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Revealing the molecular interplay 
of curcumin as Culex pipiens 
Acetylcholine esterase 1 (AChE1) 
inhibitor
Priyashi Rao 1, Dweipayan Goswami 2 & Rakesh M. Rawal 1*

Emergence of vector borne diseases has continued to take toll on millions of lives since its inception. 
The use of insecticides began as vector control strategy in the early 1900’s but the menace of insects 
is still prevalent. Additionally, the inadequate use of organophosphates and carbamates which target 
acetylcholine esterase (AChE), are known to develop resistance amongst vectors of transmission 
and are toxic to humans. In this study, extensive computational screening was performed using 
homology modelling, molecular docking, molecular dynamics (MD) simulation and free energy change 
calculation, which highlighted curcumin as a lead molecule out of ~ 1700 phytochemicals against Culex 
pipiens AChE. In vivo larvicidal activity was carried out along with in vivo and in vitro AChE inhibition 
assay to determine the biochemical efficacy of curcumin. Our study reveals that curcumin induces 
mortality in Cx. pipiens at an early stage of its life cycle by AChE inhibition. This also underlines the use 
of curcumin as a coming-age natural product insecticide.

Vector borne disease are one of the major health problems in the world, accounting for more than 17% of all 
infectious diseases (World Health Organisation, 2018)1. Mosquitoes are the vectors that spread infectious dis-
eases to various life forms including humans. Many of these mosquito vectors are bloodsucking macroscopic 
flying creatures that ingest disease-causing pathogens during a blood meal from an infected host (human or 
animal) and then spread them to a new host, resulting in a chain of severe life-threatening  infections2. When a 
vector (like mosquito) gets infected, it is also capable of spreading the pathogen for the entirety of its life onto 
each subsequent bite/blood meal. Culex pipiens are known to feed on variety of hosts thereby amplifying the 
pathogenic cross-infectivity, causing major vector-borne disease like avian malaria, filariasis, Japanese encepha-
litis and west nile virus infection amongst many  others3. Starting since early 1900’s, manufacturing of chemical 
insecticides became a crucial aspect of insect pest  management4. Insecticides are known to inhibit the function-
ality of a specific biochemical bioprocess or protein of the insect system at different stages of mosquitoe’s life 
cycle; Acetylcholine esterase (AChE) is one such protein of importance involved in neurotransmission, therefore 
considered as a well-known target for insecticides belonging to the class of organophosphates and carbamates.

Generally, at the presynaptic neuron, the enzyme acetyltransferase catalyses the formation of Acetylcholine 
(ACh), a neurotransmitter which is then released into the synaptic cleft. To relay the nerve impulse, the neuro-
transmitter ACh goes and binds to the ACh receptors (AChR) present on the post-synaptic membrane of the 
other neuron. For a neuron to receive another impulse, ACh should be in low concentration at the cleft and must 
be released from the ACh receptor. Here, AChE, also located on the post-synaptic membrane, terminates the sig-
nal by hydrolyzing ACh and the liberated choline is taken back by the pre-synaptic neuron to recycle. This uptake, 
reuptake, and re-synthesis of ACh is responsible for neurotransmission at the neuromuscular junction. However, 
inhibition of AChE leads to accumulation of ACh in the synaptic cleft resulting in impaired neurotransmis-
sion thus succumbing mosquito to  death5. Insecticides belonging to class of organophosphates and carbamates 
functions by efficiently inhibiting  AChE6. However, at present, the drawback for many of such insecticides is 
their indiscriminate rates of application, environmental hazards and evolution of resistance amongst mosquito 
vectors, thereby paving the way for development of safer, non-toxic and environment friendly alternatives. For 
this, researchers have thought to make use of phytochemicals, plant extracts and essential oils to check their 
potency as an alternative to chemical insecticides. There are sizeable evidences for natural compounds from plant 
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and their extracts to induce mortality in various vectors which is evident from the recent reviews published by 
Gajger and  Dar7 while Shaalan and colleagues have specifically described potential phytochemicals that pos-
sess mosquitocidal  potential8. However, the mode of action by which these phytochemicals induce mortality is 
 underdetermined9. Advancement in data curation has made it feasible to screen thousands of compounds from 
such open access libraries to identify the lead molecule for any target  protein10–13. This is where the rationale of 
the research represented in this experimental work is laid upon, that is to identify the natural molecule from an 
open access phytochemical library that can bind to AChE, inhibit its function, and induce mortality in mosquito 
by strategic use of in silico, in vitro and in vivo studies.

Entire work is divided into three phases as depicted in Fig. 1. The first phase of this research deals with an in 
silico structure prediction of Cx. pipiens AChE1 protein as the crystallized 3D model of Cx. pipiens AChE protein 
is unavailable at protein structure repositories. The second phase of this study comprises of in silico study for 
identifying the phytochemical that can best bind at the catalytic site of the protein to inhibit its function. For 
this, ~ 1700 naturally occurring phytochemicals from a curated database ‘IMMPAT’14 were screened by making 
use of molecular docking. Molecular docking only predicts the type of interaction that may occur between protein 
and ligand for a given pose, but the strength of the interaction is not predicted. Therefore, to validate result of 
docking assessment, MM-GBSA analysis was performed to predict the Gibbs free energy change which reflects 
spontaneity of ligand receptor interaction. Further, Molecular Dynamics (MD) simulation was performed to 
study stability of best docked pose of ligand with respect to its interacting protein. The third phase deals with 
validating the identified in silico findings with in vitro and in vivo assays. AChE enzyme inhibition assay of 
transmission vector Cx. pipiens was carried out using the lead phytochemical as an inhibitor at the larval stage 
of its life cycle. Subsequent larval mortality caused by the inhibition of insect AChE was evaluated using in vivo 
larvicidal bioassay. This study is conclusively able to determine a plant secondary metabolite larvicide as an alter-
native to organophosphates and carbamates following the similar course of inhibitory action on protein AChE.

Figure 1.  Overview of the workflow.
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Result
Structure prediction assessment. The model for Cx. pipiens AChE1 was built using the template protein 
of malaria mosquito vector Anopheles gambiae (PDB ID: 5X61, Chain B), with 99% query coverage and 92.36% 
similarity. Upon successful model generation, quality check assessment was performed using various parameters 
as described in Fig. 2. The GMQE score ideally articulated between zero and one, is 0.65 for this target-template 
indicating a good structural reliability. Another parameter, QMEAN Z-scores closer to zero indicates good 

Figure 2.  Quality estimate parameters for modelled AChE1 protein (a) comparison with non-redundant set 
of PDB structures (b) local model quality estimate (c) binding pocket identification of modelled protein (d) 
Ramachandran plot and (e) Modelled AChE1 in surface representation with docked ACh.
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agreement between the model structure and experimental structures of similar size. Scores of − 4.0 or below 
is an indication of models with low quality. The QMEAN Z-score for the proposed model is − 0.07 indicating 
good model quality. MolProbity results of Ramachandran plot indicated 94.77% favored residues accounting for 
0.45% outlier for the built model. Protein cavity assessment using CASTp 3.0 server, revealed the hydrophobic 
cavity of the modelled protein and a probable ligand binding cleft to be of volume 368.083 Å3 and surface area of 
655.93 Å2 constituting following amino acid residues: Ile:70, Val:71, Tyr:121, Gln:197, Ile:198, Val:199, Asp:200, 
Thr:201, Val:202, Trp:212, Asn:213, Pro:214, Trp:242, Phe:244, Gly:245, Gly:246, Gly:247, Tyr:249, Ser:250, 
Gly:251, Leu:255, Tyr:258, Trp:280, Ile:285, Cys:286 Phe:288, Glu:326, Ser:327, Tyr:332, Tyr:333, Phe:329, 
Trp:360, Trp:408 and Gly:412 (Fig. 2d). Ensuring the amino acid residues by this means in the active site of the 
modelled protein, the co-ordinates were noted which were further used for preparing the grid during molecu-
lar docking. For validation of the active site, both the proteins i.e., template protein (Fig. 3a) and the modelled 
AChE1 (Fig. 3b) were superimposed as shown in Fig. 3c, to affirm an identical ligand binding cleft for both 
the proteins. Further, target-template similarity of sequence of AChE1 protein of Cx. pipiens and An. gambiae 
(Fig. 3d) were aligned with Multiple Sequence Alignment (MSA) using Clustal  Omega15. Hence, the model was 
repeatedly validated to be of a good quality and was used further for in silico studies as shown in Fig. 3.

Molecular docking assessment. A rigorous computational virtual screening workflow was executed 
using ~ 1700 phytochemicals from IMMPAT database. Completion of the three precision levels of HTVS, SP and 
XP resulted in filtering top five lead compounds; curcumin, tetrahydrocurcumin, desmethoxycurcumin, bis-
demethoxycurcumin and ar-turmerone as shown in Fig. 4a. Curcumin showed the most efficient binding with 
the binding energy of − 10.21 kcal/mol, followed by − 8.47 kcal/mol for tetrahydrocurcumin, − 8.01 kcal/mol 
for desmethoxycurcumin, − 7.42 kcal/mol for bisdemethoxycurcumin and − 7.21 kcal/mol for ar-turmerone. 
The interacting residues for each of these top hits are represented in Table 1. The XP docking of the modelled 
protein was also performed with reference biological ligand ACh and control insecticide malathion. It was found 
that both these ligands showed even lesser binding energy then the lowest ranked phytochemical in Table 1. The 
native ligand ACh forms a hydrogen bond with Cys:286 (Fig. 4b). The insecticide malathion also seems to make 
interaction with Cys:286 and Tyr:121 (Fig. 4c). Suggesting that Cys at position 286 is a crucial amino acid of the 
active cleft which is essential to be recruited for effective interaction of the ligand with the protein. Curcumin 
while interacting with AChE forms a total of three hydrogen bonds by interacting with Gly:281, Cys:286 and 
Tyr:121 (Fig. 4d).

Filtering ligands through MM-GBSA calculation. The spontaneity of the ligands interacting with pro-
tein can be judged by free energy change using MM-GBSA calculations. The ΔGBind energy conveyed from 
MM-GBSA assessment is based on the bond-interaction advancement and often suggests the stability of the 
protein–ligand interaction. In general, lowest negative energies represents the higher stability the protein–ligand 
docked complex. The fidelity of the protein–ligand interaction was taken as a basis to identify a single best lead 
molecule out of the top five screened ligands from the database. The MM-GBSA profiles of all the top 5 lead 
compounds in comparison with reference control ACh and malathion are represented in Table 2.

The interaction of ACh with modelled AChE1 as modelled AChE1-ACh complex occurred spontaneously 
as the ΔGBind is − 31.576 kcal/mol. However, the native biological ligand is a neurotransmitter, and the basis of 
neurotransmission is to carry out impulse at a rapid speed to generate either inhibitory or excitatory action at the 
neuromuscular junction, this justifies the lesser spontaneity of the ΔGBind of modelled AChE1-ACh complex 
with respect to ΔGBind value of the inhibitors that do require a greater binding affinity to carry out inhibi-
tory action on the protein. Ranking in order of binding energy change from poor to best from all the screened 
inhibitors, malathion as the modelled AChE1-malathion complex has the ΔGBind value of − 39.958 kcal/mol, 
followed by docked complex of modelled AChE1-ar-turmerone with ΔGBind of − 43.520 kcal/mol. For mod-
elled AChE1-bisdemethoxycurcumin docked complex, ΔGBind value is − 45.488 kcal/mol and for modelled 
AChE1-desmethoxycurcumin docked complex the value is − 51.629 kcal/mol, while the ΔGBind value for 
modelled AChE1 with tetrahydrocurcumin is − 54.108 kcal/mol. The best ligands to interact is curcumin in the 
docked complex of modelled AChE1-curcumin having the ΔGBind value of − 62.283 kcal/mol. Other parameters 
like Coulomb energy (ΔGCoulomb), Hydrogen-bonding correction (ΔGHbond), Lipophilic energy (ΔGLipo), 
pi-pi packing correction (ΔGPacking) and Van der Waals energy (ΔGvdW) comprises the total energy change 
of the system ΔGBind as observed in Table 2. All these parameters conclusively help to identify curcumin as a 
lead compound from all the ~ 1700 phytochemicals screened from the IMMPAT database to be the inhibitor of 
modelled Cx pipiens AChE1 and this was further validated through MD simulations.

In silico validation from MD simulation. Curcumin was identified to be the best lead amongst all the 
screened phytochemicals as it was producing consistent results in parameters like docking score, protein–ligand 
interactions, and MM-GBSA calculations. To validate this further, MD simulation of the best docked pose of 
curcumin was performed. The docked complexes of modelled AChE1-ACh, modelled AChE1-malathion and 
modelled AChE1-curcumin were subjected to a 50 ns MD simulation, where the simulation profile for docked 
complex of ACh and malathion was taken as reference set. Once the simulations were performed, the Root Mean 
Square Deviation (RMSD), Root Means Square Fluctuation (RMSF) and protein–ligand contact profiles for all 
the frames of trajectory were calculated.

The plots in Fig. 5 depicts the RMSD movements (left Y-axis) in the portions of the protein. The RMSD assess-
ment must measure the normal change in particle dislodging for a certain portion of frames as for a reference 
constant frame that is established for each frame of the trajectory. Here, typically the first frame of the ligand 
and protein for modelled AChE1-ACh, modelled AChE1-malathion and modelled AChE1-curcumin in the 
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complex is used as the reference frame, and the movement for this initial alignment is then simulated during the 
entire 50 ns simulation. Change in displacement of the order of 1–3 Å are perfectly acceptable for small, globular 
proteins. In the case of modelled AChE1, its interaction with biological ligand ACh shows a RMSD value of 
2.7 Å (Fig. 5a), while in terms of the inhibitor’s, curcumin (Fig. 5e) depicts a rather stabilised and equilibrated 
value of 1.8 Å with respect to malathion’s 2.4 Å RMSD (Fig. 5c). Another parameter on the same graph is Ligand 
RMSD (right Y-axis) which indicates how stable the ligand is with respect to the protein at its binding site. For 
the docked complex with ACh the ligand RMSD is 1.8 Å, for malathion is 5.4 Å and for curcumin is 2.25 Å. 
Generally, it is observed that if the ligand RMSD values are much greater than the protein RMSD values, the 
ligand has most certainly diffused away from its initial binding site on the protein. Seeing this value, it can be 

Figure 3.  (a) An. gambiae AChE with co-crystallised ligand (PDB ID:5X61) (b) modelled Cx. pipiens AChE1 
with biological ligand acetylcholine (c) Superimposed Model-Template alignment (d) Target-template pairwise 
sequence alignment of AChE1 protein of Cx. pipiens and AChE of An. gambiae.
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stated that malathion is likely to dislodge from the active cleft in comparison with curcumin, making curcumin 
a stable inhibitor to bind the modelled protein.

Figure 4.  Protein–Ligand interaction profile (a) of all top hit compounds docked on modelled AChE1 (b) best 
docked pose conformation of acetylcholine (c) best docked pose conformation of malathion (d) best docked 
pose conformation of curcumin.
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Further, analysis of RMSF plot for the docked complexes is useful for characterizing local changes along the 
protein chain and peaks on this plot indicate areas of the protein that fluctuate the most during the simulation. 
The large presence of tails of N and C terminals showcase higher fluctuations in the corresponding peaks while 
secondary structure elements like α helices and β strands are usually more rigid and show less fluctuation. In 
this case, the docked complexes of modelled AChE1-ACh (Fig. 5b), modelled AChE1-malathion (Fig. 5d), and 
modelled AChE1-curcumin (Fig. 5f) depict protein interaction with the ligands and trends of RMSF correspond 
similarly for ACh and malathion while for curcumin the value suggests better stability. This is because the bind-
ing of curcumin at the active cleft has allowed α helices and β strands to become rigid and thereby stabilising 
the local changes along the protein chain.

Protein–ligand contact profiles are represented as stacked bar charts type and timeline representation. The 
stacked bar charts are normalized by representing the percentages in decimals. For a timeline representation, 
the top panel shows the total number of specific contacts the protein makes with the ligand over the course of 
the trajectory. The bottom panel shows which residues interact with the ligand in each trajectory frame. Some 
residues make more than one specific contact with the ligand that are represented by a darker shade of orange, 
according to the scale to the right of the plot. For modelled AChE1-ACh, the common interactions include 
amino acids like Val:71, Tyr:121, Val:276, Asp:277, Trp:280, Cys:286, Glu:287 and Phe:329 as contact residues 
as shown in Fig. 6. A portrayal of protein–ligand interactions for modelled AChE-malathion suggests involve-
ment of Tyr:121, Gly:119, Cys:286, Glu:287, Phe:329 and Tyr:333 amino acid residues as describes in Fig. 7. For 
curcumin, interaction profile includes Val:71, Tyr:121, Trp:280, Gly:281, Cys:286, Glu:287, Tyr:332 and Tyr:333 
as shown in Fig. 8. Hydrogen bonds are very much crucial in determining the specificity and stability of the 
contact and in curcumin is able to engage 100% of 50 ns simulation. These MD results also helps to conclude 
the reliability of the docked pose of curcumin with AChE1 in comparison to malathion.

In vivo larval mortality assessment. In silico assessment showed curcumin to best interact with the 
AChE1 of Cx. pipiens. To affirm the claims drawn by the computational workflow, curcumin was subjected for 
two parallel assays. First, the in vivo insecticidal potential of commercially available pure curcumin was studied 
on the late 3rd and early 4th instar larvae of Cx. pipiens with keeping the chemical insecticide malathion as 
positive control. Second, in vitro AChE inhibition by curcumin was examined from the larval extract keeping 
two positive controls, (i) known AChE inhibitor pyridostigmine bromide and (ii) malathion, known insecticide 
and AChE inhibitor. For the first set of experiment, it was observed that curcumin exhibited phenomenal larvi-

Table 1.  Docking score, binding energies and amino acid interaction profile obtained by performing 
molecular docking.

Ligand Docking score Binding energy (kcal/mol) Compound ranking based on binding energy Amino acid interactions

Acetylcholine − 4.70 − 30.924 Biological substrate (Control) TYR:121 CYS:286 PHE:329

Malathion − 5.42 − 35.429 Known synthetic inhibitor ILE: 70 TYR:121 TRP:280 LEU:283 CYS:286 
TYR:328 TYR:332 TYR:333

Curcumin − 10.21 − 55.558 1 TYR:121 CYS:286
GLY:281 TRP:280

Tetrahydrocurcumin − 8.47 − 38.357 2 ILE:70 ASP:72 TYR:121 LEU:283 GLU:287

Desmethoxycurcumin − 8.01 − 33.375 3 TRP:84 TYR:130 GLU:198 GLY:284 CYS:286 
PHE:288

Bisdemethoxycurcumin − 7.42 − 30.261 4 TYR:121 TRP:283 CYS:286 TYR:333

Ar-turmerone − 7.21 − 30.131 5 ILE:70 TYR:121 TRP:280 CYS:286 TYR:328 PHE:329 
TYR:332 TYR:333

Table 2.  MM/GBSA profile for selected ligands with Cx. pipiens modelled AChE1 protein. ΔGBind = binding 
energy, ΔGCoulomb = Coulomb energy, ΔGHbond = hydrogen-bonding correction, ΔGLipo = lipophilic 
energy, ΔGPacking = Pi-Pi packing correction, ΔGvdW = Van der Waals energy.

Ligand
ΔGBind (kcal/
mol)

ΔGCoulomb 
(kcal/mol)

ΔGHbond (kcal/
mol)

ΔGLipo (kcal/
mol)

ΔGPacking (kcal/
mol)

ΔGvdW (kcal/
mol)

Acetylcholine − 31.576 − 23.820 1.357 − 0.559 − 8.414 0

Malathion − 39.958 − 17.339 2.967 − 0.810 − 18.239 − 2.254

Curcumin − 62.283 − 18.466 5.427 − 1.692 − 29.856 − 2.060

Tetrahydrocur-
cumin − 54.108 − 10.053 4.308 − 1.126 − 25.383 − 3.091

Desmethoxycur-
cumin − 51.629 − 15.973 − 0.844 − 1.824 − 24.906 − 4.620

Bisdemethoxycur-
cumin − 45.488 − 19.162 0.0889 − 1.0829 − 14.309 − 5.036

Ar-turmerone − 43.520 − 21.831 0.0109 − 1.122 − 15.858 − 5.100
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cidal potentials by inducing ~ 80% of mortality, at the working concentration of 100 ppm and  LC50 of 112 ppm 
(Fig. 9a). Moreover, at this same concentration, malathion could induce only about ~ 38% mortality. For mala-
thion to induce ~ 80% mortality, the dosage of application was as high as 200 ppm. This reflects that, curcumin 
can serve as a potential larvicidal, if not for all insect but for Cx. pipiens larvae, and the potency to dosage ratio 
for inducing mortality was half to that obtained for malathion.

In vitro and in vivo AChE inhibition assay. For the second set of study, to identify the mode of action of 
larval mortality, deals with the larval AChE inhibition. It was observed that curcumin could inhibit the enzyme 
AChE activity at par with the pyridostigmine bromide and malathion (Fig. 9b). It was observed that at 250 µM 
concentration, all the three compounds (curcumin, pyridostigmine and malathion) under study inhibited ~ 80% 
of AChE enzyme activity. The  IC50 value so obtained for curcumin was 167.09  µM with  R2 value 0.993, for 
malathion was 143.76 µM with  R2 value 0.9784 and the  IC50 value obtained for pyridostigmine bromide was 
135.54 µM with  R2 value 0.9767. This confirmed the predictions prior made by in silico studies that curcumin 
can interact with AChE and can inhibit its function. On affirming by in vitro studies, we performed the in vivo 
enzyme inhibition assay, where we found that AChE inhibition was observed when larvae were incubated for 
30 min in solutions of malathion (Fig. 9c) and curcumin (Fig. 9d) in the concentrations ranging from 50 to 
250 ppm. Identifying the nature of enzyme inhibition becomes the next important parameter to be accessed. It 
is therefore inevitable to understand that AChE enzyme inhibition by curcumin is competitive or non-competi-
tive. For this, in vitro AChE inhibition enzyme assays were performed with varying concentrations of curcumin 
and the relation between substrate concentration to rate of enzyme activity was evaluated. The results of this 
study were plotted as an enzyme activity versus substrate concentration (Fig. 9e) and the same results were also 
plotted by constructing double reciprocal lineweaver–burke plot (Fig. 9f). Both these graphs help to identify the 

Figure 5.  Protein–ligand interaction root-mean-square-deviation (RMSD) and root-mean-square-fluctuation 
(RMSF) profile of (a) AChE1-ACh complex RMSD (b) AChE1-ACh complex RMSF (c) AChE1-malathion 
complex RMSD (d) AChE1-malathion complex RMSF (e) AChE1-curcumin complex RMSD (f) AChE1-
curcumin complex RMSF.
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Figure 6.  Protein–Ligand interaction profile for AChE1-ACh complex (a) Ligand contact points (b) Timeline 
representation.
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change in the  KM (Michaelis–Menten constant) of the enzyme reaction occurring in the presence of different 
concentrations of inhibitor (curcumin). Lineweaver–burke plot is more accurate in calculating the  KM of the 
enzyme reaction. In this plot the intersection of the negative extrapolation with the negative x-axis represents the 
‘–(1/KM)’. From this graph it is observed that as the concentration of curcumin increases the ‘–(1/KM)’ becomes 
larger (Fig. 9e). Making the subject of the formula to ‘KM’, it is observed that  KM value increases with increasing 
the concentration of curcumin, which is a characteristic nature of competitive inhibition. Thus, from the entire 
study it can be well deduced that, curcumin exhibit larvicidal activity and can inhibit Cx. pipiens larval AChE in 
the competitive manner which ultimate serves as its mode of action for larvicidal activity.

Figure 7.  Protein–Ligand interaction profile for AChE1-malathion complex (a) Ligand contact points (b) 
Timeline representation.
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Discussion
World Health Organization, as per their latest publication entitled “Global vector control response 2017–2030” 
claimed that mosquito-borne diseases have spreaded all through the globe and affects 350 million people world-
wide  annually1. Of all the mosquitoes that contribute the spread of diseases, Cx. pipiens holds a significant share 
along with An. gambiae. In particular, Cx. pipiens are notable transporters of west nile infection, saint louis 
encephalitis infections, avian intestinal sickness, and filarial  worms3.

Figure 8.  Protein–Ligand interaction profile for AChE1-curcumin (a) Ligand contact points (b) Timeline 
representation.
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Chemical pesticides such as organochlorine compounds, organophosphates, carbamates, pyrethroids and 
formamidines so categorized as second generation of chemical pesticides are cheap and are primarily used to 
curb seasonal outburst of mosquitoes by their use being as high as 1 million pounds a year  globally2. Such over-
whelming use of these chemicals comes with the cost. First, they enter the food chain by getting adsorbed on 
the edible plant parts like fruits and vegetables posing great health hazards for humans. Somehow for this reason 
humans shall not completely rely on chemical pesticides. Second, the progressive over exposure of chemical 
pesticide leads to evolutionary epigenetic adaptation in flies and mosquitoes leading to acquired resistance. The 
housefly strains (Musca domestica) serve as a classic example as they have developed resistance to virtually every 

Figure 9.  Result demonstration for in vivo and in vitro bioassay (a) Dose response curve for malathion and 
curcumin (b) in vitro AChE inhibition activity by pyridostigmine, malathion and curcumin, (c) in vivo AChE 
inhibition by malathion, (d) in vivo AChE inhibition by curcumin (e) Michaelis–Menten plot with different 
inhibitor (curcumin) concentration (for a–e; n = 4, error bars, standard error of mean) (f) Lineweaver-Burke plot 
representation of the MM equation.
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insecticide used against  them16. Last but not the least, their non-degrading nature leads to their bioaccumulation 
ultimately polluting agriculture soil which makes it important to develop new and safer alternatives.

While most of the carbamates and organophosphates available are AChE inhibitors like propoxur (Baygon), 
acephate, chlorpyrifos, bendiocarb, malathion, ethion, famphur, temephos abates or temephos sand  granules17; 
DDT and pyrethroids like resmethrin, permethrin or deltamethrin are axonic excitotoxins which act by inhibit-
ing the closure of voltage gated sodium channels in the axonal  membranes18; juvenile hormone binding protein 
mimicking methoprene is used which is an insect growth  regulator19; GABA receptors antagonists include 
avermectin, fipronil, chlordane heptachlor and phenyl pyrazole like compounds and many  more20. These com-
mercially available synthetic compounds possess exceptional long-term control over larvicidal activity. Of these, 
the most important activity is the inhibition of activity of protein AChE as it is a key enzyme responsible for 
terminating the nerve impulse transmission through synaptic pathway. The synaptic concentrations of ACh 
then builds up and hyperexcitation of the central nervous system occurs, composed of long discharges of action 
potentials arising from a single stimulus. The signs of intoxication include restlessness, hyperexcitability, trem-
ors, convulsions, and paralysis. Organophosphorus and carbamate are observed to be AChE potent  inhibitors4. 
Malathion is one of the most potent inhibitor of AChE and it is widely used to kill mosquitoes, and therefore due 
to its well-known inhibitory effect on AChE of  mosquitoes21, we have chosen it as positive control for in silico, 
in vitro and in vivo studies. Moreover, Malathion is also reported to interact with AChE of human, this is because 
the enzyme AChE of pests like insects and mosquitos is identical to that of  humans22. As most of the insecticides 
and larvicides resistance reports are about carbamates and organophosphates and we under this present study 
are trying to identify a particular phytochemical that can act as a potential substitute of these commercially 
available carbamates and organophosphates. Current research is built upon the rationale for identifying potential 
phytochemicals that inhibit ability to specifically bind to AChE1 protein and inhibit the same protein through 
competitive inhibition as its mode of action depicting larvicidal activity.

Many plants and their corresponding phytochemicals are known to potentially cause larval mortality. Shaa-
lan et al. have vividly described at length the potential phytochemicals that possess mosquitocidal potential 
in their  review8. Most of these phytochemicals also perform at par with the activity of commercially available 
synthetic larvicides, which leads to their promotion and suggestion for their use as herbal larvicide. Their failure 
in replacing the synthetic options happens so due to multiple underlying issues, like inability to prepare plant 
extracts or phytochemical extracts in bulk distribution quantities, insufficient application or larvicide or in 
excess of the recommended dosage. Another drawback is neglecting to study and gather experimental evidence 
regarding the mode of action of that particular phytochemical or plant extract in initiating larval  mortality8. 
Under current study we have put our efforts to fill this knowledge gap. We have evaluated ~ 1700 compounds 
from IMPPAT database for their ability to interact with AChE, which is the mode of action of several syn-
thetic pesticides. IMPPAT is the largest database on phytochemicals of Indian medicinal plants to date, and this 
resource is a culmination of the efforts to digitize the wealth of information contained within traditional Indian 
medicine. IMPPAT provides an integrated platform to apply cheminformatic approaches to accelerate natural 
product-based drug discovery. IMPPAT is also expected to enable application of system-level approaches towards 
future elucidation of mechanistic links between phytochemicals of Indian medicinal plants and their therapeutic 
 action14. We made use of in silico methods, which is efficient and advance approach to identify compounds for 
specific targets, in this case AChE. Current study is not the only one of its kind, there are several researchers 
who have made use of in silico approach for identifying leads for AChE. Natural compound, 2,3-dimethylma-
leic anhydride was previously reported to interact with AChE of cockroach and induce  mortality23. Synthesis 
of chemical compounds as derivatives of oxamide and fumaramide were developed making use of similar in 
silico approach for the inhibition of human AChE and other identical target butyrylcholinesterase (BuChE) for 
treating Alzheimer’s  disease24. We not only used routine protocols of docking, but we took a step beyond mak-
ing our in silico studies more robust by involving MM-GBSA calculations and MD simulations. The sub-atomic 
mechanics energies joined with the Poisson–Boltzmann or summed up Born and surface territory continuum 
solvation commonly referred as MM-PBSA and MM-GBSA strategies are mainstream ways to deal with gauge 
the free energy of the ligands to macromolecular proteins. They are normally founded on sub-atomic elements 
simulations of the protein–ligand complex and in this way possess both precision and computational exertion 
between exact scoring and severe catalytic bother  strategies25. The Prime module of Maestro used under present 
study, performs its own simulation based on the ‘best docked protein–ligand pose’ by using highly robust VSGB 
2.0 energy  model26. The MM-GBSA is applied to an enormous number of protein ligand interaction frameworks 
with tremendous success to validate the outcomes of molecular  docking13,27–30. Further, the accuracy proposed 
by the docking assessment for interaction occurring between ligand and protein would actually translates into 
reality or not is evaluated robustly by MD simulations. The MD simulations will reassure the interaction length, 
interaction types occur as predicted by docking or not. Docking will only predict the type of interaction that 
may occur between protein with a ligand for a given pose, but the strength of the interaction is not predicted, 
this limitation of molecular docking is overwhelmed by MD simulations. Moreover, the stability of the best 
docked pose of ligand with respect to its interacting protein can also be evaluated over a course of time under 
MD  simulations12,31–34. Further, validation of in silico studies were also done making use of in vitro AChE enzyme 
inhibition and then assessing the larvicidal activity of top hit using in vivo assay.

The study represents the phytochemicals, curcumin, tetrahydrocurcumin, desmethoxycurcumin, bisdemeth-
oxycurcumin, and ar-turmerone to show potentials to interact with AChE. The second level of in silico assessment 
using MM-GBSA and MD simulations showed curcumin to the top lead. Later, as represented in the results sec-
tion, curcumin’s efficacy to inhibit AChE was proved with in vitro assays and it also exhibited larvicidal activity on 
the larva of Cx. pipiens. There are reports suggesting curcumin to serve as  insecticide35,36 but there are no reports 
suggesting its interaction with AChE of mosquitoes, serving as its mode of action of its insecticidal activity and 
that too specifically on dipteran’s belonging to genus Culex. Curcumin is the most abundantly found curcuminoid 
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compound of turmeric (Curcuma longa), it is a phytochemical with bright yellow apparency. The second ranked 
compounds namely, tetrahydrocurcumin, desmethoxycurcumin, bisdemethoxycurcumin, and ar-turmerone are 
also reported to be found from the plant of turmeric. It is also reported that various derivatives of curcumin can 
inhibit AChE, Butyrylcholinesterase (BChE) and trypsin in  mammals37. Curcumin, till date has been perceived 
as a wonder natural compound by possessing traits such as anti-inflammatory, anti-cancer, anti-Alzheimer, while 
also to be effective for nervous system, respiratory, cardiovascular, gastrointestinal, urogenital, and metabolic 
disorders. The beneficial traits of curcumin is phenomenally represented in the review article published by Salehi 
and colleagues in the year  201938. To our interest, curcumin is previously reported to interact and inhibit the 
human AChE activity and therefore also known to serve as an anti-Alzheimer natural  medicine39–42. There are 
reports for curcumin to interact with human AChE even with in silico  assessments43,44. However, till date there 
are no reports suggesting the interaction of curcumin with the AChE of Cx. pipiens mosquito, and therefore 
this document serves as the first of its kind to represent the in silico, in vitro and in vivo assessment suggesting 
curcumin to interact with AChE of mosquito (Cx. pipiens) and inhibit its action and even serving as larvicide.

Materials and methods
Tertiary structure prediction through comparative homology modeling. AChE1 protein 
sequences (Accession Number: Q86GC8) of Cx. pipiens (house mosquito) was retrieved from UniProtKB 
(https:// www. unipr ot. org/ unipr ot/)45 in fasta format. SWISS-MODEL (http:// swiss model. expasy. org/)46, a pro-
tein modelling server, was used to predict the 3D structure for AChE1 of Cx. pipiens. The server developed 
homology models by performing a target-template sequence alignment using the BLASTp and HHBlits pro-
grams to search through template structures in Protein Data Bank (PDB)47,48 and SWISS-MODEL Template 
Library (SMTL) repositories. The model’s quality was evaluated by using Z scoring functions of Global Model 
Quality Estimation (GMQE) and Qualitative Model Energy Analysis (QMEAN), which were exclusively devel-
oped for SWISS-MODEL49.  MolProbity50 was used to develop Ramachandran plot and further evaluated the plot 
by determining the number of accepted and outlier amino acid residues of the proposed AChE1 protein model. 
The co-ordinates of ligand binding site on AChE1 modelled protein were determined using CASTp 3.0 server 
(Computed Atlas of Surface Topography of proteins)51 prior to molecular docking analysis.

Protein–ligand docking. Prior to docking, the AChE1 modelled protein was prepared in the Protein 
preparation wizard of Maestro, Schrödinger Release 2021–252. Protein preparation involves correcting charges, 
adding hydrogen bonds, assigning bond orders, filing missing loops and missing side chain residues to refine the 
3D structure. After inspecting the protein reports, the structure was additionally optimised and minimised with 
default parameters under OPLS-2005 (Optimized Kanhesia for Liquid Simulations) force  field53–55. Furthermore, 
Receptor Grid Generation wizard was used to generate the Glide docking grid box of size 10 Å × 10 Å × 10 Å at 
the centroid of the active cleft identified using CASTp 3.0 server at the co-ordinates − 79.11° on X axis, − 21.52° 
on Y axis and 95.70° on Z axis.

All the test ligands were retrieved in SDF format from Indian Medicinal Plants, Phytochemistry And Thera-
peutics (IMPPAT), a curated database which has been constructed via literature mining and manual curation 
from scientific literature on Indian medicinal  plants56. 3D conformations for the biological substrate acetylcholine 
(ACh) (CID:187) and known chemical inhibitor malathion (CID:4004) were also retrieved in SDF format from 
 PubChem57. LigPrep wizard of Schrödinger Release 2021-2 was used to prepare and minimize the ligands with 
 Epik58,59 at a physiological pH of 7.4 unit under OPLS-2005 force field. The output files prepared during ligand 
minimization were used for molecular docking.

Molecular docking was carried out in three phases: (a) High throughput virtual screening (HTVS), (b) 
Standard Precision (SP), and (c) Extra Precision (XP) using the virtual screening workflow of Glide module 
of Schrödinger Release 2021-2. HTVS allows minimum torsional refinement for the docked poses making the 
process overall rapid. While SP and XP enforce higher torsional refinement to pass through the docking funnel. 
XP also employs a more sophisticated scoring function than SP for protein–ligand shape complementarity mak-
ing this docking process robust. At each level of filteration, top 8% phytochemicals were screened from HTVS, 
SP and to XP. Out of all ~ 1700 phytochemicals, the top five screened lead compounds were selected following 
virtual screening based on docking score range (− 11.00 to − 7.00 kcal/mol).

End-point binding free energy change calculation. Binding energies were computed using the 
Molecular Mechanics-Generalized Born Surface Area (MM-GBSA)  method25,60,61. Application of this calcula-
tion is particularly important to determine binding free energy of biomolecular complexes like protein–ligand 
complex. The binding free energy was calculated according to the following equations:

where, ΔGBind is the free energy of the system resulting from the sum of the molecular mechanics energy 
(ΔEMM), solvation free energy (ΔGSolv), and entropy (− TΔS). MM-GBSA calculation was performed using 
the Prime module of Schrödinger Release 2021–262,63. ΔGBind is the binding free energy calculated as per MM-
GBSA. As the MM-GBSA binding energies are approximate free energies of binding, a more negative value 
indicates stronger binding and therefore ΔGBind of MM-GBSA is used to estimate relative binding affinity for 
a list of ligands (reported in kcal/mol). In brief, ΔGBind is the Gibbs free energy, that is residual enthalpy after 
subtracting entropy. The Prime module of Maestro used under present study, performs its own simulation based 
on the ‘best docked protein–ligand pose’ by using highly robust VSGB 2.0 energy mode.

(1)�GBind = �H − T�S ≈ �EMM +�GSolv − T�S

https://www.uniprot.org/uniprot/
http://swissmodel.expasy.org/
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In silico validation through molecular dynamics (MD) simulation. Systems like protein–ligand 
complexes are dynamic in nature and therefore analyzing their motions at the molecular and atomistic level 
using MD simulation is essential in understanding the key physicochemical phenomena. Three set of simula-
tions for AChE1-ligand complex were performed using Desmond  package34 of Schrödinger Release 2018–4 for 
a period of 50 ns each. The first set involves the best docked complex of AChE1-ACh, the second set involves 
the docked complex of AChE1-lead phytochemical from IMPPAT database, and the final set was of the known 
inhibitor AChE1-malathion docked complex, taken as control.

Initially the energy minimization of protein ligand complex was performed using OPLS-2005 force field, 
after which the system was build using TIP3P solvent model which specifies a 3-site rigid water molecule with 
charges and Lennard–Jones parameters assigned to each of the 3 atoms. Periodic boundary conditions (PBC) 
were setup by selecting the orthorhombic shape simulation box fitting the protein ligand complex with having 
15 Å buffer space around the periphery of the protein. Followed by neutralisation with placement of  Na+ ions 
and salt concentration of 0.15 M  Na+ and  Cl- counter ions to simulate the background salt and physiological 
conditions using OPLS-2005 force fields. Once the system gets incorporated, MD simulation was performed with 
NPT (constant Number of particles, Pressure, and Temperature) ensemble with 300 K temperature and 1.013 bar 
atomic pressure and default surface tension using Smooth Particle Mesh Ewald (PME) method to neutralise the 
electrostatic  interactions64. For the simulation time of 50 ns, the energy recording interval was set at 1.2 ps and 
1000 snapshots of the simulation trajectories were recorded. On completion of simulation, Desmond is integrated 
with a Simulation Interaction Diagram wizard which helps in analyzing the results for simulated trajectories.

Mosquito rearing. Test organism Cx. pipiens eggs were obtained from City Civic center of Ahmedabad 
Municipal Corporation (AMC) Gujarat, India. The filter paper containing the mosquito eggs was placed in 
a plastic tray with 100 ml distilled water and allowed to hatch into larvae during the next few days. The food 
source, photoperiod, temperature and relative humidity affect the development of the mosquito at various stages 
of its life  cycle65. During the developmental stages, the food consisted of high carbohydrate source with a mixture 
of yeast extract: dog biscuit: 10% sucrose solution (1:3:1), every day twice at relative interval. A photoperiod of 
14 h of daylight and 10 h of darkness was maintained in the laboratory during the course of entire experiment. 
The optimum temperature was maintained at 27 ± 2 °C with 70 ± 9% relative atmospheric humid condition as per 
the methodology followed in the published  literature66. Once the eggs hatched in water, mosquito larvae were 
transferred into a larger glass beaker with 1000 ml distilled water and food supplementation for rearing. The late 
3rd or early 4th instar stage of mosquito larvae were used for in vitro AChE inhibition assay as well as for in vivo 
larvicidal activity analysis.

In vitro acetylcholinesterase inhibition assay. For the AChE inhibition biochemical assay, enzyme 
was prepared by homogenizing Cx. pipiens larvae using 0.05 M phosphate buffer, pH 8.0 at 4  °C by using a 
homogenizer. The homogenate was centrifuged at 10,000 rpm for 15 min at 4 °C. The amount of total protein 
was  estimated67 from the crude enzyme and the collected supernatant was then used as an enzyme source for 
the assay.

AChE estimation assay was carried out through the optimised protocol by Ellman published in the year 1961 
with some minor  modifications68. The chemical components include (i) phosphate buffer (0.1 M, pH 8.0), (ii) 
the substrate acetylthiocholine iodide (0.1 M), (Sisco Research Laboratories Pvt. Ltd. (SRL), India) (iii) Ellman’s 
reagent (5,5’-dithiobis-(2-nitrobenzoic acid) or DTNB (0.01 M) (Sisco Research Laboratories Pvt. Ltd. (SRL), 
India) dissolved in phosphate buffer (0.1 M, pH 8.0) and (iv) the crude enzyme. The typical reaction mixture was 
prepared of 300.00 µl of buffer, 2.00 µl of substrate, 10.00 µl DTNB and 5.00 µl of enzyme. The blank for such a 
run consists of buffer, substrate and DTNB solution, while the control included every other reaction component 
except the substrate.

Furthermore, inhibitors were introduced in the reaction mixture for AChE inhibition assay. Pyridostig-
mine bromide was used as reference positive control while analytical grade malathion of brand name pestanal 
(Sigma-Aldrich Co, India) and curcumin (Sigma-Aldrich Co., India) were the test inhibitors for this study and 
their AChE inhibition activity was determined using their various concentration ranging from 10 to 250 µM. 
Change in absorbance was monitored at 412 nm for 13 min in a microplate reader (Synergy H1 Hybrid Multi-
Mode Microplate Reader, USA) and the assay was replicated thrice. Percentage AChE inhibition was calculated 
according to the following formula:

The rate of reaction, V (µmoles/L/min) for each inhibitor concentration was determined at various substrate 
concentrations [S] using the Michaelis–Menten plot and the nature of inhibition was speculated from the double 
reciprocal Lineweaver-Burke  plot69. The  IC50 value was calculated using the log-Probit analysis.

In vivo larval mortality assessment and AChE inhibition. Larvicidal bioassay was performed using 
late 3rd and early 4th instar larvae of Cx. pipiens, following the WHO prescribed guidelines for laboratory testing 
of  larvicides70. 0.05 M stock solution of curcumin and malathion were prepared, using which several working 
concentrations (50 to 250 µM) for both test compound was made. Bioassay was performed in a six-well plate 
(with lid 127.8 × 85.5 × 23.2 mm) and ten Cx. pipiens larvae were introduced into each well. Each plate had one 
well with 1 mL of acetone added with distilled water which served as control. All bioassays were carried out 
in a laboratory setup maintained at a temperature of 27 ± 2 °C with 70 ± 9% relative humidity. Mortality of the 

(2)% AChE Inhibition =
[

1−
(

sample reaction rate/blank reaction rate
)]

× 100
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tested larvae was recorded after 24 h of exposure. Larval mortality was recorded, and percentage mortality was 
calculated using the formula:

Each treatment was replicated thrice and the average larval mortality data was subjected to Probit  analysis71 
for calculating  LC50. Simultaneously, in vivo AChE inhibition assay was performed by exposing the larvae for 
30 min with the same working concentrations (ranging from 50 to 250 µM) of curcumin and malathion as 
inhibitors. After the exposure time, larvae were recovered and homogenized for subsequent AChE enzyme assay.

Data availability
All the relevant data is contained within the manuscript. Additional raw data will be available upon request.
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