence than the EM.
(3) The results of } = 0.35 show a bit more precise than those of } = 0.45 for the linex

loss function.
(4) q = 0.8 is a wiser choice than q = 1.1 when the general entropy loss function is

under consideration.
(5) Set T, n, m and k invariant, Scheme II in which the censored units happen when the

first failure is observed shows a more precise estimate than Scheme I for most cases.
(6) Between Bayes estimation methods, neither the TK method nor the importance sam-

pling technique performs consistently better since in some cases T-K estimates behave
better and in some cases important sampling estimates perform better.

(7) When the sample size n increases, the ABs of all estimates show downward trends.
(8) When T, n and m keep invariable, the behaviors of both MLEs and Bayes estimates

become better concerning the values of MSEs and ABs with the larger values of k.
(9) When k, n and m keep invariable, the ABs and MSEs of all estimates fluctuate slightly,

and the tendency is not significant with the growth of T.
(10) When T, n and k keep invariable, both MLEs and Bayes estimates tend to have smaller

MSEs with the larger values of m.
(11) Overall, the Bayes estimates seem to be marginally better compared to the MLEs.

In interval estimation, we derive 95% confidence intervals (CIs) of parameters using
the MLEs, log-transformed MLEs, Boot-p approach and 95% HPD intervals for Scheme I
and Scheme II. We compare the coverage probabilities (CPs) and average lengths (ALs) of
these interval estimates. The simulation results are reported in Tables A5 and A6, shown in
the Appendix A.

From these table, some conclusions are summarized as follows.

(1) For confidence intervals, the Log-CIs perform much better than the ACIs in the sense
of having higher coverage probabilities.

(2) When the sample size n gets larger, the CPs of all interval estimates tend to decrease.
(3) Boot-p CIs show higher coverage probabilities and narrower interval lengths than the

ACIs and Log-CIs when the sample size is small.
(4) With n, m, and k keeping invariant, the CPs and ALs of all estimates fluctuate slightly

and the tendency is not significant with an increase of T.
(5) The HPD intervals are slightly better than other interval estimates based on the CPs.
(6) Scheme II usually performs better than Scheme I with regard to the CPs.

5.2. Real Data Analysis

One authentic example has been considered to demonstrate the performance of the
proposed estimation approaches in this section. The data set is obtained from [23] (Lawless
1982, page 288), which shows the number of million revolutions before 23 ball bearings
had failed. The data are given in Table 1 and shown as a histogram in Figure 3.
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Table 1. The number of revolutions (in millions) before failure of 23 ball bearings.

0.1788 0.2892 0.3300 0.4152 0.4212 0.4560 0.4840 0.5184
0.5196 0.5412 0.5556 0.6780 0.6864 0.6864 0.6888 0.8412
0.9312 0.9864 1.0512 1.0584 1.2792 1.2804 1.7340

Figure 3. Histogram of the real data set.

Prior to analyzing the example, one question that may arise is whether the data set
comes from the truncated normal distribution. In order to validate the hypothesis, we fit the
truncated normal distribution to the data set, competing with folded normal distribution
(FN) and half-normal distribution (HN). The associated probability density functions of
FN and HN for x > 0 are respectively written as follows.

f (x; µ, τ) =
e−

(x−µ)2
2τ + e−

(x+µ)2
2τ

√
2πτ

, x > 0; µ > 0, τ > 0.

and

f (x; τ) =

√
2

πτ
e−

x2
2τ , x > 0; τ > 0.

In order to assess the goodness of fit of these given models, we take advantage of
− log(L), and Kolmogorov-Smirnov (K-S) statistic, defined by Dn = sup

x
|Fn(x)− F(x)|,

where L is the maximum of the likelihood function, n is the number of observations,
Fn(x) is the cumulative distribution function of the sample set, and F(x) is the assumed
cumulative distribution function. These estimated values are shown in Table 2. Under the
complete data, the classical estimates of these given distributions are obtained additionally.
In view of the fact that the truncated normal distribution has the lowest values for K-S
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and − log(L) statistics, it is reasonable to say we have no proof leading to rejection of the
null hypothesis.

Then the following generalized progressive hybrid censored samples can be generated
by setting m = 18, and R1 = 5, R2 = · · · = R18 = 0. In this example, we take T = 1, k = 16
for Case I, T = 1, k = 12 for Case II, as well as T = 1.8, k = 12 for Case III.

Table 2. Estimated values of various criteria for different distributions.

Distribution µ τ − log(L) K-S

TN 0.68079 0.16436 8.80069 0.16832
FN 0.71401 0.14623 9.26571 0.17858
HN - 0.65601 11.84542 0.26135

Table 3 presents the exact values of point estimations of µ and τ under the general-
ized progressive hybrid censored sample. The N-R algorithm and the EM algorithm are
employed to derive the MLEs of parameters of the truncated normal distribution. We take
the estimates under the complete data for initializing these two methods. For Bayes estima-
tions, non-informative prior distributions, a = b = c = d = 0, are applied to compute the
exact values under symmetric and asymmetric loss functions based on T-K approximation
and importance sampling procedure. We choose q = 0.8 and q = 1.1 for general entropy
loss function, and fix } = 0.35 and } = 0.45 for the linex loss function. Table 4 shows
the results of the 95% CIs and HPD intervals of unknown parameters µ and τ. As can be
seen from the tables, one can notice that the results of MLEs, Bayes estimates under SEL
function and importance sampling procedure are quite close to each other.

Table 3. Point estimations of the real dataset.

Case Parameter
MLE MLE

SEL
GEL LL

IS
(N-R) (EM) q = 0.8 q = 1.1 } = 0.35 } = 0.45

I µ 0.80462 0.72634 0.71307 0.64764 0.55900 1.88966 1.88966 0.78965
τ 0.12125 0.14501 0.09444 0.09462 0.04257 1.11628 1.16278 0.14589

II µ 0.78957 0.71985 0.69074 0.81490 0.75648 1.31132 1.41716 0.75745
τ 0.09959 0.13672 0.11179 0.22141 0.13891 1.04535 1.05878 0.10030

III µ 0.80895 0.73029 0.75061 0.79298 0.73061 1.29832 1.39946 0.79024
τ 0.13780 0.16331 0.24271 0.30696 0.21909 1.06950 1.09043 0.17267

Table 4. Interval estimations of the real dataset.

Case Parameter ACIs Log-CIs HPD Intervals Boot-p CIs

I µ (0.63866, 0.97059) (0.63854, 0.98013) (0.64351, 0.95027) (0.63901, 0.96593)
τ (0.02390, 0.21861) (0.02407, 0.21534) (0.02519, 0.20918) (0.02432, 0.21568)

II µ (0.63542, 0.94373) (0.62853, 0.93851) (0.64864, 0.93061) (0.63854, 0.94837)
τ (0.02336, 0.18983) (0.02161, 0.17734) (0.02053, 0.17918) (0.02241, 0.17782)

III µ (0.63058, 0.98731) (0.63509, 0.98602) (0.63837, 0.98069) (0.64013, 0.98165)
τ (0.03544, 0.24016) (0.03641, 0.24505) (0.04068, 0.24033) (0.03871, 0.24186)

6. Conclusive Remarks

In the paper, we address the problem of making statistical inference for the truncated
normal distribution when the truncation point is zero with the generalized progressive
hybrid censored data. The N-R and EM algorithms are applied to calculate the MLEs of
unknown parameters. The associated estimates are computed through numerous simula-
tions by taking the true unknown parameters as an initial guess. Further, making use of
the asymptotic normality property of the maximum likelihood estimator, we construct the
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95% ACIs as well. As for the small sample size, Boot-p method is suggested to develop the
Boot-p intervals. Considering different kinds of loss functions, we derive Bayes estimates
through T-K approximation and the importance sampling procedure. The latter one is
also employed to construct the Bayesian credible intervals. Extensive simulations are
conducted to examine how the proposed approaches work. It is notable that if proper prior
information is available on unknown parameters then corresponding Bayes estimates are
superior to respective MLEs. Among intervals, Bayesian credible intervals are slightly
better than other invertals. One authentic example is studied for illustrative purposes.
The considered model is found to be suitable for this case and the proposed approaches
perform well.

While we consider the statistical inference of the truncated normal distribution at zero
in this paper, the proposed approaches can be extended to the doubly truncated normal
distribution and the singly truncated normal distribution at any fixed truncation point.
The statistical inference on the doubly truncated distribution with unknown truncation
points in [24] provides a good starting point for discussion and further research. Extensive
work needs to be carried out in this direction.
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Appendix A. Simulation Results

Table A1. Comparisons between EM and N-R algorithms with µ = 0.5, τ = 1 when T = 0.4.

n m k Sch Method ABs(µ) ABs(τ) MSEs(µ) MSEs(τ) AIs

30 20 16 I EM 0.1766 0.3179 0.0503 0.1563 21.35
N-R 0.1708 0.3003 0.0455 0.1385 7.39

II EM 0.1737 0.3053 0.0473 0.1459 21.03
N-R 0.1814 0.2723 0.0530 0.1168 6.73

18 I EM 0.1641 0.2802 0.0423 0.1254 20.30
N-R 0.1644 0.2957 0.0421 0.1349 7.11

II EM 0.1642 0.2957 0.0434 0.1298 20.57
N-R 0.1786 0.2654 0.0508 0.1099 6.43

30 25 16 I EM 0.1717 0.2992 0.0458 0.1312 21.35
N-R 0.1732 0.3073 0.0477 0.1459 7.43

II EM 0.1696 0.3160 0.0453 0.1520 21.37
N-R 0.1718 0.2790 0.0466 0.1220 6.96

18 I EM 0.1672 0.2885 0.0438 0.1253 20.68
N-R 0.1627 0.2957 0.0420 0.1349 7.13

II EM 0.1614 0.2929 0.0417 0.1324 20.81
N-R 0.1713 0.2779 0.0453 0.1168 6.79

60 50 38 I EM 0.1151 0.2035 0.0205 0.0649 19.08
N-R 0.1152 0.1991 0.0203 0.0614 6.58

II EM 0.1159 0.2004 0.0213 0.0616 18.85
N-R 0.1220 0.1856 0.0230 0.0552 6.27

42 I EM 0.1129 0.1854 0.0196 0.0538 18.58
N-R 0.1092 0.1809 0.0189 0.0529 6.30

II EM 0.1090 0.1862 0.0184 0.0534 18.73
N-R 0.1228 0.1847 0.0234 0.0531 6.12
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Table A1. Cont.

n m k Sch Method ABs(µ) ABs(τ) MSEs(µ) MSEs(τ) AIs

60 55 38 I EM 0.1138 0.1945 0.0207 0.0595 18.99
N-R 0.1168 0.1964 0.0218 0.0597 6.54

II EM 0.1182 0.2081 0.0220 0.0666 19.14
N-R 0.1080 0.1779 0.0185 0.0497 6.17

42 I EM 0.1089 0.1867 0.0185 0.0539 18.63
N-R 0.1095 0.1864 0.0192 0.0552 6.35

II EM 0.1043 0.1820 0.0173 0.0502 18.62
N-R 0.1099 0.1802 0.0195 0.0502 6.17

100 80 62 I EM 0.0893 0.1575 0.0123 0.0384 18.21
N-R 0.0893 0.1549 0.0126 0.0374 6.25

II EM 0.0889 0.1536 0.0125 0.0367 18.14
N-R 0.0978 0.1505 0.0148 0.0349 5.99

70 I EM 0.0837 0.1463 0.0109 0.0338 17.87
N-R 0.0852 0.1452 0.0115 0.0332 6.11

II EM 0.0851 0.1456 0.0114 0.0329 18.05
N-R 0.0911 0.1399 0.0128 0.0313 5.84

100 90 62 I EM 0.0911 0.1547 0.0132 0.3666 18.29
N-R 0.0883 0.1547 0.0124 0.0367 6.27

II EM 0.0851 0.1563 0.0112 0.0386 18.17
N-R 0.0902 0.1504 0.0126 0.036 6.07

70 I EM 0.0872 0.1435 0.0118 0.0315 17.92
N-R 0.0834 0.1424 0.0108 0.0316 6.1

II EM 0.0818 0.1462 0.0109 0.0334 17.83
N-R 0.0869 0.1373 0.0119 0.0303 5.95

Table A2. Comparisons between EM and N-R algorithms with µ = 0.5, τ = 1 when T = 0.6.

n m k Sch Method ABs(µ) ABs(τ) MSEs(µ) MSEs(τ) AIs

30 20 16 I EM 0.1744 0.3039 0.0478 0.1360 21.60
N-R 0.1719 0.3043 0.0459 0.1435 7.37

II EM 0.1739 0.3064 0.0476 0.1440 20.76
N-R 0.1857 0.2737 0.0552 0.1174 6.75

18 I EM 0.1648 0.2685 0.0432 0.1102 20.25
N-R 0.1671 0.3006 0.0436 0.1402 7.18

II EM 0.1698 0.2952 0.0445 0.1367 20.79
N-R 0.1828 0.2553 0.0522 0.1001 6.44

30 25 16 I EM 0.1748 0.3159 0.0487 0.1516 21.17
N-R 0.1639 0.3088 0.0427 0.1442 7.41

II EM 0.1796 0.3119 0.0513 0.1538 21.24
N-R 0.1678 0.2768 0.0438 0.1175 6.76

18 I EM 0.1678 0.2854 0.0432 0.1288 20.42
N-R 0.1687 0.2865 0.0436 0.1294 6.78

II EM 0.1614 0.2929 0.0417 0.1324 20.81
N-R 0.1713 0.2779 0.0453 0.1168 6.79

60 50 38 I EM 0.1119 0.1979 0.0199 0.0601 18.95
N-R 0.1125 0.2035 0.0199 0.0633 6.61

II EM 0.1127 0.1925 0.0201 0.0570 18.72
N-R 0.1219 0.1864 0.0231 0.0553 6.30

42 I EM 0.1088 0.1866 0.0187 0.0548 18.46
N-R 0.1101 0.1833 0.0186 0.0521 6.32

II EM 0.1098 0.1846 0.0184 0.0545 18.53
N-R 0.1227 0.1756 0.0229 0.0493 6.06
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Table A2. Cont.

n m k Sch Method ABs(µ) ABs(τ) MSEs(µ) MSEs(τ) AIs

60 55 38 I EM 0.1127 0.1922 0.0196 0.0562 18.76
N-R 0.1173 0.2017 0.0217 0.0628 6.59

II EM 0.1152 0.1999 0.0205 0.0624 18.99
N-R 0.1187 0.1869 0.0220 0.0544 6.44

42 I EM 0.1094 0.1857 0.0183 0.0541 18.50
N-R 0.1115 0.1832 0.0199 0.0516 6.30

II EM 0.1127 0.1872 0.0197 0.0562 19.01
N-R 0.1129 0.1842 0.0198 0.0542 6.21

100 80 62 I EM 0.0903 0.1557 0.0131 0.0379 18.12
N-R 0.0873 0.1582 0.0122 0.0382 6.28

II EM 0.0876 0.1603 0.0121 0.0401 18.36
N-R 0.0950 0.1540 0.0141 0.0374 6.06

70 I EM 0.0864 0.1454 0.0116 0.0325 17.88
N-R 0.0857 0.1396 0.0118 0.0309 6.10

II EM 0.0898 0.1416 0.0125 0.0317 17.80
N-R 0.0900 0.1331 0.0128 0.0280 5.81

100 90 62 I EM 0.0934 0.1513 0.0135 0.0362 17.99
N-R 0.0885 0.1581 0.0124 0.0398 6.26

II EM 0.0839 0.1527 0.0110 0.0370 18.09
N-R 0.0930 0.1496 0.0136 0.0347 6.14

70 I EM 0.0871 0.1421 0.0118 0.0313 17.67
N-R 0.0861 0.1472 0.0163 0.0335 6.12

II EM 0.0826 0.1393 0.0108 0.0308 17.81
N-R 0.0836 0.1404 0.0111 0.0312 5.95

Table A3. ABs and MSEs (within bracket) of different estimates with µ = 0.5, τ = 1 when T = 0.4.

n m k Sch Par SEL
LL GEL

IS
} = 0.35 } = 0.45 q = 0.8 q = 1.1

30 20 16 I µ 0.7893 0.1661 0.3953 0.1674 0.1782 0.0951
(0.6679) (0.0398) (0.2963) (0.0646) (0.0775) (0.0028)

τ 0.1953 0.1530 0.1961 0.0811 0.3620 0.1523
(0.0496) (0.0530) (0.0403) (0.0127) (0.1515) (0.0157)

II µ 0.7730 0.1647 0.3324 0.1504 0.1873 0.0947
(0.6410) (0.0365) (0.0915) (0.0533) (0.0802) (0.0072)

τ 0.1677 0.1529 0.1961 0.0984 0.2404 0.1505
(0.0553) (0.0328) (0.0402) (0.0191) (0.0718) (0.0153)

18 I µ 0.7662 0.1627 0.3800 0.1423 0.1709 0.0942
(0.6308) (0.0856) (0.2318) (0.0275) (0.0350) 0.0029

τ 0.1710 0.1719 0.1848 0.0730 0.0906 0.1570
(0.0398) (0.0237) (0.0357) (0.0144) (0.0158) (0.0126)

II µ 0.6588 0.1476 0.2354 0.1422 0.1705 0.0891
(0.4745) (0.0304) (0.1213) (0.0271) (0.0339) (0.0022)

τ 0.1563 0.1449 0.1838 0.0698 0.0412 0.1525
(0.0384) (0.0283) (0.0322) (0.0138) (0.0112) (0.0163)
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Table A3. Cont.

n m k Sch Par SEL
LL GEL

IS
} = 0.35 } = 0.45 q = 0.8 q = 1.1

30 25 16 I µ 0.7470 0.1170 0.3326 0.1432 0.1674 0.0812
(0.5952) (0.0175) (0.2722) (0.0441) (0.0646) (0.0037)

τ 0.1980 0.1552 0.1945 0.0730 0.0906 0.1661
(0.0538) (0.0483) (0.0396) (0.0144) (0.0158) (0.0155)

II µ 0.6277 0.1008 0.2710 0.1415 0.1643 0.0638
(0.4396) (0.0167) (0.2059) (0.0413) (0.0636) (0.0031)

τ 0.1675 0.1520 0.1761 0.0731 0.1167 0.1545
(0.0383) (0.0472) (0.0240) (0.0119) (0.0246) (0.0049)

18 I µ 0.5822 0.0538 0.2258 0.1408 0.1664 0.0576
(0.3814) (0.0042) (0.1235) (0.0256) (0.0337) (0.0028)

τ 0.1815 0.1405 0.1837 0.0712 0.0482 0.1583
(0.0445) (0.0284) (0.0352) (0.0117) (0.0131) (0.0130)

II µ 0.5082 0.0557 0.1992 0.1402 0.1658 0.0529
(0.3019) (0.0040) (0.2391) (0.0250) (0.0333) (0.0082)

τ 0.1504 0.1403 0.1473 0.0709 0.0434 0.1437
(0.0372) (0.0306) (0.0309) (0.0111) (0.0124) (0.0099)

60 50 38 I µ 0.7215 0.1208 0.3517 0.0958 0.1689 0.0911
(0.5395) (0.0184) (0.1457) (0.0232) (0.0457) (0.0419)

τ 0.0987 0.0940 0.2446 0.0212 0.0388 0.0989
(0.0146) (0.0121) (0.0643) (0.0070) (0.0139) (0.0752)

II µ 0.7119 0.1192 0.3503 0.0903 0.1567 0.0853
(0.5248) 0.0204 (0.1447) (0.0145) (0.0443) (0.0420)

τ 0.0901 0.0860 0.1620 0.0210 0.0382 0.1423
(0.0221) (0.0111) (0.0312) (0.0072) (0.0133) (0.0704)

42 I µ 0.6014 0.1207 0.2842 0.0891 0.1095 0.0650
(0.3794) (0.0196) (0.1041) (0.0226) (0.0244) (0.0371)

τ 0.0979 0.0994 0.1992 0.0114 0.0361 0.0600
(0.0147) (0.0025) (0.0444) (0.0067) (0.0149) (0.0599)

II µ 0.5698 0.1121 0.2793 0.0857 0.0901 0.0623
(0.3432) (0.0278) (0.1003) (0.0257) (0.0294) (0.0291)

τ 0.0906 0.0886 0.1072 0.0111 0.0359 0.0344
(0.0233) (0.0050) (0.0176) (0.0065) (0.0147) (0.0658)

60 55 38 I µ 0.7191 0.1048 0.3474 0.0750 0.0958 0.0835
(0.5353) (0.0361) (0.1427) (0.0190) (0.0230) (0.0219)

τ 0.0982 0.0892 0.2418 0.0195 0.0321 0.0929
(0.0151) (0.0104) (0.0628) (0.0067) (0.0143) (0.0731)

II µ 0.6193 0.0936 0.3391 0.0670 0.0678 0.0761
(0.4036) (0.0347) (0.1357) (0.0196) (0.0196) (0.0216)

τ 0.0978 0.0854 0.1627 0.0205 0.0359 0.0284
(0.0178) (0.0074) (0.0317) (0.0068) (0.0211) (0.0616)

42 I µ 0.6007 0.0961 0.1976 0.0357 0.0839 0.0726
(0.3786) (0.0124) (0.0639) (0.0185) (0.0217) (0.0458)

τ 0.0933 0.0929 0.1970 0.0107 0.0314 0.0569
(0.0135) (0.0013) (0.0433) (0.0062) (0.0138) (0.0594)

II µ 0.4617 0.1122 0.1879 0.0390 0.0820 0.0582
(0.2329) (0.0287) (0.0597) (0.0145) (0.0215) (0.0280)

τ 0.0922 0.0885 0.1072 0.0195 0.0322 0.0649
(0.0130) (0.0019) (0.0176) (0.0066) (0.0211) (0.0142)
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Table A3. Cont.

n m k Sch Par SEL
LL GEL

IS
} = 0.35 } = 0.45 q = 0.8 q = 1.1

100 80 62 I µ 0.6573 0.0914 0.2592 0.0942 0.1374 0.0889
(0.4440) (0.0158) (0.0635) (0.0237) (0.0370) (0.0128)

τ 0.0980 0.0719 0.3620 0.1224 0.1762 0.0783
(0.0129) (0.0068) (0.1515) (0.0673) (0.0394) (0.0232)

II µ 0.5449 0.0903 0.1854 0.0933 0.1131 0.0790
(0.3092) (0.0158) (0.0371) (0.0227) (0.0328) (0.0198)

τ 0.3153 0.0586 0.2404 0.1223 0.1400 0.0693
(0.1125) (0.0030) (0.0718) (0.0626) (0.0398) (0.0102)

70 I µ 0.5270 0.0606 0.2337 0.0866 0.1274 0.0680
(0.2887) (0.0113) (0.0771) (0.0172) (0.0399) (0.0135)

τ 0.0766 0.0452 0.0906 0.1219 0.1624 0.0780
(0.0089) (0.0029) (0.0158) (0.0673) (0.0396) (0.0235)

II µ 0.4108 0.0604 0.1592 0.0741 0.1244 0.0675
(0.1809) (0.0117) (0.0763) (0.0160) (0.0350) (0.0159)

τ 0.2102 0.0438 0.0412 0.0972 0.1377 0.0686
(0.0540) (0.0008) (0.0112) (0.0169) (0.0369) (0.0235)

100 90 62 I µ 0.6531 0.0873 0.2393 0.0980 0.1303 0.0897
(0.4416) (0.0151) (0.0797) (0.0169) (0.0359) (0.0118)

τ 0.0949 0.0610 0.1167 0.6563 0.1721 0.0789
(0.0125) (0.0029) (0.0246) (0.4456) (0.0395) (0.0227)

II µ 0.4123 0.0758 0.2012 0.2125 0.1255 0.0716
(0.1837) (0.0122) (0.0714) (0.1698) (0.0360) (0.0240)

τ 0.1182 0.0510 0.0896 0.1402 0.1669 0.0685
(0.0212) (0.0030) (0.0154) (0.0851) (0.0390) (0.0212)

70 I µ 0.5270 0.0539 0.1512 0.0955 0.1133 0.0676
(0.2800) (0.0053) (0.0880) (0.0169) (0.0898) (0.0232)

τ 0.0745 0.0488 0.0482 0.1311 0.1727 0.0728
(0.0084) (0.0008) (0.0131) (0.0766) (0.0947) (0.0236)

II µ 0.2639 0.0298 0.0921 0.0909 0.1266 0.0545
(0.0827) (0.0241) (0.0299) (0.0170) (0.0929) (0.0211)

τ 0.0721 0.0421 0.0398 0.1266 0.1548 0.0669
(0.0087) (0.0008) (0.0102) (0.0668) (0.0935) (0.0237)

Table A4. ABs and MSEs (within bracket) of different estimates with µ = 0.5, τ = 1 when T = 0.6.

n m k Sch Par SEL
LL GEL

IS
} = 0.35 } = 0.45 q = 0.8 q = 1.1

30 20 16 I µ 0.7811 0.1161 0.3833 0.1537 0.1738 0.0949
(0.6541) (0.0172) (0.2961) (0.0531) (0.0731) (0.0029)

τ 0.1956 0.1554 0.1985 0.0740 0.0896 0.1697
(0.0500) (0.0323) (0.0433) (0.0117) (0.0154) (0.0182)

II µ 0.6270 0.1147 0.3802 0.1388 0.0896 0.0905
(0.4396) (0.0167) (0.2438) (0.0372) (0.0154) (0.0028)

τ 0.1675 0.1518 0.1957 0.0653 0.0398 0.1687
(0.0549) (0.0321) (0.0400) (0.0107) (0.0102) (0.0164)

18 I µ 0.6715 0.0551 0.2316 0.1476 0.1719 0.0889
(0.4910) (0.0039) (0.1054) (0.0488) (0.0728) (0.0025)

τ 0.1831 0.1403 0.1973 0.0381 0.0526 0.1573
(0.0455) (0.0306) (0.0420) (0.0091) (0.0192) (0.0127)

II µ 0.5067 0.0556 0.1959 0.1466 0.1700 0.0805
(0.3001) (0.0041) (0.1296) (0.0412) (0.0711) (0.0050)

τ 0.1815 0.1402 0.1867 0.1661 0.0420 0.1547
(0.0422) (0.0299) (0.0365) (0.0381) (0.0112) (0.0123)
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Table A4. Cont.

n m k Sch Par SEL
LL GEL

IS
} = 0.35 } = 0.45 q = 0.8 q = 1.1

30 25 16 I µ 0.7793 0.1895 0.2297 0.1388 0.1619 0.0629
(0.6508) (0.0456) (0.1262) (0.0372) (0.0638) (0.0074)

τ 0.1975 0.1625 0.1846 0.0718 0.1194 0.1557
(0.0508) (0.0394) (0.0356) (0.0119) (0.0263) (0.0122)

II µ 0.5042 0.1608 0.1709 0.1385 0.1610 0.0605
(0.2968) (0.0840) (0.1049) (0.0372) (0.0638) (0.0077)

τ 0.1442 0.5328 0.1466 0.0026 0.0911 0.1241
(0.0365) (0.3006) (0.0227) (0.0075) (0.0158) (0.0046)

18 I µ 0.6717 0.1749 0.2249 0.1167 0.1592 0.0575
(0.4918) (0.0328) (0.1260) (0.0246) (0.0576) (0.0159)

τ 0.1759 0.1419 0.1937 0.0759 0.0534 0.1592
(0.0422) (0.0291) (0.0392) (0.0121) (0.0124) (0.0113)

II µ 0.4176 0.1583 0.3992 0.1097 0.1564 0.0317
(0.2249) (0.0426) (0.2387) (0.0326) (0.0573) (0.0373)

τ 0.1405 0.1358 0.1419 0.0458 0.0379 0.1433
(0.0363) (0.0238) (0.0262) (0.0099) (0.0110) (0.0096)

60 50 38 I µ 0.7202 0.1193 0.3516 0.0945 0.1918 0.0862
(0.5371) 0.0203 (0.1445) (0.0231) (0.0979) (0.0416)

τ 0.0999 0.0941 0.2423 0.0238 0.0384 0.0451
(0.0151) (0.0124) (0.0631) (0.0071) (0.0149) (0.0689)

II µ 0.7103 0.1182 0.3491 0.0947 0.1605 0.8068
(0.5229) 0.0190 (0.1432) (0.0239) (0.0283) (0.0415)

τ 0.0975 0.0851 0.0602 0.0236 0.0379 0.0612
(0.0149) (0.0110) (0.0102) (0.0070) (0.0105) (0.0677)

42 I µ 0.6029 0.1275 0.2732 0.0960 0.1700 0.0726
(0.3818) 0.0104 (0.0975) (0.0292) (0.0901) (0.1899)

τ 0.0912 0.0987 0.2011 0.0106 0.0370 0.0588
(0.0134) (0.0103) (0.0451) (0.0065) (0.0140) (0.0700)

II µ 0.5708 0.1129 0.2700 0.0820 0.1698 0.0562
(0.3435) 0.0274 (0.0945) (0.0215) (0.0900) (0.0149)

τ 0.0910 0.0884 0.0324 0.0250 0.0396 0.0612
(0.0112) (0.0267) (0.0091) (0.0059) (0.0230) (0.0834)

60 55 38 I µ 0.7190 0.1046 0.3471 0.0773 0.1534 0.0719
(0.5364) 0.0361 (0.1421) (0.0249) (0.0398) (0.0210)

τ 0.1002 0.0892 0.2431 0.0197 0.0320 0.0808
(0.0149) (0.0259) (0.0634) (0.0066) (0.0143) (0.0777)

II µ 0.6198 0.0935 0.3414 0.0903 0.1315 0.6755
(0.4035) 0.0448 (0.1385) (0.0245) (0.0326) (0.0203)

τ 0.0976 0.0846 0.1618 0.0207 0.0320 0.0899
(0.0142) (0.0047) (0.0383) (0.0066) (0.0143) (0.0594)

42 I µ 0.6000 0.1260 0.1941 0.0793 0.1698 0.0713
(0.3784) 0.0124 (0.0604) (0.0251) (0.0913) (0.0478)

τ 0.0912 0.0927 0.1942 0.0101 0.0315 0.0856
(0.0134) (0.0271) (0.0430) (0.0064) (0.0137) (0.0872)

II µ 0.4604 0.1124 0.1933 0.0529 0.0659 0.0376
(0.2308) 0.0280 (0.0595) (0.0222) (0.0187) (0.0146)

τ 0.0911 0.0884 0.1080 0.0187 0.0529 0.1554
(0.0129) (0.0201) (0.0180) (0.0066) (0.0215) (0.0799)
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Table A4. Cont.

n m k Sch Par SEL
LL GEL

IS
} = 0.35 } = 0.45 q = 0.8 q = 1.1

100 80 62 I µ 0.6559 0.0885 0.2590 0.0987 0.1269 0.0893
(0.4429) (0.0153) (0.1089) (0.0169) (0.0993) (0.0120)

τ 0.0920 0.0946 0.0896 0.1354 0.1648 0.0856
(0.0137) (0.0062) (0.0154) (0.0657) (0.0938) (0.0209)

II µ 0.5476 0.0710 0.1893 0.0882 0.1227 0.0813
(0.3123) (0.0111) (0.0394) (0.0160) (0.0915) (0.0199)

τ 0.3132 0.0932 0.0676 0.1232 0.1550 0.0725
(0.1115) (0.0042) (0.0172) (0.0672) (0.0970) (0.0215)

70 I µ 0.5263 0.0698 0.2399 0.0997 0.1233 0.0732
(0.2883) (0.0100) (0.1005) (0.0157) (0.0925) (0.0224)

τ 0.0782 0.0590 0.0526 0.1332 0.1745 0.0780
(0.0091) (0.0053) (0.0192) (0.0660) (0.0944) (0.0234)

II µ 0.4096 0.0695 0.1228 0.0838 0.1021 0.0679
(0.1797) (0.0109) (0.0373) (0.0157) (0.0895) (0.0161)

τ 0.2091 0.0371 0.0420 0.1114 0.1507 0.0690
(0.0545) (0.0008) (0.0112) (0.0683) (0.0943) (0.0235)

100 90 62 I µ 0.6549 0.0543 0.2290 0.0800 0.1315 0.0892
(0.4404) (0.0054) (0.0737) (0.0150) (0.0920) (0.0121)

τ 0.0977 0.0668 0.1194 0.1203 0.1690 0.0771
(0.0130) (0.0043) (0.0263) (0.0675) (0.0952) (0.0240)

II µ 0.4217 0.0423 0.2023 0.0945 0.1239 0.0720
(0.1917) (0.0078) (0.0812) (0.0164) (0.0994) (0.0236)

τ 0.0732 0.0582 0.0911 0.1451 0.1567 0.0726
(0.0087) (0.0010) (0.0158) (0.0644) (0.0968) (0.0211)

70 I µ 0.5258 0.0411 0.1542 0.0845 0.1307 0.0683
(0.2854) (0.0075) (0.0968) (0.0579) (0.0906) (0.0237)

τ 0.0738 0.0363 0.0534 0.1285 0.1695 0.0634
(0.0080) (0.0008) (0.0124) (0.0666) (0.0952) (0.0239)

II µ 0.2537 0.0318 0.0867 0.0794 0.1248 0.0664
(0.0763) (0.0004) (0.0285) (0.0099) (0.0938) (0.0239)

τ 0.1168 0.0210 0.0379 0.1125 0.1616 0.0689
(0.0208) (0.0016) (0.0110) (0.0682) (0.0390) (0.0239)

Table A5. CPs and ALs (within bracket) of 95% CIs for the parameters with µ = 0.5, τ = 1, when T = 0.4.

n m k Sch
ACIs Log-CIs Boot-p CIs HPD Intervals

µ τ µ τ µ τ µ τ

30 20 16 I 91.00% 85.32% 91.14% 91.23% 91.36% 91.40% 91.18% 91.12%
(0.8139) (1.4571) (0.8044) (1.5610) (0.8172) (1.3819) (0.8034) (1.5568)

II 91.60% 83.21% 92.26% 92.63% 92.48% 92.18% 91.46% 91.38%
(0.8134) (1.3467) (0.8634 (1.4140) (0.8653) (1.2618) (0.8556) (1.3877)

18 I 92.60% 85.73% 90.71% 91.03% 91.82% 92.18% 91.14% 91.92%
(0.7731) (1.3532) (0.7691) (1.4545) (0.7771) (1.3162) (0.7691) (1.4527)

II 93.40% 89.62% 94.43% 92.50% 92.64% 92.84% 91.52% 92.16%
(0.8485) (1.2287) (0.8429) (1.2999) (0.8384) (1.1713) (0.8407) (1.2888)

30 25 16 I 92.70% 85.10% 91.82% 91.92% 92.03% 91.70% 91.72% 91.60%
(0.8212) (1.3716) (0.8065) (1.5668) (0.8231) (1.4005) (0.7712) (1.4605)

II 92.20% 86.23% 92.93% 93.32% 92.48% 92.02% 91.84% 91.88%
(0.8172) (1.3527) (0.8198) (1.4811) (0.8272) (1.3351) (0.7948) (1.3854)

18 I 92.30% 84.55% 93.56% 92.30% 91.78% 92.35% 91.68% 92.22%
(0.7684) (1.3399) (0.7656) (1.4376) (0.7724) (1.3021) (0.7681) (1.4486)

II 0.929 85.76% 92.18% 91.70% 92.32% 92.38% 91.68% 92.52%
(0.7910) (1.2766) (0.7928) (1.3786) (0.7897) (1.2489) (0.7920) (1.3751)
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Table A5. Cont.

n m k Sch
ACIs Log-CIs Boot-p CIs HPD Intervals

µ τ µ τ µ τ µ τ

60 50 38 I 92.57% 88.64% 93.07% 93.62% 93.20% 91.54% 93.50% 93.80%
0.5479) (0.9431) (0.5459) (0.9824) (0.5368) (0.9170) (0.5158) (0.7909)

II 93.21% 89.90% 94.16% 93.74% 93.70% 92.80% 93.62% 93.82%
(0.5183) (0.8916) (0.5656) (0.9396) (0.5316) (0.8707) (0.5085) (0.7485)

42 I 93.53% 90.21% 94.08% 94.03% 96.24% 92.50% 93.78% 94.08%
(0.5436) (0.9493) (0.5270) (0.9147) (0.5412) (0.8654) (0.5289) (0.7429)

II 93.92% 91.37% 92.19% 93.62% 93.81% 92.67% 93.91% 94.16%
(0.5090) (0.9156) (0.5517) (0.8698) (0.5194) (0.8479) (0.5153) (0.7259)

60 55 38 I 93.27% 90.23% 94.12% 93.33% 93.50% 92.20% 93.67% 94.48%
(0.5312) (0.8481) (0.5439) (0.9763) (0.5431) (0.9157) (0.4972) (0.7352)

II 93.64% 91.68% 93.71% 94.31% 93.60% 93.30% 93.82% 94.36%
(0.5292) (0.8462) (0.5559) (0.9686) (0.5345) (0.8917) (0.5019) (0.7353)

42 I 93.66% 90.51% 94.13% 93.86% 93.91% 92.91% 94.16% 94.50%
(0.5150) (0.9174) (0.5323) (0.9334) (0.5273) (0.8644) (0.5066) (0.7076)

II 93.91% 91.03% 94.35% 94.51% 94.15% 93.73% 94.40% 94.93%
(0.5452) (0.7920) (0.5421) (0.9092) (0.5175) (0.8249) (0.4912) (0.7031)

100 80 62 I 93.25% 90.28% 94.80% 93.90% 93.52% 90.50% 94.86% 95.08%
(0.4313) (0.8709) (0.4294) (0.7688) (0.4361) (0.7311) (0.4299) (0.6750)

II 94.10% 91.56% 93.21% 94.03% 94.23% 91.57% 94.38% 95.60%
(0.4386) (0.7537) (0.4476) (0.7270) (0.4172) (0.6800) (0.4148) (0.6714)

70 I 93.71% 91.74% 95.26% 93.24% 93.73% 92.03% 95.72% 95.24%
(0.4129) (0.6561) (0.4131) (0.7126) (0.4219) (0.6807) (0.4138) (0.6603)

II 94.82% 92.36% 93.33% 92.53% 94.96% 92.40% 94.34% 95.52%
(0.4228) (0.6480) (0.4354) (0.6686) (0.3985) (0.6311) (0.4180) (0.6478)

100 90 62 I 94.5% 91.93% 95.28% 95.30% 94.56% 92.59% 95.74% 95.64%
(0.4314) (0.8907) (0.4327) (0.7778) (0.4234) (0.7243) (0.4017) (0.6513)

II 94.64% 92.03% 94.62% 94.06% 94.50% 92.50% 94.88% 96.02%
(0.4311) (0.9071) (0.4387) (0.7569) (0.4209) (0.7078) (0.3929) (0.6138)

70 I 94.71% 91.92% 95.17% 95.10% 94.88% 92.03% 95.03% 96.04%
(0.4380) (0.7111) (0.4152) (0.7195) (0.4198) (0.6256) (0.3987) (0.6131)

II 94.83% 92.65% 95.63% 93.70% 95.01% 92.80% 95.97% 96.78%
(0.4134) (0.6985) (0.4242) (0.6977) (0.3867) (0.5862) (0.3716) (0.5252)

Table A6. CPs and ALs (within bracket) of 95% CIs for the parameters with µ = 0.5, τ = 1, when T = 0.6.

n m k Sch
ACIs Log-CIs Boot-p CIs HPD Intervals

µ τ µ τ µ τ µ τ

30 20 16 I 92.21% 85.12% 92.80% 91.37% 91.86% 91.54% 91.28% 91.36%
(0.8082) (1.4333) (0.8086) (1.5806) (0.8245) (1.3886) (0.8094) (1.3806)

II 92.63% 85.12% 93.54% 91.92% 93.20% 92.68% 91.10% 92.63%
(0.8552) (1.2903) (0.8567) (1.3925) (0.8575) (1.2579) (0.8610) (1.2051)

18 I 92.42% 83.91% 92.73% 91.11% 90.90% 92.36% 91.33% 91.64%
(0.7682) (1.3373) (0.7644) (1.4355) (0.7752) (1.311) (0.7709) (1.2593)

II 91.70% 87.90% 92.31% 92.00% 92.52% 92.94% 91.42% 92.78%
(0.8416) (1.2125) (0.8379) (1.2806) (0.8335) (1.1767) (0.8422) (1.1927)

30 25 16 I 91.66% 85.00% 91.93% 92.73% 91.42% 91.58% 91.34% 91.85%
(0.8136) (1.4535) (0.8081) (1.5726) (0.8180) (1.3935) (0.8094) (1.3579)

II 92.81% 86.08% 91.00% 92.48% 91.98% 92.26% 92.52% 91.36%
(0.856) (1.2924) (0.8239) (1.4979) (0.8218) (1.3367) (0.8240) (1.2990)

18 I 91.80% 85.53% 92.71% 91.40% 91.62% 91.48% 92.14% 92.14%
(0.7705) (1.3431) (0.7663) (1.4428) (0.7846) (1.3042) (0.7673) (1.2944)

II 92.93% 86.32% 92.80% 91.73% 92.06% 92.00% 92.46% 92.38%
(0.7971) (1.2958) (0.7905) (1.3683) (0.7961) (1.2453) (0.7911) (1.2373)
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Table A6. Cont.

n m k Sch
ACIs Log-CIs Boot-p CIs HPD Intervals

µ τ µ τ µ τ µ τ

60 50 38 I 93.33% 89.20% 95.40% 94.60% 93.40% 94.53% 93.46% 94.76%
(0.5389) (0.9433) (0.5480) (0.9901) (0.5554) (0.9074) (0.5162) (0.7907)

II 93.58% 88.87% 93.52% 93.33% 93.80% 94.10% 94.00% 94.20%
(0.5491) (0.9340) (0.5672) (0.9454) (0.5378) (0.8759) (0.5066) (0.7491)

42 I 93.74% 90.10% 93.21% 94.61% 93.85% 94.33% 94.10% 94.84%
(0.4133) (0.8990) (0.5286) (0.9198) (0.5426) (0.8560) (0.5290) (0.7463)

II 94.00% 91.34% 95.73% 93.82% 94.00% 94.50% 94.20% 94.62%
(0.5338) (0.9572) (0.5551) (0.8818) (0.5124) (0.8221) (0.5143) (0.7439)

60 55 38 I 94.31% 90.62% 93.20% 92.79% 94.50% 94.87% 94.40% 95.10%
(0.4308) (0.8645) (0.5422) (0.9686) (0.5301) (0.8556) (0.5077) (0.7355)

II 94.22% 90.62% 93.10% 93.64% 94.31% 94.80% 94.55% 95.50%
(0.4474) (0.8358) (0.5524) (0.9559) (0.5084) (0.8406) (0.4970) (0.7103)

42 I 93.50% 90.71% 93.66% 94.00% 93.58% 94.93% 94.42% 95.78%
(0.5529) (0.8817) 0.5572) (0.9157) (0.5263) (0.8129) (0.5031) (0.7025)

II 94.92% 91.63% 93.00% 94.44% 94.81% 94.90% 94.70% 96.08%
(0.4365) (0.8042) (0.5417) (0.9079) (0.5210) (0.7729) (0.4963) (0.6911)

100 80 62 I 93.70% 90.91% 93.91% 93.85% 93.70% 91.00% 94.00% 95.20%
(0.4319) (0.7260) (0.4278) (0.7610) (0.4374) (0.6958) (0.4206) (0.6753)

II 93.81% 92.00% 93.90% 95.43% 94.00% 92.50% 94.06% 95.66%
(0.4390) (0.7574) (0.4509) (0.7375) (0.4125) (0.6858) (0.4112) (0.6711)

70 I 93.76% 91.63% 94.70% 95.20% 94.12% 92.80% 94.54% 95.22%
(0.4125) (0.6491) (0.4128) (0.0717) (0.4191) (0.6545) (0.4038) (0.6472)

II 94.06% 92.22% 94.50% 94.36% 94.31% 92.28% 94.68% 95.10%
(0.4240) (0.6150) (0.4379) (0.6721) (0.4120) (0.6355) (0.4022) (0.6312)

100 90 62 I 94.45% 92.10% 94.00% 93.57% 94.20% 93.07% 94.66% 96.40%
(0.4011) (0.7081) (0.4312) (0.7731) (0.4243) (0.7031) (0.4018) (0.6516)

II 94.70% 92.70% 94.03% 94.51% 94.85% 93.07% 94.90% 96.28%
(0.4380) (0.6986) (0.4377) (0.7531) (0.4325) (0.6733) (0.3921) (0.6402)

70 I 95.31% 92.16% 93.76% 94.11% 95.55% 92.90% 95.81% 96.38%
(0.4008) (0.7392) (0.4142) (0.7164) (0.3951) (0.6256) (0.3925) (0.6113)

II 95.50% 93.95% 94.81% 93.90% 95.89% 94.10% 96.01% 96.14%
(0.4313) (0.6955) (0.4236) (0.6954) (0.3893) (0.6090) (0.3756) (0.5907)

References
1. Cohen, A. Estimating the mean and variance of normal populations from singly truncated and doubly truncated samples. Ann.

Math. Stat. 1950, 21, 557–569. [CrossRef]
2. Cohen, A. On estimating the mean and variance of singly truncated normal frequency distributions from the first three sample

moments. Ann. Inst. Stat. Math. 1951, 3, 37–44. [CrossRef]
3. Cohen, A. Tables for maximum likelihood estimates: Singly truncated and singly censored samples. Technometrics 1961, 3, 535–541.

[CrossRef]
4. Whitten, B.J.; Sundaraiyer, V. A pseudo-complete sample technique for estimation from censored samples. Commun. Stat. Theory

Methods 1988, 17, 2239–2258. [CrossRef]
5. Cohen, A. Truncated and Censored Samples: Theory and Applications; CRC Press: New York, NY, USA, 1991.
6. Lodhi, C.; Tripathi, Y.; Rastogi, M. Estimating the parameters of a truncated normal distribution under progressive type-II

censoring. Commun. Stat. Simul. Comput. 2019. [CrossRef]
7. Cha, J.; Cho, B.; Sharp, J. Rethinking the truncated normal distribution. Int. J. Exp. Des. Process Optim. 2013, 3, 27–63. [CrossRef]
8. Akahira, M. Maximum likelihood estimation for a one-sided truncated family of distributions. Jpn. Stat. Data Sci. 2020. [CrossRef]
9. Kundu, D.; Joarder, A. Analysis of Type-II progressively hybrid censored data. Comput. Stat. Data Anal. 2006, 50, 2509–2528.

[CrossRef]
10. Balakrishnan, N.; Cramer, E. The Art of Progressive Censoring: Applications to Reliability and Quality; Springer: New York, NY, USA,

2014. [CrossRef]
11. Cho, Y.; Sun, H.; Lee, K. Estimating the Entropy of a Weibull Distribution under Generalized Progressive Hybrid Censoring.

Entropy 2015, 17, 102–122. [CrossRef]

http://doi.org/10.1214/aoms/1177729751
http://dx.doi.org/10.1007/BF02949774
http://dx.doi.org/10.1080/00401706.1961.10489973
http://dx.doi.org/10.1080/03610928808829744
http://dx.doi.org/10.1080/03610918.2019.1614619
http://dx.doi.org/10.1504/IJEDPO.2013.059667
http://dx.doi.org/10.1007/s42081-020-00098-5
http://dx.doi.org/10.1016/j.csda.2005.05.002
http://dx.doi.org/10.1007/978-0-8176-4807-7
http://dx.doi.org/10.3390/e17010102


Entropy 2021, 23, 186 30 of 30

12. Cho, Y.; Sun, H.; Lee, K. Exact likelihood inference of the exponential parameter under generalized Type-II progressive hybrid
censoring. Stat. Methodol. 2015, 23, 18–34. [CrossRef]

13. Wang, L.; Li, H. Inference for exponential competing risks data under generalized progressive hybrid censoring. Commun. Stat.
Simul. Comput. 2019. [CrossRef]

14. Singh, D.P.; Lodhi, C.; Tripathi, Y.; Wang, L. Inference for two-parameter Rayleigh competing risks data under generalized
progressive hybrid censoring. Qual. Reliab. Eng. Int. 2020. [CrossRef]

15. McLachlan, G.; Krishnan, T. The EM Algorithm and Extensions. J. Classif. 1998, 15, 154–156. [CrossRef]
16. Belaghi, R.; Noori Asl, M.; Alma, O.; Singh, S.; Vasfi, M. Estimation and Prediction for the Poisson-Exponential Distribution

Based on Type-II Censored Data. Am. J. Math. Manag. Sci. 2018, 38, 1–20. [CrossRef]
17. Ren, J.; Gui, W. Inference and optimal censoring scheme for progressively Type-II censored competing risks model for generalized

Rayleigh distribution. Comput. Stat. 2021, 36, 479–513. [CrossRef]
18. Hall, P. The Bootstrap and Edgeworth Expansion; Springer: New York, NY, USA, 1993.
19. Tierney, L.; Kadane, J. Accurate Approximations for Posterior Moments and Marginal Densities. J. Am. Stat. Assoc. 1986,

81, 82–86. [CrossRef]
20. Von der Linden, W.; Dose, V.; von Toussaint, U. Bayesian Probability Theory: Application to the Physical Sciences; Cambridge

University Press: Cambridge, UK, 2014.
21. Akgül, F.G.; Yu, K.; Senoglu, B. Classical and Bayesian Inferences in Step-Stress Partially Accelerated Life Tests for Inverse

Weibull Distribution Under Type-I Censoring. Strength Mater. 2020, 52, 480–496. [CrossRef]
22. Balakrishnan, N.; Sandhu, R. A Simple Simulational Algorithm for Generating Progressive Type-II Censored Samples. Am. Stat.

1995, 49, 229–230. [CrossRef]
23. Lawless, J.F. Statistical Models and Methods for Lifetime Data; Wiley: New York, NY, USA, 1982.
24. Dörre, A.; Emura, T. Analysis of Doubly Truncated Data, an Introduction; Springer: New York, NY, USA, 2019.

http://dx.doi.org/10.1016/j.stamet.2014.09.002
http://dx.doi.org/10.1080/03610918.2019.1667388
http://dx.doi.org/10.1002/qre.2791
http://dx.doi.org/10.2307/1271189
http://dx.doi.org/10.1080/01966324.2018.1484827
http://dx.doi.org/10.1007/s00180-020-01021-y
http://dx.doi.org/10.1080/01621459.1986.10478240
http://dx.doi.org/10.1007/s11223-020-00200-y
http://dx.doi.org/10.1080/00031305.1995.10476150

	Introduction
	Truncated Normal Distribution
	Generalized Progressive Hybrid Censoring Scheme

	Maximum Likelihood Estimation
	Newton–Raphson Algorithm
	Expectation Maximization Algorithm

	Confidence Interval Estimation
	Asymptotic Confidence Intervals for Mles
	Asymptotic Confidence Intervals for Log-Transformed Mles
	Percentile Bootstrap Approach

	Bayes Estimation
	Prior and Posterior Distribution
	Loss Functions
	Tierney and Kadane Method
	Importance Sampling Procedure

	Simulation Study
	Simulation
	Real Data Analysis

	Conclusive Remarks
	Simulation Results 
	References

