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Matrine is an alkaloid isolated from the traditional Chinese medicine Sophora flavescens
Aiton. At present, a large number of studies have proved that matrine has an anticancer
effect can inhibit cancer cell proliferation, arrest cell cycle, induce apoptosis, and inhibit
cancer cell metastasis. It also has the effect of reversing anticancer drug resistance and
reducing the toxicity of anticancer drugs. In addition, studies have reported that matrine
has a therapeutic effect on Alzheimer's syndrome, encephalomyelitis, asthma, myocardial
ischemia, rheumatoid arthritis, osteoporosis, and the like, and its mechanism is mainly
related to the inhibition of inflammatory response and apoptosis. Its treatable disease
spectrum spans multiple systems such as the nervous system, circulatory system, and
immune system. The antidisease effect and mechanism of matrine are diverse, so it has
high research value. This review summarizes recent studies on the pharmacological
mechanism of matrine, with a view to providing reference for subsequent research.
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INTRODUCTION

Traditional Chinese medicine Kushen is the dry root of the leguminous plant Sophora flavescens
Aiton, which has a long history of medicinal use in China. It is commonly used in the clinical
treatment of traditional Chinese medicine for dysentery, eczema and pruritus. Compound Kushen
Injection is a common dosage form of Kushen for clinical application, and the main component of
Compound Kushen Injection is matrine. At present, Compound Kushen Injection has been put into
clinical application in the adjuvant treatment of lung cancer (Wang et al., 2016), breast cancer (Ao
et al., 2019), esophageal cancer (Zhang et al., 2018a), gastric cancer (Zhang et al., 2018b), colon
cancer (Yu et al., 2017; Yang et al., 2018), liver cancer (Ma X. et al., 2016), and pancreatic cancer
(Zhang et al., 2017). Compound Kushen injection is also used to relieve cancer-related pain (Guo
et al., 2015). Matrine (molecular formula: C15H24N2O, molecular weight: 248.36 g/mol), a
tetracyclo-quinolizindine alkaloid, is the main bioactive compound in Kushen, and more than 1
g of matrine can be extracted from 10 kg of Kushen (Lai et al., 2003; Liu X. J. et al., 2010). With the
deepening of modern pharmacological research, the medicinal value of matrine has been further
developed. At present, the basic researches on the antitumor and antiinflammatory effects of
matrine are in a large volume, indicating that matrine has various pharmacological activities and
potential for clinical application. In addition, matrine has a good prospect as a one-component drug
in clinical practice, and single-component drugs have certain advantages over traditional Chinese
in.org May 2020 | Volume 11 | Article 5881
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medicine injections in quality control. In this paper, we
summarized the pharmacological effects and mechanisms of
matrine in order to provide reference for the follow-up study.
Compared with the previous review of matrine (Rashid et al.,
2019; Li et al., 2020), this paper makes comprehensive
supplements of the pharmacological action and molecular
mechanism of matrine.
ANTICANCER ACTIVITY

The antitumor activity of matrine is mainly manifested in
inhibiting the proliferation of cancer cells, blocking cell cycle,
inducing apoptosis and inhibiting the metastasis of cancer cells.
At the same time, matrine can reverse the drug resistance of
anticancer drugs and reduce the toxicity of anticancer drugs. The
anticancer spectrum of matrine is very wide, and it can inhibit
many kinds of cancer cells. The anticancer effect and mechanism
of matrine are discussed in the following sections sorted by
cancer types.
Lung Cancer
Lung cancer has the largest number of deaths among all cancers,
and the 1-year survival rate of advanced patients is very low.
There is always a great need for treatment in lung cancer
(Blandin Knight et al., 2017). Matrine has a strong inhibitory
effect on lung cancer cells. Matrine can block the cell cycle of lung
cancer A549 cells in G1/G0 phase, upregulate the expression of
microRNA (miR)-126, and then downregulate the expression of
miR-126 target gene vascular endothelial growth factor (VEGF)
and induce apoptosis (An et al., 2016). Matrine can also
upregulate the expression of p53 and p21 and downregulate
the expression levels of proliferating cell nuclear antigen (PCNA)
and eukaryotic initiation factor 4E (eIF4E) to inhibit
proliferation and migration (Lu et al., 2017). Matrine induces
apoptosis in lung cancer cells, and also downregulates the
expression of inhibitor of apoptosis protein (IAP) (Niu et al.,
2014) and regulates the protein kinase B/glycogen synthase
kinase-3b (AKT/GSK-3b) signaling pathway by regulating
phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian
rapamycin target protein (mTOR) signaling pathway (Xie
et al., 2018). For A549, NCI-H358 cells, matrine activates the
p38 pathway by inducing reactive oxygen species (ROS)
production, leading to caspase-dependent apoptosis, and
inhibition of the p38 pathway by SB202190 partially prevents
matrine-induced apoptosis (Tan et al., 2013). Matrine can also
inhibit the proliferation and migration of lung cancer LA795
cells by regulating transmembrane protein 16A (TMEM16A),
and inhibit the tumor growth of LA795 transplanted tumor mice
(Guo et al., 2018a). Epithelial-mesenchymal transition (EMT) is
closely related to tumor metastasis. Matrine can inhibit EMT and
inhibit metastasis in nonsmall cell lung cancer by inhibiting the
expression of paired box 2 (PAX2) (Yang J. et al., 2017). In the
aspect of antilung cancer resistance, matrine can reverse the
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cisplatin-resistant lung cancer cells against apoptosis by
regulating the b-catenin/survivin signaling pathway (Wang
et al., 2015a). The development of epidermal growth factor
receptor (EGFR) inhibitors is one of the difficulties in the
treatment of lung cancer with EGFR mutation. Matrine
treatment can reduce the expression of IL6, inhibit the
activation of Janus tyrosine kinase/signal transducer and
activator of transcription 3 (JAK1/STAT3) signaling pathway,
decrease the expression of B-cell lymphoma-2 (Bcl2), inhibit cell
growth, induce apoptosis, and enhance the inhibitory effect of
afatinib on H1975 cells (Chen et al., 2017).
Breast Cancer
Shao et al. (2013) reported that matrine can inhibit the
proliferation of breast cancer MCF7, BT-474, and MDA-MB-
231 cells, which may be related to the inhibition of inhibitory k B
kinase b (IKKb) regulation of nuclear factor k B (NF-kB)
signaling pathway. Matrine can induce endoplasmic reticulum
stress in MCF-7 cells, downregulate the expression of hexokinase
II, inhibit energy metabolism, promote apoptosis (Xiao et al.,
2017), and reverse the drug resistance of MCF-7/ADR cells.
Adriamycin (ADR) accumulates in cells and induces apoptosis in
MCF-7/ADR cells by modulating the PI3K/AKT signaling
pathway (Zhou B. G. et al., 2018). Matrine can also regulate
Wnt/b-catenin signaling pathway, inhibit the expression of
VEGF, thereby inhibiting the proliferation of breast cancer
4T1, MCF-7 cells, inducing apoptosis, and inhibiting tumor
growth in 4T1 tumor-bearing mice (Xiao et al., 2018).
Liver Cancer
Matrine can induce mitochondrial dysfunction in HepG2 cells,
cause oxidative stress in cells, destroy cell energy metabolism,
initiate endogenous apoptosis by regulating Mammalian STE20-
like protein kinase 1/c-Jun NH2-terminal kinase (MST1/JNK)
signaling pathway (Cao et al., 2019), and also inhibit mitosis
through PINK1/PARKIN pathway, then promote apoptosis
(Wei R. et al., 2018). Matrine is also capable of inducing
caspase-independent programmed cell death via Bid-mediated
AIF translocation (Zhou et al., 2014). Matrine can also induce
autophagy in HepG2 cells and MHCC97L cells (Zhang et al.,
2010; Yang and Yao, 2015). In hepatocellular carcinoma HepG2
cells, AMP-activated protein kinase (AMPK) signaling inhibits
p53 and inhibits autophagy. After AMPK is inhibited, autophagy
is converted to apoptosis (Xie et al., 2015). In addition, matrine
has a proliferation inhibitory effect on cisplatin-purified liver
cancer SMMC-7721 stem cell-like SMMC-7721-sphere cells
(Wang H. et al., 2018). In addition, matrine can inhibit the
migration and invasion of hepatoma cells by EMT via the
Phosphatase and tensin homology deleted on chromosome ten
(PTEN)/AKT pathway (Wang Z. et al., 2018). Matrine combined
with resveratrol can better inhibit the proliferation of hepatoma
cells and induce cell cycle arrest and endogenous apoptosis (Ou
et al., 2014). When matrine combined with sorafenib, apoptosis
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of hepatocarcinoma cells can be induced by inhibiting miR-21
and upregulating PTEN expression (Lin et al., 2014).

Cholangiocarcinoma/Gallbladder
Carcinoma
Matrine can induce choline cancer cell necrosis by increasing
ROS production via the receptor-interacting protein 3/mixed
lineage kinase domain like protein (Rip3/MLKL) pathway (Xu
et al., 2017), and can also induce mitochondria-associated
endogenous apoptosis in cholangiocarcinoma cells via the
JAK2/STAT3 pathway (Yang et al., 2015). For gallbladder
cancer cells, matrine can also inhibit proliferation and induce
cell cycle arrest and apoptosis (Zhang et al., 2012).

Pancreatic Cancer
Pancreatic cancer is the lowest 5-year survival rate of all solid
tumors and is expected to be the second leading cause of cancer-
related deaths in the United States by 2030 (Moffat and Epstein,
2019). Matrine can inhibit the proliferation and migration of
pancreatic cancer Panc-1 cells, induce ROS production, and
induce apoptosis, which is related to ROS/NF-kB/matrix
metalloproteinase (MMP) pathway (Huang and Xin, 2018).
Matrine can also inhibit the proliferation of KRAS-mutated
pancreatic cancer MIAPACA2 and 8988T cells, inhibit
autophagy by downregulat ing STAT3, and inhibi t
mitochondrial energy production (Cho et al., 2018). Ma Y.
et al. (2015) reported that matrine downregulates the
expression of MT1-MMP via Wnt signaling pathway and
inhibits pancreatic cancer cell migration and invasion. Matrine
can inhibit the expression of PCNA and induce apoptosis in
BxPC-3 and Panc-1 cells, and has no significant effect on human
normal liver HL-7702 cells at the same dose. It can inhibit the
growth of tumor xenograft tumors in vivo (Liu T. et al., 2010).

Gastric Cancer
Matrine can inhibit the proliferation and migration of gastric
cancer SGC7901 cells by PI3K/AKT/uPA pathway (Peng et al.,
2016). Matrine acts on gastric cancer SGC7901 cells, and miRNA
screening revealed increased levels of eight miRNAs in the cell
cycle pathway of target gene aggregation, while levels of 14
miRNAs in target mitogen-activated protein kinase (MAPK)
signaling pathways were reduced (Li H. et al., 2014). Matrine can
regulate the structure and subcellular distribution of vasodilator-
stimulated phosphoprotein (VASP) in gastric cancer BGC823
cells, thereby inhibiting the adhesion and migration of cancer
cells (Zhang et al., 2013). It has been reported that matrine can
induce autophagy in gastric cancer SGC7901 cells, and at the
same time, it can block the process of autophagy degradation by
impairing the activity of lysosomal proteases, thus inducing
death (Wang et al., 2013). However, studies have reported that
matrine also induces protective autophagy, in which process
matrine treatment does not directly inhibit the expression of
AKT and its downstream effector mTOR and phosphorylation of
p70 ribosomal protein S6 kinase (p70S6K), and inhibition of
autophagy can enhance the killing of gastric cancer cells by
matrine (Li et al., 2013).
Frontiers in Pharmacology | www.frontiersin.org 3
Colon Cancer
Matrine can induce cell cycle arrest in G1/G0 phase and induce
apoptosis in human colorectal cancer cell lines LS174T, Caco-2,
SW1116, and Rko. Compared with oxaliplatin, matrine The
LS174T nude mouse xenograft model has less influence on
physical strength and body weight (Gu et al., 2018). Matrine
can inhibit tumor growth in rats with colorectal cancer model,
which is associated with inhibition of high mobility group
protein box 1 (HMGB1) signaling pathway (Fan et al., 2018).
For both LoVo cells and HT29 cells, matrine can also induce
apoptosis (Chang et al., 2013; Zhang et al., 2014).

Prostate Cancer
Li et al. (2018) used the Hiseq 2500 high-throughput sequencing
platform to screen the proliferation inhibition mechanism of
matrine on prostate cancer PC-3 and DU145 cells. The results
showed that matrine inhibited cell proliferation, migration, and
invasion through Forkhead box protein O (FoxO) and PI3K/
AKT signaling pathways. Induction of apoptosis. Studies have
shown that matrine upregulates gadd45b expression via p38/
JNK, ROS/gadd45b/p38 pathway, inhibits proliferation and
migration of prostate cancer DU145, PC3 cells, and induces
apoptosis (Huang et al., 2018), which is also associated with NF-
kB pathway (Li Q. et al., 2016). Matrine can inhibit the
proteasome CTLIKE activity by activating the unfolded protein
response/endoplasmic reticulum (UPR/ER) pathway, arresting
the cell cycle in the G0/G1 phase, inducing apoptosis of prostate
cancer cells, and inhibiting tumor growth in vivo (Chang et al.,
2018). The inhibition of matrine on PC-3 cells is also associated
with the regulation of Bim and p27 expression (Bai et al., 2017).
However, studies have shown that matrine can inhibit tumor
growth in DU145 xenograft model mice, but it is not effective in
PC-3 xenograft model mice (Huang et al., 2017).

Osteosarcoma
Matrine can induce apoptosis in human osteosarcoma MG-63
cells, but it also induces protective autophagy in MG-63 cells
through extracellular signal-regulated kinase (ERK) signaling
pathway, and inhibition of autophagy with chloroquine can
enhance killing (Ma K. et al., 2016). Matrine also inhibits
osteosarcoma cell proliferation and migration via the ERK/NF-
kappaB signaling pathway (Li Y. et al., 2014). Matrine can also
inhibit the growth of MNNG/HOS xenografts in vivo (Liang
et al., 2012).

Leukemia
Matrine can inhibit the expression of hsa-mir-106 b-3p and
upregulate the expression of CDKN1A in human acute
lymphoblastic leukemia (ALL) cell line CCRF-CEM, thereby
blocking the cell cycle at G0/G1 phase and inducing apoptosis
(Tetik et al., 2018). Matrine can increase the production of ROS
in human acute lymphoblastic leukemia B cells, leading to
mitochondrial swelling and mitochondrial membrane potential
decline, thus inducing apoptosis (Aghvami et al., 2018). Matrine
can also inhibit the proliferation of AML cells by inducing
apoptosis and autophagy, and inhibit the phosphorylation of
May 2020 | Volume 11 | Article 588
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AKT, mTOR, and their downstream substrates p70S6K and
eukaryotic translation initiation factor 4E binding protein 1
(eIF4EBP1) (Wu J. et al., 2017). Matrine can also upregulate
the expression of NKG2D ligand (NKG2DL) in leukemia cell
lines and primary leukemia cells, and enhance the killing effect of
NK and CIK cells on leukemia K562 cells (Zhang L. et al., 2015).
The killing effect of Matrine on K562 cells is also related to
interleukin-6 (IL-6)/JAK/STAT3 pathway (Ma L. et al., 2015).

Other Cancers
Matrine can effectively inhibit the growth of glioblastoma
multiforme (GBM) cells in vitro by inducing cell senescence,
and downregulate the expression of insulin-like growth factor
(IGF1), PI3K, and p-AKT. In an orthotopic xenograft model
established by u251 and p3 cells transfected with luciferase,
matrine inhibited tumor growth, and prolonged the overall
survival of the animal model (Zhou W. et al., 2018). In
addition, matrine can inhibit glioma cell metastasis and EMT,
accompanied by inhibition of p38 MAPK and AKT signaling
pathways (Wang et al., 2015b).

Matrine can induce mitochondrial-related endogenous
apoptosis in retinoblastoma cells (Shao et al., 2014).

Matrine can regulate NF-kB to inhibit the migration and
invasion of nasopharyngeal carcinoma cells (Sun and Xu, 2015).

Matrine can inhibit the proliferation of esophageal cancer
Kyse-150 cells, induce ROS production and induce apoptosis.
Matrine can destroy F-actin and nuclear structure.
Morphological observation showed that the roughness and
surface height of cell membrane increased with the increase of
drug concentration (Jiang et al., 2018). Wang et al. (2014)
reported that matrine acted on Eca-109 cells, induced
apoptosis by upregulating p53 and p21, and arrested cell cycle
in G0/G1 phase.

Matrine can significantly inhibit the proliferation and
migration of cervical cancer cells by inhibiting p38 signaling
pathway and inducing apoptosis (Wu X. et al., 2017).

Cisplatin is one of the first-line drugs for the treatment of
urothelial bladder cancer (UBC), but its side effects and drug
resistance become the limitations of its application. When the
ratio of matrine to cisplatin was 2,000:1, it could synergistically
inhibit UBC cells. The combination of the two drugs can inhibit
the proliferation, invasion and EMT of UBC cells, induce cell
cycle arrest and apoptosis, which is related to the signal pathway
of VEGF/PI3K/AKT (Liao et al., 2017).

Matrine can inhibit the proliferation of rhabdomyosarcoma
cells by inhibiting ERK signaling pathway and induce apoptosis
(Yan et al., 2017). In combination with cisplatin, matrine can
downregulate the expression of X-linked IAP (XIAP) and induce
the apoptosis of rhabdomyosarcoma RD cells (Li L. et al., 2016).

Matrine combined with CYC116 can inhibit the proliferation
of multiple myeloma RPMI8226 cells and induce apoptosis
through PI3K/AKT pathway (Zhou et al., 2015).

It has been reported that matrine can inhibit the expression of
miR-19b-3p and then upregulate PTEN, inhibit the proliferation
and invasion of human A375 and SK-MEL-2 melanoma cell
lines, and induce apoptosis (Wei Y. et al., 2018). Matrine can also
Frontiers in Pharmacology | www.frontiersin.org 4
upregulate PTEN expression and induce apoptosis in M21 cells
(Jin et al., 2013).

Antitumor related studies of matrine are summarized in
Table 1, and the mechanisms of actions are summarized in
Figure 1.
NONANTICANCER ACTIVITIES

Matrine has therapeutic effects on Alzheimer's syndrome,
encephalomyelitis, asthma, myocardial ischemia, rheumatoid
arthritis (RA), and osteoporosis in vitro and in vivo. The
spectrum of treatable diseases extends to many systems, such
as nervous system, circulatory system, immune system and so on.
Its mechanism is mainly to inhibit inflammation, reduce
oxidative stress, regulate autophagy and apoptosis, etc. The
antidisease effects and mechanisms of matrine are discussed in
human body system and disease subsection below.

Neurological Diseases
Alzheimer's Syndrome
It is estimated that 24 million people worldwide suffer from
dementia, most of whom are thought to have Alzheimer's disease
(AD). Therefore, AD is a major public health problem and a
recognized research focus. Innovative therapies are urgently
needed to cure or alleviate the disease (Ballard et al., 2011).
Matrine has the potential to treat Alzheimer's syndrome. Matrine
can inhibit the cytotoxicity induced by Ab42, inhibit the Ab/
RAGE signaling pathway in vitro. Matrine reduces the deposition
of proinflammatory cytokines and Ab in AD transgenic mice and
reduces memory deficit (Cui et al., 2017). It has been reported
that matrine can reverse the changes of Th17/Treg cytokines
induced by Ab42 injection in AD rats, downregulate the
expression of retinoid-related orphan receptor gt (RORgt),
upregulate the expression of fork head box p3 (Foxp3), a
specific transcription factor of Th17 cells, improve the learning
and memory abilities of AD rats, and alleviate the cognitive
impairment of AD rats (Zhang Y. et al., 2015).

Cerebral Ischemia
Matrine can alleviate cerebral ischemic injury, reduce the level of
malondialdehyde (MDA), upregulate the expression of
superoxide dismutase (SOD), glutathione peroxidase (GSH-
px), catalase (CAT), and inhibit the apoptosis of ischemic
neurons (Zhao et al., 2015).

Spinal Cord Injury/Encephalomyelitis
Matrine can promote axon growth and functional recovery in
spinal cord injury (SCI) mice. Through drug affinity response
target stability (DARTS) system screening, Matrine can directly
bind heat shock protein 90 (HSP90), through neutralization.
Specific blockade of anti-HSP90 by antibody can inhibit the
growth of axons induced by matrine, suggesting that the
improvement of SCI by matrine depends on the regulation of
HSP90 (Tanabe et al., 2018). Matrine can also upregulate the
expression of protein lipid protein, increase the number of
May 2020 | Volume 11 | Article 588
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TABLE 1 | Antitumor studies of matrine.

Diseases Models Effects Mechanisms References

Lung cancer A549 cells Apoptosis↑, proliferation↓,
cell cycle arrest

miR-126↑, VEGF↓ (An et al., 2016)

Apoptosis↑, proliferation↓,
migration↓

p53↑, p21↑, PCNA↓, eIF4E↓ (Lu et al., 2017)

A549, 95D cells Apoptosis↑, proliferation↓ cIAP↓, p-AKT↓ (Niu et al., 2014)
A549, NCI-H358 cells ROS generation↑,

apoptosis↑, proliferation↓
Cleaved caspase3↑, cleaved PARP↑, bcl-2↓, bad↑, p-
p38↑

(Tan et al., 2013)

A549, H1299 cells Apoptosis↑, proliferation↓,
migration↓

p-AKT↓, p-GSK3b↓ (Xie et al., 2018)

LA795 cells; LA795 tumor bearing
BALB/c mice

Proliferation↓, migration↓,
tumor volume↓

TMEM16A↓ (Guo et al., 2018a)

A549, H1299 cells Proliferation↓, migration↓,
EMT↓

PAX2↓, N-cadherin↓, E-cadherin↑, MMP2↓, MMP9↓ (Yang J. et al.,
2017)

A549, H460 cells Apoptosis↑, proliferation↓ p-GSK3b↓, p-b-catenin↓, survivin↓, caspase3↑,
caspase9↑

(Wang et al.,
2015a)

Lung cancer
(Matrine&afatinib)

H1975 cells; H1975 tumor bearing
male BALB/c nude mice

Apoptosis↑, proliferation↓,
tumor volume↓

p-JAK1↓, p-STAT3↓, IL6↓ (Chen et al., 2017)

Breast cancer MCF-7, BT-474, MDA-MB-231 cells Proliferation↓ IKKb↓ (Shao et al., 2013)
MCF-7 cells Apoptosis↑, proliferation↓, GRP78↑, eIF2a↑, CHOP↑, cyto-cyt-C↑, hexokinase II↓ (Xiao et al., 2017)
4T1, MCF-7 cells; 4T1 tumor bearing
BALB/c mice

Apoptosis↑, proliferation↓,
tumor volume↓

Cleaved caspase9↑, cleaved caspase3↑, cyt-C↑,
VEGF↓, wnt1↓, b-catenin↓, cyclin D1↓, c-Myc↓

(Xiao et al., 2018)

MCF-7/ADR cells Apoptosis↑, proliferation↓,
intracellular concentration
of ADR↑

p-gp↓, MRP1↓, p-AKT↓, bcl-2↓, PTEN↑, bax↑, cleaved
caspase-3↑

(Zhou B. G. et al.,
2018)

Liver cancer HepG2, Huh7 cells Apoptosis↑, viability↓,
migration↓,proliferation↓,
mitochondrial fission↑,
cellular oxidative stress↑

Cleved caspase3↑, PARP↑, cadherin↓, vimentin↓,
cyclin D1↓, CDK4↓, ROS↑, GSH↓,SOD↓, mito-Cyt C↓,
Cyto-Cyt C↑,bax↑, caspase9↑, bad↑, bcl-2↓, c-IAP↓,
mst1↑, p-JNK↑

(Cao et al., 2019)

HepG2 cells Apoptosis↑, proliferation↓,
migration↓, mitophagy↓

Cleaved caspase3↑, PARP↑, cadherin↓, vimentin↓,
cyclin D1↓, CDK4↓, mito-Cyt C↓, cyto-Cyt C↑, bax↑,
caspase9↑, bcl-2↓, CIII-core2↓, CII-30↓, CIV-II↓, LC3-
II↓, Atg5↓, vps34↓, PINK1↓, PARKIN↓

(Wei R. et al., 2018)

HepG2 cells; HepG2 tumor bearing
female BALB/c nude mice

Apoptosis↑, proliferation↓,
tumor volume↓

Mito-cyt-C↓, cyto-cyt-C↑, HSP60↑, fas↑, fasL↑, mito-
AIF↓, cyto-AIF↑, nuc-AIF↑

(Zhou et al., 2014)

HepG2 cells Apoptosis↑, proliferation↓,
autophagy↑

Bax↑, beclin1↑ (Zhang et al., 2010)

MHCC97L, Huh-7 cells; MHCC97L
tumor bearing male BALB/c nude
mice

Apoptosis↑, autophagy↑,
proliferation↓,

Cleaved caspase3↑, cleaved caspase9↑, cleaved
PARP↑, p62↓, LC3II↑, beclin1↑, PI3KC3↑, p-JNK↑,
bcl-XL↑, bax↑, bak↑

(Yang and Yao,
2015)

HepG2, SMMC7721 cells Apoptosis↑, proliferation↓,
autophagy↑

LC3II↑, p62↓, p-AKT↓, p53↓, p-ACC↑, CASP1↑,
IFI27↑, IFITM1↑

(Xie et al., 2015)

SMMC-7721-sphere cells Proliferation↓ CAR↑, E-cadherin↑, laminin↑, fibronectin↑ (Wang H. et al.,
2018)

Huh-7 cells Proliferation↓, migration↓,
EMT↓

Cadherin↓, vimentin↓, Slug↓,Snail↓, MMP2↓, MMP9↓,
PTEN↑, p-AKT↓

(Wang Z. et al.,
2018)

Liver cancer
(Matrine&resveratrol)

HepG2 cells Apoptosis↑, proliferation↓,
ROS generation↑

Survivin↓, PARP↑, bax↑, bcl-2↓ (Ou et al., 2014)

Liver cancer
(Matrine&sorafenib)

HepG2, Hep3B cells Apoptosis↑, proliferation↓ Cleaved caspase3↑, cleaved PARP↑, PTEN↑, miR-21↓ (Lin et al., 2014)

Cholangiocarcinoma Mz-ChA-1, QBC939 cells Necrosis↑, proliferation↓,
ROS generation↑

RIP3↑ (Xu et al., 2017)

Mz-ChA-1, KMCH-1 cells Apoptosis↑, proliferation↓ Mito-cyto-C↓, cyto-cyto-C↑, caspase9↑, caspase3↑,
p-JAK2↓, p-STAT3↓, Mcl-1↓

(Yang et al., 2015)

Gallbladder
carcinoma

GBC-SD cells Apoptosis↑, proliferation↓,
cell cycle arrest

cleaved caspase3↑, bax↑, bcl-2↓, cyclin E↓ (Zhang et al., 2012)

Pancreatic cancer Panc-1 cells Apoptosis↑, proliferation↓,
migration↓, EMT↓, cell
cycle arrest, ROS
generation↑

MMP-9↓, MMP-2↓, E-cadherin↓, N-cadherin↓,
vimentin↓, p-IkBa↓, p-p65↓,

(Huang and Xin,
2018)

MIAPACA2, 8988T cells; 8988T
tumor bearing female SCID mice

Proliferation↓, autophagic
degradation↓, tumor
volume↓

p-STAT3↓, p62↑ (Cho et al., 2018)

(Continued)
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TABLE 1 | Continued

Diseases Models Effects Mechanisms References

HPAC, Capan-1 cells Proliferation↓, migration↓ MTI-MMP↓, MMP-2↓, MMP-9↓, Wnt↓, b-catenin↓ (Ma Y. et al., 2015)
BxPC-3, Panc-1 cells; BxPC-3 tumor
bearing male nude BALB/c mice

Apoptosis↑, proliferation↓,
tumor volume↓

PCNA↓, cleaved caspase3↑, cleaved caspase9↑,
cleaved caspase8↑, bax↑, bcl-2↓, fas↑

(Liu T. et al., 2010)

gastric cancer SGC7901 cells Proliferation↓, migration↓ p-ERK↓, p-AKT↓, uPA↓ (Peng et al., 2016)
SGC-7901 cells Proliferation↓ Regulating cell cycle, MAPK signaling pathway related

miRNAs
(Li H. et al., 2014)

BGC823 cells Proliferation↓, migration↓ p-VASP↓, VASP↓ (Zhang et al., 2013)
SGC7901, BGC823 cells Autophagy induction↑,

autophagic degradation↓
LC3-II↑, p62↑, procathepsin↑ (Wang et al., 2013)

SGC7901 cells Apoptosis↑, proliferation↓,
autophagy↑

p-AKT↑, p-mTOR↑, p-P70S6K↑ (Li et al., 2013)

Colon cancer LS174T, Caco-2, SW1116, RKO
cells; LS174T tumor bearing BALB/c
male nude mice

Apoptosis↑, proliferation↓,
cell cycle arrest, tumor
volume↓, tumor weight↓

Bcl-2↓, bax↑, cleaved caspase3↓ (Gu et al., 2018)

1,2-dimethylhydrazine
dihydrochloride treated male
WISTAR rats

Tumor volume↓ HMGB1↓, IL-6↓, TNF-a↓ (Fan et al., 2018)

LoVo cells Apoptosis↑, proliferation↓ Cyclin D1↓, p27↑, p21↑, cleaved caspase9↑, bax↑,
bcl-2↓, p-AKT↓, p-GSK3b↓

(Zhang et al., 2014)

HT29 cells apoptosis↑, proliferation↓,
cell cycle arrest

cleaved caspase3↑, cleaved caspase9↑, bax↑, bcl-2↓,
mito-cyt-C↓, cyto-cyt-C↑

(Chang et al., 2013)

Prostate cancer DU145, PC-3 cells Apoptosis↑, proliferation↓,
migration↓

FOXO1a↓, FOXO3a↓, FOXO4↓, FOXO6↓, PI3K↓ (Li et al., 2018)

DU145, PC3 cells Apoptosis↑, proliferation↓,
migration↓

Gadd45b↑ (Huang et al., 2018)

DU145, PC3 cells; DU145 tumor
bearing male BALB/c nude mice

Apoptosis↑, proliferation↓,
migration↓, cell cycle
arrest, EMT↓

E-cadherin↑, N-cadherin↓, vimentin↓, p-eIF2a↑,
ATF4↑, CHOP↑, c-myc↓, bcl-2 ↓, bak↑, cleaved
PARP↑

(Chang et al., 2018)

DU145, PC-3 cells; DU145, PC-3
tumor bearing male BALB/c nude
mice

Proliferation↓, migration↓,
tumor volume in DU145
tumor bearing mice↓

p-MMP2↓, p-MMP9↓, p-p65↓ (Huang et al., 2017)

PC-3 cells; Prostate epithelial cells
RWPE1

Apoptosis↑, proliferation↓,
cell cycle arrest

p27↑, CDK4↓, CDK2↓, bax↑, bim↑, bcl-2↓, p-AKT↓, p-
FOXO3a↓

(Bai et al., 2017)

DU145, PC-3 cells Apoptosis↑, proliferation↓,
cell cycle arrest

p-p65↓, p-IKKa/b↓, p-IkBa↓ (Li Q. et al., 2016)

Osteosarcoma MG-63 cells Apoptosis↑, proliferation↓,
autophagy↑

p-ERK↑, LC3-II↑, bax↑ (Ma K. et al., 2016)

SaOS-2, U2OS, MG-63 cells; U2OS
tumor bearing male BALB/c nude
mice

Proliferation↓, migration↓, MMP-2↓, MMP-9↓, p65↓, p50↓, IkB-b↓, p-ERK↓ (Li Y. et al., 2014)

MG-63, U-2OS, Saos-2, MNNG/
HOS cells; MNNG/HOS tumor
bearing female BALB/c mice

Apoptosis↑, proliferation↓,
tumor volume↓

Cleaved caspase3↑, cleaved caspase9↑, cleaved
caspase8↑, fas↑, fasL↑, bax↑, bcl-2↓

(Liang et al., 2012)

Leukemia CCRF-CEM cells Cell cycle arrest,
apoptosis↑, proliferation↓

Hsa-mir-106b-3p↓, CDKN1A↑, (Tetik et al., 2018)

human ALL B-lymphocytes Apoptosis↑, proliferation↓ Bax↑, bcl-2↓ (Aghvami et al.,
2018)

HL-60, THP-1, C1498 cells; C1498
tumor bearing C57BL/6 mice

Apoptosis↑, proliferation↓,
autophagy↑, cell cycle
arrest, spleen weight↓,
survival↑

p62↓, LC3-II↑, PARP↑, cleaved caspase3↑, p-AKT↓,p-
mTOR↓

(Wu J. et al., 2017)

K562, OUN-1, HL-60, U937,
K562/AO2 cells

NK and CIK cytotoxicity↑ NKG2DL↑, IL-6, IL-1, IL-2, IL-4, IL-5, GRO and TNF-
a↓, CD158a ↓,CD158b↓

(Zhang L. et al.,
2015)

K562 cells Apoptosis↑, proliferation↓,
cell cycle arrest

Bcl-XL↓, cyclin D↓, c-myc↓, p-JAK2↓, p-STAT3↓, IL-
6↓

(Ma L. et al., 2015)

Glioma human glioma cell lines (U251, TCHu
58, U87MG, TCHu138); GFP-
luciferase- stable U251 and P3
glioma cells bearing athymic mice

Proliferation↓, cell cycle
arrest, induce cellular
senescence, tumor
growth↓, animal model
survival↑

IGF1↓, PI3K↓, p-AKT↓ (Zhou W. et al.,
2018)
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mature oligodendrocytes and promote the formation of axonal
myelin sheath in mice with autoimmune encephalomyelitis,
which is related to PI3K/AKT/mTOR signaling pathway (Liu
S. Q. et al., 2017). Matrine acts on experimental autoimmune
encephalomyelitis (EAE) rats, which can upregulate the level of
NGF and its receptor TrkA, inhibit the apoptosis of
oligodendrocyte (OLG), and delay the course of disease (Zhu
et al., 2016). In addition, this effect is also related to the
downregulation of IL-33/ST2 expression in spinal cord of EAE
rats (Zhao et al., 2016).

Respiratory Diseases
Asthma
Matrine inhibits NF-kB signaling in airway epithelial cells and
asthmatic mice, downregulates the expression of cytokine
signaling 3 (SOCS3), and inhibits airway inflammation (Sun
et al., 2016). Matrine can significantly reduce airway
hyperresponsiveness (AHR) in asthmatic mice, and inhibit
goblet cel l hyperplasia , eosinophil infi l trat ion and
inflammatory response in lung tissue of asthmatic mice.
Matrine also reduced the levels of Th2 cytokines and
chemokines in bronchoalveolar lavage fluid and inhibited the
production of OVA-IgE in serum. In addition, matrine treatment
of activated BEAS-2B cells reduces the production of
proinflammatory cytokines and eosinophil chemokines, as well
as inhibits intercellular cell adhesion molecule (ICAM-1)
expression and thus inhibits the adhesion of eosinophils and
inflammatory BEAS-2B cells in vitro. Matrine can improve
Frontiers in Pharmacology | www.frontiersin.org 7
allergic asthma in mice and therefore has potential therapeutic
potential (Huang et al., 2014).

Lung Injury
Matrine protects LPS-induced acute lung injury by inhibiting
inflammatory responses, which may involve inhibition of ROS
and tissue oxidative stress (Zhang et al., 2011).

Circulatory Diseases
Cardiac Fibrosis
Cardiac fibrosis is one of the pathological features of diabetic
cardiomyopathy (DBCM). Matrine can block transforming
growth factor b1/receptor-regulated Smad (TGFb1/RSMAD)
signal transduction, inhibit collagen production and deposition
in cardiac tissue, and alleviate high glucose-induced left ventricle.
Impaired function and cardiac compliance (Zhang et al., 2018c).
High glucose incubation induced activating transcription factor 6
(ATF6) signaling activation in CFS cultured in vitro, thereby
increasing ECM synthesis. Matrine can inhibit ATF6, reduce
myocardial fibrosis, and improve left ventricular function (Liu
et al., 2017b).

Myocardial Ischemia
Myocardial ischemia is an important pathological process of
coronary artery disease and has an important impact on
cardiovascular outcomes (Rezende et al., 2019). Control of
myocardial ischemia plays a very important role in coronary
artery disease. Zhao et al. reported that matrine can alleviate
TABLE 1 | Continued

Diseases Models Effects Mechanisms References

U251MG, U87MG cells Proliferation↓, migration↓,
EMT↓

E-cadherin↑, N-cadherin↓, p-p38↓, p-AKT↓, (Wang et al.,
2015b)

Retinoblastoma SO-Rb50 cells Apoptosis↑, proliferation↓ Apaf-1↑, cleaved caspase3↑, cleaved caspase9↑,
cleaved caspase7↑, bax↑, bcl-2↓

(Shao et al., 2014)

Nasopharyngeal
carcinoma

NPC-039, CNE-2Z cells; NPC-039
tumor bearing BALB/c nude mice

Proliferation↓, migration↓,
tumor volume↓

MMP-2↓, MMP-9↓, p50↓, p65↓ (Sun and Xu, 2015)

Esophageal cancer Kyse-150 cells Apoptosis↑, proliferation↓,
migration↓, ROS
generation↑

Bax↑, caspase3↑, caspase8↑, caspase9↑, cleaved
caspase8↑, bcl-2↓

(Jiang et al., 2018)

Eca-109 cells; Eca-109 tumor
bearing male nude BALB/c mice

Apoptosis↑, proliferation↓,
cell cycle arrest, tumor
volume↓

P53↑, p21↑, bid↑, bcl-2↓ (Wang et al., 2014)

Cervical cancer Hela, C33A cells; Hela tumor bearing
BALB/c athymic nude mice

Apoptosis↑, proliferation↓,
migration↓, tumor volume↓

MMP2↓, MMP9↓, p38↓, p-AKT↓, p65↓ (Wu X. et al., 2017)

urothelial bladder
cancer
(Matrine&Cisplatin)

EJ, T24, BIU, 5637 cells Apoptosis↑, proliferation↓,
migration↓, EMT↓, ROS
generation↑, cell cycle
arrest

E-cadherin↑, b-catenin↑, fibronectin↓, vimentin↓,
VEGFR2↓, VEGF↓, cleaved caspase3↑, bcl-2↓

(Liao et al., 2017)

Rhabdomyosarcoma RD cells Apoptosis↑, proliferation↓,
migration↓

p-MEK1↓, p-ERK1/2↓, bcl-2↓, bax↑ (Yan et al., 2017)

Rhabdomyosarcoma
(Matrine&cisplatin)

RD cells Apoptosis↑, proliferation↓ XIAP↓ (Li L. et al., 2016)

multiple myeloma
(Matrine&CYC116)

RPMI8226 cells Apoptosis↑, proliferation↓ Cleaved caspase9↑, cleaved caspase3↑,cleaved
PARP↑, bax↑, mcl-1↓, bcl-2↓, PI3K↓, p-AKT↓, NF-kB↓

(Zhou et al., 2015)

Melanoma A375, SK-MEL-2 cells Apoptosis↑, proliferation↓,
migration↓

miR-19b-3p↓, PTEN↑ (Wei Y. et al., 2018)

M21 cells Apoptosis↑,proliferation↓,
cell cycle arrest

p21↑, cyclinD1↓, bax↑, bcl-2↓, PTEN↑, p-PI3K↓ (Jin et al., 2013)
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apoptosis of cardiac microvascular endothelial cells (CMECs)
induced by ischemia/reperfusion, which is related to JAK2/
STAT3 signaling pathway (Zhao et al., 2018). Guo et al.
(2018b) reported that matrine alleviated myocardial ischemia/
reperfusion injury in rats by activating JAK2/STAT3 pathway,
upregulating the expression of HSP70 and inhibiting
myocardial apoptosis.

Diabetic Cardiomyopathy
Excessive ROS production in DBCM activates TLR-4/MyD-88
signaling, leading to cardiomyocyte apoptosis, while matrine
preconditioning improves cardiac function by inhibiting ROS/
TLR-4 signaling pathway (Liu et al., 2015).

Cardiotoxicity
Matrine has antioxidant properties and can alleviate
isoproterenol-induced acute cardiotoxicity in rats (Li
et al., 2010).
Frontiers in Pharmacology | www.frontiersin.org 8
Heart Failure
Matrine inhibits cardiomyocyte apoptosis through the b3-AR
pathway and improves cardiac function in rats with heart failure
(Yu et al., 2014).

Vascular Injury
Matrine has the potential to treat vascular injury induced by
high-fat diet. Matrine can alleviate abnormal lipid metabolism
and inflammation in mice fed with high-fat diet, and significantly
reduce oxidized low-density lipoprotein (ox-LDL) induced
human umbilical vein endothelial cells (HUVECs). Other lial
cells, HUVECs) dysfunction, alleviate the reduction of nitric
oxide release, reduce the production of ROS, increase the
expression of phosphorylated AKT-Ser473 and endothelial
nitric oxide synthase-Ser1177 (eNOS-Ser1177). It can also
downregulate the expression of eNOS-Thr495, a negative
regulator of eNOS controlled by protein kinase C a (PKCa).
Computational virtual docking analysis (AutoDock Vina
FIGURE 1 | Anticancer mechanisms of matrine. For tumor cells, matrine can induce caspase-mediated exogenous apoptosis by activating Fas/Fas-L and TRAIL.
Matrine can also induce mitochondrial damage by promoting the proapoptotic genes Bax, Bid, Bad, Bim, and downregulating the apoptosis-inhibiting genes Bcl-2,
Mcl-1, Bcl-XL, and release Cyt-C and AIF to promote endogenous Apoptosis. Matrine can inhibit tumor cell proliferation through the GP130/JAK/STAT pathway, and
can also induce apoptosis and inhibit proliferation by downregulating the expression of survivin through wnt/b-catenin and LEF1/TCF1. Matrine can inhibit insulin-like
growth factor (IGF1) and GF and then affect the expression of phosphatidylinositol 3-kinase (PI3k)/AKT, nuclear factor kB (NF-kB) signaling pathway, and p53,
thereby promoting tumor cell apoptosis, inhibiting proliferation and invasion. Matrine can also induce autophagy through PI3K/AKT/mTOR signaling pathway, causing
autophagy related cell death and inhibiting the expression of EGF and vascular endothelial growth factor (VEGF). Matrine can also upregulate E-cadherin,
downregulate MMP2, MMP9, and vimentin to inhibit invadopodia, slug, and snail, so as to inhibit epithelial-mesenchymal transition (EMT) and prevent tumor cell
invasion. In addition, matrine can also promote the expression of NKG2DL in tumor cells to promote the recognition and killing of NK cells to tumor cells.
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software) and biochemical analysis showed that matrine affected
eNOS/NO by inhibiting PKCa, and the protective effect of
matrine could be eliminated by using PKCa and PI3K
inhibitors (Zhang et al., 2019). Liu et al. (2018) reported that
matrine can reduce AGEs-mediated Notch signal activation in
human coronary smooth muscle cells (HCSMC), downregulate
the expression levels of nicd1, hes1, collagen I, collegen VIII, and
collagen secretion in HCSMC, and block the precondition of
atheromatous plaque formation.

A cause of diabetic angiopathy is a high level of advanced
glycation end products in the blood. Matrine can alleviate the
damage of advanced glycation end products to aortic endothelial
cells by inhibiting the activation of nod-like receptor protein 3
(NLRP3) inflammatory body mediated by ROS (Zhang et al.,
2018d). Liu et al. reported that advanced glycation end products
can induce ROS to induce endothelial cell apoptosis, which can
lead to diabetic vascular complications. Matrine restored
phosphorylation of MKKK3/6 and p38 MAPK, nuclear
translocation of nuclear factor-erythroid 2-related factor 2
(Nrf2), binding activity of antioxidant response elements and
expression level, inhibited ROS production and endothelial cell
apoptosis in vitro and in vivo (Liu et al., 2017a).

Digestive Diseases
Liver Fibrosis
Hepatic fibrosis is a wound healing reaction characterized by the
accumulation of extracellular matrix after various liver injuries,
which leads to the deformation of normal liver structure and
develops into cirrhosis and even hepatocellular carcinoma (Lin
et al., 2018). Controlling liver fibrosis in time can prevent the
transformation of malignant diseases. Mahzari et al. (2018)
reported that in two models of liver fibrosis with abnormal
glucose metabolism induced by high fructose diet (HFRU), high
fat diet (HF) and low dose streptozotocin (STZ), matrine
intervention can upregulate heat-shock protein 72 (HSP72) to
inhibit liver fibrosis and improve blood sugar level. For carbon
tetrachloride (CCl4)-treated hepatic stellate cell inflammation
and fibrosis models, matrine can inhibit the production of MCP-
1 and reduce the infiltration of Gr1(hi) monocytes in liver tissue,
reducing liver inflammation and fibrosis (Shi et al., 2013).

Fatty Liver
Matrine can inhibit blood sugar and lipid abnormalities in mice
fed with high-fat diet and alleviate liver steatosis. Compared with
metformin, matrine neither inhibits mitochondrial respiration
nor activates AMPK in liver. The regulation of matrine is related
to the activation of HSP72 (Zeng et al., 2015).

Pancreatic Fibrosis
Matrine can alleviate rat pancreatic fibrosis induced by
Trinitrobenzene sulfonic acid. Matrine reduces glandular
hyperplasia, reduces mitochondrial swelling of acinar cells, and
downregulates a-smooth muscle actin (a-SMA), TGF-b, and
collagen In addition, Smad2, TbR1, and TbR2 were significantly
downregulated in mRNA and protein levels (Liu et al., 2019).
Frontiers in Pharmacology | www.frontiersin.org 9
Colitis
Matrine can alleviate the symptoms of spontaneous colitis in IL-
10 deficient mice and reduce the expression levels of IL-12/
23p40, interferon-g (IFN-g), IL-17 in colon tissues (Wu
et al., 2016).

Urinary System Disease
Adriamycin-Induced Nephropathy
Matrine can alleviate nephropathy caused by doxorubicin
treatment via the Foxp3/RORgt pathway [111].

Immune System Disease
Rheumatoid Arthritis
Overproliferation and intrinsic resistance to apoptosis of
fibroblast-like synoviocytes (FLS) are important pathogenesis
of RA. Matrine can reduce arthritis index (AI) by acting on
collagen-induced arthritis (CIA) model in rats. In vitro, matrine
inhibits the proliferation of FLS, induces cell cycle arrest of G0/
G1 cells, and inhibits the activation of JAK/STAT signaling
pathway, thereby increasing the apoptotic rate in vitro (Yang
Y. et al., 2017). Rat rheumatoid arthritis model is characterized
by Th1/Th2 imbalance. Matrine reduces the level of Th1
cytokines, such as IFN-g, tumor necrosis factor (TNF-a), IL-
1b, by regulating the NF-kB signaling pathway, and increases
Th2 cytokines (IL-4 and IL-10) to balance the Th1/Th2 axis (Niu
et al., 2017).

Osteopathy
Osteoporosis
The imbalance between the osteogenic effects of osteoblasts and
the osteoclasts of osteoclasts is one of the pathogenesis of
postmenopausal osteoporosis. Secretion of estrogen causes an
increase in the level of proinflammatory cytokines.
Inflammation-induced osteoclast hyperactivity plays a crucial
role in the imbalance. Matrine can inhibit osteoclastogenesis,
inhibit inflammation and alleviate osteoporosis by regulating the
NF-kB/AKT/MAPK pathway (Chen et al., 2017b).

Chondropathy
Matrine can inhibit the activation of MAPK and NF-kB in
human chondrocytes in vitro to inhibit IL-1b-induced MMP
expression, thereby inhibiting MMP degradation of extracellular
matrix and inhibiting chondrocyte apoptosis (Lu et al., 2015).

Mental Disease
Anxiety and Depression Induced by Liver Injury
Matrine can alleviate neuro-inflammation and oxidative stress in
the brain caused by acute liver injury, thus producing antianxiety
and antidepression effects. CCl4 induces acute liver injury in
mice. Matrine pretreatment can significantly improve anxiety
and depression-like behavior, alleviate neuro-inflammation,
downregulate the levels of proinflammatory factors TNF-a, IL-
1b, and IL-6, and increase the levels of glutathione (GSH),
catalase (CAT), and glutathione S-transferase in brain tissue of
mice. The level of GST decreased the levels of MDA and nitrite in
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brain tissue, thus reducing the oxidative stress induced by CCl4.
Matrine significantly reduced the contents of corticosterone,
ammonia, glutamic oxalate transaminase, glutamic oxalate
transaminase and creatinine, and significantly improved CCl4-
induced liver morphological damage. Matrine treatment
increased the levels of glial fibrillary acidic protein (GFAF)
positive astrocytes, brain-derived neurotrophic factor (BDNF),
and VEGF in the hippocampus of mice to promote neurogenesis
and inhibit hippocampal neuronal apoptosis (Khan et al., 2019).

Cancer-Associated Skeletal Muscle
Atrophy
Cancer cachexia is a complex condition secondary to systemic
progressive dysfunction and tissue atrophy secondary to cancer.
Cancer cachexia is characterized by systemic inflammation,
negative energy, and protein balance, generally with weight
loss associated with skeletal muscle atrophy, and adipose tissue
depletion (Argiles et al., 2010; Fearon et al., 2011). Matrine can
increase muscle fiber size and muscle mass in a mouse model of
CT26 colon cancer cachexia in vivo. At the same time, it relieves
cachexia symptoms such as body and organ weight loss. In vitro,
matrine also attenuated dexamethasone, TNF-a , and
conditioned medium-induced c2c12 myotube atrophy and
apoptosis. This process is associated with activation of the
AKT/mTOR/Foxo3a signaling pathway. In addition, matrine
downregulates the expression of the E3 ubiquitin ligases muscle-
specific RING finger protein 1 (MuRF1) and muscle atrophy F-
box protein (MAFbx) (Chen et al., 2019).

Non-antitumor related studies of matrine are summarized in
Table 2, and the mechanisms of actions are summarized in
Figure 2.
DISCUSSION AND PROSPECT

Cancer is one of the most serious diseases in the history of
human health, for which the whole society bears a huge material
and spiritual burden. In 2018, it is estimated that 18.1 million
new cancer cases and 9.6 million cancer deaths will occur
globally (Bray et al., 2018). With the development of cancer
treatment methods, the overall survival rate of cancer has
increased, but it is still not optimistic (Allemani et al., 2018).
Currently, the main methods of cancer treatment are surgery,
chemotherapy, radiotherapy, and targeted therapy. In recent
years, immunotherapy represented by immuno-checkpoint
inhibitors, chimeric antigen receptor-T (CAR-T) therapy and
cancer vaccine has made tremendous progress (Yang, 2015). But
immunotherapy is not applicable to all cancer patients (Beatty
and Gladney, 2015). Although individual cancer vaccines have
emerged to respond to individual mutations (Sahin and Tureci,
2018), the high cost of treatment makes it impossible to benefit
most patients. In short, the treatment of cancer cannot meet the
current situation.

Natural product therapy (NPT), as an alternative treatment
for cancer, has attracted much attention. Many natural products
have high potential for direct treatment of cancer (Newman and
Frontiers in Pharmacology | www.frontiersin.org 10
Cragg, 2016; Dutta et al., 2019), or have the effect of improving
drug resistance and enhancing the efficacy of anticancer drugs.
At present, the dosage forms are also constantly upgrading
(Gerber et al., 2013; Watkins et al., 2015; Kashyap et al., 2019).
Compared with targeted therapy and immunotherapy, natural
products have great advantages in cost, which deserve further
research and clinical promotion. Matrine is a natural product
with a variety of activities and high conversion value.

Matrine can inhibit the proliferation of more than ten kinds
of tumor cells, mostly by inducing apoptosis, blocking cell cycle
and inhibiting cell migration. Matrine can also induce autophagy
of tumor cells, such as hepatocellular carcinoma cells (Zhang
et al., 2010; Xie et al., 2015; Yang and Yao, 2015), gastric cancer
cells (Li et al., 2013; Wang et al., 2013), osteosarcoma cells (Ma K.
et al., 2016), acute myeloid leukemia cells (Wu J. et al., 2017). In
some tumors, such as hepatocellular carcinoma HepG2 cells (Xie
et al., 2015), osteosarcoma MG-63 cells (Ma K. et al., 2016), it is
protective autophagy. Matrine can be used in pancreatic cancer
and gastric cancer. Inhibiting the protective effect of autophagy,
blocking the degradation process of substrates and promoting
apoptosis (Li et al., 2013; Wang et al., 2013; Cho et al., 2018).
Autophagy is a biological process with multifaceted effects, which
can promote cell survival and induce death (Jiang et al., 2019;
Mirza-Aghazadeh-Attari et al., 2019). However, the nature of
autophagy remains unclear in many studies, and needs to be
further explored.

In addition, many derivatives of matrine also have antitumor,
antifibrosis, and antiosteoporosis effects. Qian et al. reported that
WM130, a matrine derivative, could inhibit the proliferation,
invasion and migration of HCC cells by inhibiting EGFR/ERK/
MMP-2 and PTEN/AKT signaling pathways and induce
apoptosis of hepatocellular carcinoma cells (Qian et al., 2015).
Matrine derivative WM-127 can induce cell cycle arrest and
apoptosis of hepatocellular carcinoma HepG2, Hep3B, Huh7,
LM3, SMMC-7721 by regulating Survivin/beta-catenin signaling
pathway (Yin et al., 2018). Matrine derivatives (6aS, 10S, 11aR,
11bR, 11cS)-10-methylamino-dodecahydro-3a, 7a-diazabenzo
(de) (MASM) can inhibit the proliferation, cell cycle and
apoptosis of hepatocellular carcinoma cells through PI3K/
AKT/mTOR and AKT/GSK3b/b-catenin signaling pathways,
inhibit the growth of tumors and inhibit the dryness of tumor
cells (Liu Y. et al., 2017). MASM can also inhibit ribosomal
protein S5 (RPS5), and regulate PI3K/AKT, NF-kB, and MAPKS
pathways to inhibit osteoclastogenesis. MASM has the potential
to become a drug for osteoporosis (Chen et al., 2017a). Xu et al.
reported that WM130, a matrine derivative, could inhibit
apoptosis, ECM deposition, TGF-b/Smad and Ras/ERK
pathways, HSC-T6 cell activation and hepatic fibrosis in rats
(Xu et al., 2015).

Matrine can regulate noncoding RNA and then affect key
molecules related to cancer progression, such as upregulation of
miR-126 to inhibit VEGF (An et al., 2016), downregulation of
miR-21 and miR-19b-3p, and alleviate the inhibition of PTEN
(Lin et al., 2014; Wei Y. et al., 2018).

Matrine has strong antiinflammatory and antiapoptotic
effects in nonneoplastic diseases, such as protecting normal
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TABLE 2 | Non-anticancer studies of matrine.

Diseases Models Effects Mechanisms References

Alzheimer's
disease

Ab42 treated SH-SY5Y cells; APP/PS1 transgenic
mice

Cell viability↑, inflamation↓ BACE1↓, NF-kB↓, TNF-a↓, IL-
1b↓

(Cui et al., 2017)

Ab1-42 treated Sprague Dawley rats Cognitive ability (water maze test) ↑,
novel object recognition test↑

IL-17A↓, IL-23↓, TGF-b↑, IL-
35↑, RORgt↓, foxp3↑

(Zhang L. et al.,
2015)

Cerebral ischemia MCAO mice Brain infract volume↓, apoptosis↓, Caspase3↓, bax↓, bcl-2↑,
MDA↓, SOD↑, GSH-Px↑,
CAT↑

(Zhao et al., 2015)

Spinal cord injury Cortical neurons; female ddY mice Motor dysfunction↓, density of 5-HT-
positive tracts↑

HSP90↑ (Tanabe et al.,
2018)

Autoimmune
encephalomyelitis

EAE C57BL/6 mice model OPC proliferation↑, oligodendrocyte
numbers and PLP expression↑

p-PI3K↑, p-AKT↑, p-mTOR↑,
p-p70S6K↑

(Liu S. Q. et al.,
2017)

Multiple sclerosis experimental autoimmune encephalomyelitis female
WISTAR rats

OLG apoptosis↓ NGF↑, trkA↑ (Zhu et al., 2016)

experimental autoimmune encephalomyelitis female
WISTAR rats

Clinical score↓ IL-33↓, ST2↓ (Zhao et al., 2016)

Asthma human bronchial epithelial cell line BEAS-2B and
MLE-12 mouse lung epithelial cells; OVA treated
female BALB/c mice

Asthmatic symptoms↓, inflamation↓ SOCS3↓, ICAM1↓, VCAM1↓,
p-p65↓

(Sun et al., 2016)

BEAS-2B cells; Ovalbumin(OVA) treated female
BALB/c mice

Inflamation↓, airway
hyperresponsiveness↓

IL-4↓, IL-5↓, IL-6↓, IL-13↓,
TNF-a↓, IgE↓

(Huang et al., 2014)

Lung injury LPS treated male BALB/c mice Inflamation↓, survival↑ MPO↓, MDA↓, plasma TNF-
a↓, IL-6↓, HMGB1↓, p-NF-
kB↓

(Zhang et al., 2011)

Diabetic
cardiomyopathy

HG medium cultured cardiac fibroblasts;
streptozotocin treated Sprague Dawley rats

Fibrosis↓, left ventricular functions↑,
cardiac compliance loss↓

TGF-b1↓, p-smad2↓, p-
smad3↓, smad7↓, collagen I↓

(Zhang et al.,
2018c)

Streptozotocin treated male Sprague Dawley rats Myocyte apoptosis↓, ROS generation↓ MDA↓, GPx↑, TLR4↓, MyD-
88↓, cleaved-caspase8↓,
cleaved-caspase3↓

(Liu et al., 2015)

Cardiac fibrosis cardiac fibroblasts from 2-day-old Sprague Dawley
rats; streptozotocin treated Sprague Dawley rats

Cardiac systolic/diastolic dysfunction↓,
cardiac compliance↑

ATF6↓, miR455↑, calreticulin↓,
fibronectin↓, collagen I↓

(Liu et al., 2017b)

Hypoxia/
reoxygenation
induced cardiac
microvascular
endothelial cells
death

oxygen free anoxic solution treated rat cardiac
microvascular endothelial cells (CMECs)

Apoptosis↓, tube formation ability↑ p-JAK2↑, p-STAT3↑, bcl-2↑,
bax↓

(Zhao et al., 2018)

Myocardial
ischemia/
reperfusion (I/R)
injury

neonatal rat cardiomyocytes; Male Sprague Dawley
rats

Cell viability↑ Bax↓, bcl-2↑, caspase3↓, CK-
MB↓, cTnI↓, p-JAK2↑, p-
STAT3↑, HSP70↑

(Guo et al., 2018b)

Isoproterenol-
induced acute
cardiotoxicity

Isoproterenol treated male Sprague Dawley rats Heart function↑, inflamation↓ SOD, catala, glutathione
peroxidase↑, MDA↓

(Li et al., 2010)

Heart failure Apply coronary artery ligation to establish rat heart
failure model

Cardiac function↑, apoptosis↓ Cleaved caspase3↓, bax↓,
bcl-2↑, b3AR↓, eNOS↓

(Yu et al., 2014)

Lipid metabolism
disorders caused
vascular
endothelial injury

The HUVECs treated with ox-LDL; Male C57BL/6
mice were given high-fat diet for 12 weeks

Lipid metabolism↑, inflamation↓,
thickness of vascular wall↓, ox-LDL-
induced apoptosis↓

Serum TNF-a↓, IL-6↓, IL-10↑,
p-AKT-Ser473↑, eNOS-
Ser1177↑, eNOS-Thr495↓

(Zhang et al., 2019)

Atherosclerosis AGEs treated HCSMCs Contractile synthetic phenotypic
conversion↓

DLL4↓, notch↑, collagen I↓,
collegen VIII↓, NICD1↓,
HES1↓,

(Liu et al., 2018)

Advanced
glycation end
products (AGEs)
induced damage
in the arterial
endothelium;

AGEs treated human aortic endothelial cells Cell viability↑, infamation↓, intracellular
reactive oxygen species↓

NLRP3↓, ASC↓, cleaved
caspase-1↓, IL-1b↓

(Zhang et al.,
2018d)

Diabetic vascular
complications

AGEs treated Sprague Dawley rats; Rat aortic
endothelial cells

ROS generation↓, apoptosis↓ p-MKK3↑, p-MKK6↑, p-38↑,
HO1↑, NQO1↑, nrf2↑

(Liu et al., 2017a)

Hepatosteatosis
with glucose
intolerance

high-fructose diet (HFru) induced hepatosteatosis
and glucose intolerance from hepatic, and
hepatosteatosis and hyperglycemia induced by

Body weight↓, epididymal fat weight↓,
triglyceride↓

SREBP-1c↓, ChREBP↓, SCD-
1↓, fas↓, eIF2a↓, CHOP↓,
IRE1↓, HSP72↑

(Mahzari et al.,
2018)

(Continued)
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cells in cell and animal models of AD (Cui et al., 2017), asthma
(Sun et al., 2016), lung injury (Zhang et al., 2011), liver fibrosis
(Shi et al., 2013), colitis (Wu et al., 2016). Matrine can also
upregulate the expression of miR-455, thereby inhibiting fibrin
synthesis and alleviating myocardial fibrosis (Liu et al., 2017b).

It is worth noting that matrine can inhibit proliferation and
induce apoptosis in cancer cells, while for normal cells in
pathological environment, matrine can inhibit apoptosis and
maintain growth and proliferation (The signaling pathways and
diseases related to the actions of matrine are summarized in
Figure 3). NF-kB is involved in the inflammatory response and
immune response of the body, and can regulate cell apoptosis
and stress response (Pires et al., 2018). Matrine can inhibit NF-
kB to inhibit the proliferation, invasion and apoptosis of tumor
cells. When normal cells such as nerve cells, tracheal epithelial
cells and chondrocytes are under stress, matrine can inhibit NF-
kB to inhibit apoptosis and inflammation to maintain the
survival of normal cells (Zhang et al., 2011; Lu et al., 2015; Cui
Frontiers in Pharmacology | www.frontiersin.org 12
et al., 2017; Niu et al., 2017). JAK/STAT regulate the expression
of a variety of proteins involved in induction or prevention of
apoptosis, and has also become a paradigm for membrane-to-
nucleus signaling and explains how a broad range of soluble
factors, including cytokines and hormones, mediate their diverse
functions (Villarino et al., 2015; Bousoik andMontazeri Aliabadi,
2018). Matrine inhibits JAK/STAT pathway to inhibit tumor cell
proliferation and inflammation in normal cells (Ma L. et al.,
2015; Yang et al., 2015; Guo et al., 2018b; Zhao et al., 2018). The
MAPKs in mammals include JNK, p38 MAPK, and ERK. These
enzymes are serine-threonine protein kinases that regulate
various cellular activities including proliferation, differentiation,
apoptosis or survival, inflammation, and innate immunity. The
compromised MAPK signaling pathways contribute to the
pathology of diverse human diseases (Kim and Choi, 2015; Sun
et al., 2015). Matrine negatively regulates the MAPK/ERK
pathway, thereby inhibiting tumor cell proliferation and
suppressing the inflammatory response or fibrosis in normal
TABLE 2 | Continued

Diseases Models Effects Mechanisms References

high-fat (HF) diet in combination with low doses of
streptozotocin (STZ); C57BL/6J mice

Liver fibrosis CCl4 treated C57BL/6mice Inflamation↓ MCP-1↓, number of CD45+

cells↓, number of Gr1+ cells↓
(Shi et al., 2013)

Hepatic steatosis high-fat-fed C57BL/J6 mice Glucose intolerance↓,
hepatosteatosis↓, inflamation↓

TNF-a↓, IL-6↓,IL-1b↓,
nSREBP-1↓, SCD-1↓, UCP2↑,
HSP72↑,

(Zeng et al., 2015)

Pancreatic fibrosis Sprague Dawley rats, 12.5 mL of 2%
trinitrobenzene sulfonic acid-ethanol phosphate
buffer solution containing 1 mL of 5%
trinitrobenzene sulfonic acid and 1.5 mL of 10%
ethanol phosphate buffer solution were injected in
pumpbiliopancreatic duct with a micro-injection

Mitochondrial swelling of acinous
cells↓, hyperplasia of glandules↓,
fibrosis↓

a-SMA↓, TGF-b1↓, collagen
I↓, smad2↓, TbR1↓, TbR2↓

(Liu et al., 2019)

Chronic colitis IL-10 deficient mice Inflamation↓ IFN-g↓, IL-17↓, (Wu et al., 2016)
Adriamycin-
induced
nephropathy

Adriamycin treated male Sprague Dawley rats Renal function↑, inflamation↓ Foxp3↑, RORgt↓ (Xu et al., 2016)

Rheumatoid
arthritis

Bovine type II collagen treated fibroblast-like
synoviocytes; bovine type II collagen treated male
Sprague Dawley rats

Apoptosis↑, proliferation↓, cell cycle
arrest, arthritis index↓

p-JAK2↓, p-STAT1↓, p-
STAT3↓, bax↑, bcl-2↓,
caspase3↑

(Yang Y. et al.,
2017)

bovine type II collagen treated male Sprague
Dawley rats; phorbol myristate acetage (PMA) and
ionomycin treated BALB/c mice splenic CD3+ T
lymphocytes

Inflamation↓, p65↓,p-IkBa↓, IFN-g↓, TNF-
a↓, IL-1b↓, IL-4↑, IL-10↑

(Niu et al., 2017)

Osteoporosis bone marrow monocytes, RAW264.7 cells; RANKL
treated C57BL/6 mice

Osteoclastogenesis↓, inflamation↓ Serum TRAcp5b↓, TNF-a↓,
IL-6↓, MMP9↓, NFATc1↓,
TRAP↓, c-src↓, cathepsin K↓,
p-ERK↓, p-JNK↓, p-p38↓, p-
AKT↓

(Chen et al., 2017b)

IL-1b treated human articular cartilage Apoptosis↓, chondrocyte viability↑ p-p38↓, p-ERK↓, p-JNK↓,
IkBa↑

(Lu et al., 2015)

Acute liver injury
induced
neuroinflammation
and oxidative
stress

CCl4 treated male BALB/c mice Food intake↑, water intake↑,
inflamation↓, open field test (OFT) ↑,
elevated plus maze test (EPM) ↑, light-
dark box test (LDB) ↑, forced
swimming test (FST) ↑, and tail
suspension test (TST) ↑, apoptosis↓

Hippocampus and prefrontal
cortex TNF-a↓, IL-6↓, IL-1b↓;
GSH↑, GST↑, CAT↑, NO↓,
MDA↓, ammonia↓,
corticosterone↓, GFAF↑,
BDGF↑, VEGF↑, caspase-3↓

(Khan et al., 2019)

Cancer induced
cachexia and
muscle atrophy

CT26 tumor bearing BALB/c mice; TNF-alpha,
dexamethasone, conditioned medium treated
C2C12 myotubes

Muscle weight↑, C2C12 myoblast
differentiation↑

MuRF1↓, MAFbx↓,p-AKT↑, p-
mTOR↑, p-FOXO3a↑

(Chen et al., 2019)
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cells (Lu et al., 2015; Wang et al., 2015b; Peng et al., 2016; Yan
et al., 2017). PI3Ks are crucial coordinators of intracellular
signaling in response to the extracellular stimulators. The
serine/threonine kinase AKT is a master regulator of many
diverse cellular functions, including survival, growth,
metabolism, migration, and differentiation. The signaling axis
formed by PI3K and AKT, as well as the vast range of
downstream substrates is thus central to control of cell
physiology in many different contexts and tissues (Noorolyai
et al., 2019; Sugiyama et al., 2019). Matrine inhibits the PI3K/
AKT pathway in tumor cells, while the reverse occurs in normal
cells (Niu et al., 2014; Xie et al., 2015; Liu S. Q. et al., 2017; Wu X.
et al., 2017; Chen et al., 2019; Zhang et al., 2019). Moreover, for
tumor cells, matrine induces oxidative stress leading to
endogenous apoptosis in cells, while in ischemic disease
models, matrine inhibits oxidative stress and thereby inhibits
apoptosis of nerve cells and cardiac muscle cells. In different
application environments, matrine has contradictory effects. In
addition, natural compounds such as resveratrol (Ko et al., 2017;
Xia et al., 2017), baicalein (Liu et al., 2016; Sowndhararajan et al.,
2017), and quercetin (Li Y. et al., 2016; Massi et al., 2017) also
Frontiers in Pharmacology | www.frontiersin.org 13
have similar killing and protecting effects. However, there is still
no reasonable and accepted explanation for this dualistic effect.
We speculate that this phenomenon may be related to different
cell properties. We can find tumor cells that cannot be inhibited
by matrine and normal cells that cannot be protected in a
stressful environment or even directly inhibited, and make a
histological analysis of these cells, which may be helpful to find
the mechanism of this phenomenon.

The underlying mechanism of matrine's selective killing of
cells remains to be explored. The role of matrine in autophagy
induction or inhibition needs to be further determined. In
addition, the regulation of noncoding RNA by matrine may be
an important way for matrine to play its role. Whether there are
transcriptome-related intrinsic regulatory roles in all disease
models needs to be further explored.

Last but not least, the pharmacokinetics of matrine in
different modes of administration need to be further improved.
The most common way to take matrine is oral administration. A
liquid chromatography/tandem mass spectrometry (LC/MS/MS)
developed method facilitated a clinical pharmacokinetic study
after oral administration of a single dose of matrine soft gelatin
FIGURE 2 | Non-anticancer mechanisms of matrine. For normal cells, matrine can promote cell survival under various stress environments. Under oxidative stress
conditions, matrine can inhibit reactive oxygen species (ROS) production, thus inhibiting high mobility group protein box 1 (HMGB1), nod-like receptor protein 3
(NLRP3)/ASC/CASP1 pathway and nuclear factor k B (NF-kB pathway)–mediated inflammation. Matrine can also inhibit tumor necrosis factor (TNF)-a and IL-1
induced NF-kB and TAK/JNK/AP1 pathway-mediated inflammation. In addition, TGFb/Smad/FOXP3/RORgt is also a pathway for matrine to inhibit inflammation.
Matrine can also block CASP8 mediated exogenous apoptosis by inhibiting TLR4/MyD88 pathway, eIF2a/ATF4/CHOP mediated mitochondrial damage, Cyt-C
release and CASP9 mediated endogenous apoptosis by inhibiting ER stress. Matrine can also inhibit GP130/JAK/STAT pathway mediated apoptosis. TGFb/Smad,
NOTCH/NICD, and miR455/ATF6 mediated fibrosis can also be inhibited by matrine. In addition, matrine can promote cell proliferation by activating Hsp90.
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capsules (100, 200 and 400mg) in a three-period crossover
design. Dose-related linear trends were observed for the AUC0-

t and the Cmax of matrine. The t1/2 and the Tmax of matrine were
independent of the administered doses (Zhang et al., 2009).
Another study explored the pharmacokinetics of matrine
through intravenous injection or transdermal administration in
rat liver, blood, skin and other organs and tissues, and found that
transdermal administration is also a promising way (Tang et al.,
2017). At present, there is no pharmacokinetic study of matrine
for specific diseases.

In summary, matrine has a wide range of pharmacological
effects and high development value, and further mechanism
research needs to be carried out.
Frontiers in Pharmacology | www.frontiersin.org 14
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