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In the past, water homeostasis of the brain was understood as a certain quantitative

equilibrium of water content between intravascular, interstitial, and intracellular spaces

governed mostly by hydrostatic effects i.e., strictly by physical laws. The recent

achievements in molecular bioscience have led to substantial changes in this regard.

Some new concepts elaborate the idea that all compartments involved in cerebral fluid

homeostasis create a functional continuum with an active and precise regulation of

fluid exchange between them rather than only serving as separate fluid receptacles

with mere passive diffusion mechanisms, based on hydrostatic pressure. According to

these concepts, aquaporin-4 (AQP4) plays the central role in cerebral fluid homeostasis,

acting as a water channel protein. The AQP4 not only enables water permeability

through the blood-brain barrier but also regulates water exchange between perivascular

spaces and the rest of the glymphatic system, described as pan-cerebral fluid pathway

interlacing macroscopic cerebrospinal fluid (CSF) spaces with the interstitial fluid of brain

tissue. With regards to this, AQP4 makes water shift strongly dependent on active

processes including changes in cerebral microcirculation and autoregulation of brain

vessels capacity. In this paper, the role of the AQP4 as the gatekeeper, regulating the

water exchange between intracellular space, glymphatic system (including the so-called

neurovascular units), and intravascular compartment is reviewed. In addition, the new

concepts of brain edema as a misbalance in water homeostasis are critically appraised

based on the newly described role of AQP4 for fluid permeation. Finally, the relevance of

these hypotheses for clinical conditions (including brain trauma and stroke) and for both

new and old therapy concepts are analyzed.
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1. INTRODUCTION

Apart from the exchange of information, one of the most
challenging tasks of the mammalian brain is to maintain the
internal water and electrolyte homeostasis independent from
the caprices of the external environment, in order to provide
the neurons with nourishing substances and guarantee them a
constancy of electrolyte concentration and osmolarity, required
for their proper function (1, 2). As the modern techniques
of histopathological and physiological research developed, the
various tasks regarding global cerebral function have been
attributed to the different cellular and acellular components
of the brain tissue. Here, the neurons as the cells generating
and propagating electrical impulses (which is considered as
the major task of the whole brain), have been accorded the
exclusive role of managing the information. Meanwhile, other
brain components only play a minor role in maintaining the
intracellular and molecular environment in optimal conditions
for the appropriate function of the fastidious neural cells (3,
4). For instance, according to the common perception, the
extracellular compartment is merely a vast space filled with a
quite homogenous fluid, consisting mostly of water, substrate
molecules, and the products of both the neuronal and glial
metabolism floating together with nourishing vessels (2).

Certainly, this oversimplification is far from even
approximating the whole complexity of the structure of brain
fluid spaces, not to mention its extremely composed function
regarding cerebral water turnover. The multidisciplinary
research of recent years has delivered solid evidence that the
intracerebral water balance is a highly complex, actively regulated
process, involving all types of glia cells as well as the neurons
and being highly responsible for the electrolyte and water
homeostasis of the latter, thus impacting significantly the proper
function of the whole central nervous system as a physiological
unit (2, 4–6).

Due to a variable number of (sometimes concurring) theories,
it is impossible to outline all neurobiological concepts describing
how the brain water homeostasis is maintained in the limited text
volume of the journal paper. Thus, the main goal of this narrative
review is to provide the Reader with the critical appraisal of
some of the latest ideas, which attempt to unify the recent
findings in (micro-)anatomy, molecular neurophysiology, and
biophysics into the form of a concise model of brain fluid
turnover. In particular, the concept of the glymphatic system,
conjoining the anatomic spaces filled with cerebrospinal fluid

Abbreviations: AM, acetoxymethyl ester, APRE, acute phase response elements,
AQP4, aquaporin-4, AQPs, aquaporins, ar/R, aromatic/arginine, BBB, blood-
brain barrier, CaM, calmodulin, CBF, cerebral blood flow, CNS, central nervous
system, CCI, controlled cortical impact, cGMP, cyclic guanosine monophosphate,
cRNA, complementary ribonucleic acid, CSF, cerebrospinal fluid, Kir4.1, inwardly
rectifying potassium channel 4.1, MAPK, mitogen-activated protein kinase,
mRNA, messenger ribonucleic acid, NMO, neuromyelitis optica, NO, nitric oxide,
NPA, asparagine–proline–arginine (motif), NPY, neuropeptide Y, nsSNPs, non-
synonymous single nucleotide polymorphisms, NVU, neurovascular unit, OAPs,
orthogonal arrays of particles, PKA, protein kinase A, siRNA, small interfering
ribonucleic acid, Snta-1, syntrophin-1-alpha, TBI, traumatic brain injury, TFP,
trifluoperazine, TRPV4, transient receptor potential cation channel subfamily V
member 4, VIP, vasoactive intestinal peptide, VRS, Virchow-Robin space(s).

and the ultrastructures of extracellular space needs to be outlined
(2, 7–10). The common denominator of all these theories is
the function of cellular membrane components, called water
channel proteins. Among these, particular attention was paid
recently to the structure and function of aquaporins (AQPs),
where aquaporine-4 (AQP4) has been acknowledged as the
water channel protein of main importance for water turnover
in the mammalian brain (11). First, recognized as a passive
water channel, due to results of numerous neuromolecular
studies, AQP4 has recently been acknowledged as an active and
precise water homeostasis regulator, playing a crucial role both
in physiological conditions as well as in situations where the
exchange of fluids between all cerebral compartments is essential
for the course of the disease (12–15). Here, the prime example is
the development and subsidence of brain edema, being the major
manifestation of the secondary cerebral damage in traumatic
brain injury and in cerebral ischemia (16–18). For this reason,
the potential of AQP4 as the target point for therapeutic methods
will also be discussed.

2. CONCEPTS OF CEREBRAL
INTEGRATED WATER SPACE

With the advent of modern neurosurgery, several concepts of
cerebral fluid circulation andwater turnover have been developed
with the classic model of cerebrospinal fluid (CSF) flow also
termed “third circulation” published by Cushing, which has since
then become universally accepted (2, 19). According to his view,
the brain was enveloped by the CSF layer being in constant
flow. The CSF is produced in the lateral ventricles/choroid
plexi, transported to the third ventricle, passing through the
aqueduct and fourth ventricle, flowing to basal cisterns and
distributed upon both hemispheres, where a paramedial area
(superior sagittal sinus and arachnoid granulations) plays a
major role in CSF reabsorption (2, 20). Already an important
remark has been made, that the brain, despite its high water
content lacks a usual lymphatic apparatus and lymph flow,
and the CSF circulation was assumed to fulfill the role of the
lymphatic circulation (provision and cleavage of water-soluble
metabolites) in the brain (7, 21, 22). This macroscopic and very
gross description of CSF turnover has been modified recently.
In particular, the view that CSF production and resorption are
the main forces behind brain fluid transportation needed to be
revised (23–30). Here, the importance of perivascular spaces,
called Virchow-Robin spaces (VRS) should be outlined. These
fluid-filled areas, surrounding both arteries and veins running in
the direct proximity or through the nervous tissue was attributed
the role of the intermediate zone, joining the macroscopical
subpial space, filled with CSF with the microscopically delineated
extracellular area, in which single brain cells, including neurons
and glia, were sustained (12, 31). Of note, in several studies, it
was demonstrated that the fluid contained in VRS is moved not
by simple diffusion or only due to a high pressure gradient, but
is rather propelled by the pulsatile activity of arterial vessels (32–
36). Such a pump mechanism seems to depend upon the cerebral
microcirculation (37, 38) and the condition of disturbed vascular
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autoregulation impairs also the mechanism of bulk flow along
the VRS (39–45). On the other hand, the raise of cerebral blood
flow on the level of microcirculation can increase the dynamics
of perivascular fluid (37). Clearly, cerebral microcirculation in
physiological conditions relies on the metabolic demand of the
nervous tissues, supplied by both blood and cerebral fluid flow
(46–48). In respect to complex interactions between the cerebral
vessels (including cerebral vasculature i.e., endothelial cells and
pericytes, as well as astrocytes and neurons with their processes),
the term neurovascular unit (NVU) has been coined. The concept
of an NVU [exhaustively reviewed in (49)] encompasses these
varieties of cells and their function, the interactions of which
maintain the ionic, metabolic, and molecular homeostasis of
the brain. In particular, the neuronal and astrocytic activity
is able to provoke a dilation or a contraction of the arterial
vessels [executed by smooth muscle cells (50)] or capillaries
[provided by pericytes, being an integral part of NVU (51)]
via a number of mediator substances, the release of which
is strictly dependent on neuronal or astrocytic activity. This
list includes not only the nitric oxide (NO), as the prime
example of vasoactive substance (52, 53), but also products
of cyclooxygenase-2 activity (prostanoids) (54, 55), D-serine
of astrocytic origin (56), peptide-based vasoactive mediators
including vasopressin (57), somatostatin (58), neuropeptide Y
(NPY) (59, 60), and vasoactive intestinal peptide (VIP) (61), all
of which the neurons or astrocytes are capable of secreting. This
means, that depending on the current activity of the neurons,
the autoregulation of the cerebral blood flow (on the level of
microcirculation/NVU) would be able to adapt not only the
blood supply but also, indirectly the control of CSF and the
extracellular fluid extravasal flow (62).

Though the view of arteries and arterioles and their pulsatile
action as the main pumping mechanism for cerebral fluid
movement is quite straightforward and easy to understand,
several physiological observations undermine this simplified
concept of brain fluid mechanics (63). Here, the oscillating
or even retrograde flow along VRS has been postulated and
documented in several in vivo experiments (64, 65), drawing
a conclusion that additional mechanisms exist (possibly on the
molecular level) which contribute to the production, mixing,
and flow of the fluid on the level of cerebral extracellular
spaces. One of the most important factors is the temporal
change in permeability for water and electrolytes or even larger
particles of the blood-brain barrier (BBB) (66–69). The BBB,
with its key component—tight junctions between endothelial
cells lining the interior wall of cerebral microcirculation, used
to be perceived as a seal, which prevented larger molecules
from passing between the intravascular lumen and extracellular
space. In this early concept, water and electrolytes were allowed
to pass the BBB depending mostly on physical and chemical
laws of osmosis and hydrostatic pressure (70, 71). However, the
idea of BBB as the passive membrane exposed to the tides of
CSF and blood circulation has been revised recently. Here, the
exchange of electrolytes and larger particles (e.g., aminoacids)
across the BBB has been described as an active, closely regulated
process (72, 73), dependent on the energetic state of neurons,
astrocytes, and endothelial cells (74, 75). The key argument,

that BBB is not a passive, but an active structure, regulating the
circulation of cerebral fluid on the ultramicroscopic level, was
the capability of BBB to precisely regulate the amount of water
passing across it. Moreover, in relation to water permeability, the
BBB demonstrated high dynamics in changes of this property,
both temporal and spatial (76–79). Thus, due to the rapid
and physiological changes in BBB permeability to water and
electrolytes, the brain can create compartments of fluid spaces,
slightly but significantly different from the rest of global fluid
space (80–83), in order to create a biochemical environment
that is optimally adjusted to the current needs of the population
of brain cells, both neurons and glia. Certainly, this dynamic
function requires the presence of multiple molecular control
systems, responsible for rapid changes in the transmission rate
across BBB for different compounds (84). Regarding water
permeability, the major control system is composed of several
membrane proteins, labeled water channel proteins, with the
AQP4 being appreciated as the most relevant for cerebral
water turnover (85). The physiological function of AQP4 clearly
results from its biochemical structure and gene expression as is
described in the following chapter.

3. STRUCTURE, GENETICS, AND
DISTRIBUTION OF AQP4

The AQP4 protein is a member of the large family of
AQPs, the membrane water channels, which are widespread
in all investigated organisms from bacteria and plants to
vertebrates and responsible for bidirectional water permeability
of phospholipid bilayers of cells (86). The AQP4 was first
identified as 32-kDa mercurial-insensitive water channel in a
rat lung (87) and then described in many different epithelial
cells such as renal principal cells of collecting ducts, retina,
iris, ciliary body, stomach parietal cells, colon epithelial cells,
excretory tubules of lacrimal and salivary glands, organ of Corti,
and in skeletal muscles. But it is mostly present in themammalian
brain and spinal cord, where it is localized in astrocytes directly
in contact with capillaries and pia and in subpopulations of
ependymal cells (88–91).

3.1. AQP4 Protein Structure
The structure of the monomeric subunit of AQP4 is similar
for all AQPs and was at first described for AQP1 in human
erythrocytes membrane (92). Any single subunit comprises two
repeated segments, each built from three domains of the alpha-
helix structure. All six domains (in pairs of the three) are
arranged in the form of a non-polar bilayer and connected by
five loops (A to E). The loops B and E (which connect the
second and third domain in each segment) consist of highly
conserved located motifs of three amino acids: asparagine—
proline—arginine (NPA). According to the hourglass model,
they cover the space between the bilayer leaflets and allow the
water pore formation (92–94). The hemipore (as are also called
B and E loops) is maintained by the van der Waals forces
(95). The width of the pore along its lumen is not identical.
The narrowest part, localized about 8Å above the center of the
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membrane, has a diameter of 2.8Å, similar to a single particle
of water. In this site, NPA motifs make contact with each other.
The pore diameter increases in the direction of the extra and
intracellular layer of the membrane, which creates the hourglass-
like shape of the whole structure (96). Several isoforms of AQP4
have been identified. In the rat brain, Jung et al. described two
overlapping polypeptides of 323 or 301 amino acids, currently
known as classical forms M1 and M23, transcribed from this
same gene, but from differently localized initiation sites at the
upstream (M1) and downstream (M23) of the gene. Authors have
determined a polypeptide structure, similar to earlier identified
AQP1, consisting of six membrane bilayer-spanning domains
and five connecting loops, including hydrophobic loops B and
E and containing, respectively, NPA 97–99 and NPA 213–216
sequences. The cytoplasmic amino terminus comprises both
potential initiation sites, the carboxyl terminus, also localized
in the cytoplasm consists of approximately 70 amino acids.
Opposite to other AQPs, in the AQP4 amino acid chain no
cysteine at site G94 nor at site A210, both responsible for
mercurial inhibition, was found. In the amino acid sequence
also three potential N-glycosylation sites were identified with
the first (N153) localized in extracellular loop C. Both protein
isoforms were synthesized in the presence of microsomes. When
cRNA contained the downstream site, a single polypeptide of
301 amino acids and 30 kDA arose. In the presence of both
initiation sites, besides the minor product, also the 323 amino
acids polypeptide of 32 kDa were synthesized (93). Together
with these first two AQP4 isoforms identified in humans, rats,
and mice (87, 93, 97), nine AQP4 isoforms are as yet found
(AQPa–f, 4, a ex and c ex) (98–100). When, as a result of the
AQP4 rat gene mapping, four additional forms of AQP4 were
described, the new terminology was implemented. M1 and M23
isoforms, respectively, have received names AQP4a and AQP4c,
and AQP4 isoforms newly identified in rats were named AQPb
and e-f (101). AQP4a, AQP4c, and AQP4e, considered classic,
have six bilayer-spanning domains (1–6) and five interconnecting
loops (A–E). AQP4b, AQP4d, AQP4f isoforms are devoid of
helices 4 and 5 as well as connecting loop D. AQP41 found
in human skeletal muscles is devoid of the terminal part of
helix 5 and loop E (94). The recently identified isoforms of
AQP4 in humans named a ex and c ex are characterized by C—
terminal extension containing 29 amino acids (102). The AQP4
monomers independently of the isoform are organized into more
complex structures in the form of tetramers, which additionally
aggregate into orthogonal arrays of particles (OAPs) considerably
various in respect of the size and shape as well as the isoform
content (100, 103). The size of OAPs diameter evaluated by
differentmicroscopicmethods reaches 100–500 nm (100) and the
molecular weight of these higher-order structures is about 1,000
kDa (104). AQP4 a and AQP4 c are both incorporated into OAPs
(105) as well as their extended variants AQPa ex and AQP4c ex
(102). Additionally, it was reported that AQP4 a is able to attach
to OAPs only in the presence of AQP4c, being the component
of the OAPs core (106) and AQP4 c ex by the limitation of
incorporated tetramers affect the size of OAPs (102). The AQP4e
undergoes the incorporation into OAPs, while AQPs b and d do
not (although both indirectly modulate the OAPs amount) and
AQP4 f was not yet evaluated (100, 101, 103). Similarly, AQP41

lacks the ability to be attached to OAPs, but in the endoplasmatic
reticulum, it exerts an effect limiting both the abundance and
size of OAPs. This dominant-negative modulation is imposed
through the interactions between AQP4 isoforms of the plasma
membrane (99, 100).

3.2. AQP4 Gene Arrangement
All AQP4 isoforms are coded by a single copy of the gene
localized in humans on chromosome 18 at the junction of q11.2
and q 12.1 (97, 98). As with other AQPs, the gene coding
AQP4 consists of four exons including, respectively, 127, 55, 27,
and 92 amino acids, between which three introns of 0.8, 0.3,
and 5.2 kb are located. The unique feature, distinguishing the
AQP4 gene from other AQPs genes is an alternative initiation
sequence situated 2.7 kb upstream and named exon 0. It allows,
after the splicing process, to encode the M1 and next 10
amino acids by exon 0 and subsequent 11 amino acids with
M23 by exon 1 (97). In the promoter region, such regulatory
elements as TATAAAA (TATA box) at 385 bp upstream from
initiation codon, one CAAT box, and AP-1 were identified
and additionally SP1, two E-boxes, two AP-2, and acute phase
response elements (APRE). It was shown that the transcription
initiation site is located at 46 bp downstream from the TATA
box. In addition, it was revealed that at 138 bp downstream
of the stop codon a sequence AATAAA is situated which is
the signal of polyadenylation (107). The mRNA of AQP4 b, d,
and f is formed after alternative splicing omitting exon 2 from
AQP4 a, c, and e, respectively (101, 107). The AQP41 mRNA
is alternatively spliced from AQP4 a with a lack of exon 4 (99).
The variants AQP4 a and c ex are extended through translational
readthrough (102). In the AQP4 gene, numerous polymorphic
sites were reported across the entire gene including coding
and non-coding regions, as well as 3’ and 5’, flanking regions
(108), but the gene is considered as highly conservative and
non-synonymous single nucleotide polymorphisms (nsSNPs) are
rather rare (approximately 1–2% allele frequencies) (109). Several
known nsSNPs influence the protein structure and function. The
occurrence of variants I128T, D184E, I205L, M224T, and M278T,
although all are localized relatively far from the NPA motifs,
affect protein stability. The Ile-Thr substitution in position 128
results in the change of hydrophobic to hydrophilic residue in
the transmembrane region and Met-Thr substitution exerts a
similar effect in a loop if it involves position 224 or the C—
terminal domain and position 278. Additionally, the substitution
Met—Thr deprives the amino–acid residue of a sulfur atom.
The chemical relevance of two other substitutions Asp—Glu and
Ile—Leu is less significant. Nevertheless, all five nsSNPs impact
the AQP4 function—I128T, D184E, I205L, M224T reducing, and
M278T increasing water permeability (109).

3.3. AQP4 Distribution
As it was mentioned AQP4 is found predominantly in the
astrocytes, but the AQP4 gene expression is different in various
areas of the central nervous system (CNS) with the highest
levels detected in astrocytes localized near the subarachnoid
space, along ventricles and blood vessels. Also in areas
engaged with water balance maintaining and responsible for the
osmoregulation such as the supraoptic nucleus or subfornical
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organ, the intense AQP4 expression was recorded (90). The
distribution of AQP4 isoforms inside astrocytes varies depending
on the individual isoform. The most accurately is determined for
AQP4a and AQP4c (known also as M1 and M23), being two first
described and best-investigated isoforms. Both of them as well as
their extended forms (AQP4a ex and AQP4c ex) were found at
the plasma membrane aggregated in OAPs with the isoform c in
the core of OAP and isoform an attached to c (98, 100, 105, 110).
The isoform a may also occur in the plasma membrane in the
simpler form of tetramers (111). The isoform e is localized not
only at the plasma membrane, but also intracellularly (100, 101).
Other isoforms were detected only in the intracellular structures
such as Golgi apparatus (isoforms b,d, and f) or endoplasmatic
reticulum (14) (99, 100). Additionally, isoforms b and d were
found in lysosomes and early endosomes (100, 103).

Several studies underlined the fact, that the regulation
of AQP4 activity relies more on the subcellular relocation
than on the expression of its gene. Both isoforms of AQP4
can be translated from the same full-length transcript by a
“leaky scanning” mechanism (112, 113). Previous evidence
shows that both isoforms are relocated equally and that the
surface localization of AQP4 increased without changing the
level of protein expression. In a study by Salman et al. mild
hypothermic treatment increased the surface localization of
AQP4 in human astrocytes even in the lack of significant change
in total protein expression levels. Here, AQP4 mRNA increased
modestly in cultured human primary astrocytes following 4 h
mild hypothermia (32◦C) compared with control cells grown
at 37◦C but this increase in transcript did not result in a
change in protein level. Nevertheless, the decrease in temperature
influenced the surface localization of AQP4, creating a space
for the potential use of therapeutic brain hypothermia as
an antiedematous treatment (114). Furthermore, analysis of
Ciappelloni et al. indicated that the deleterious effect of anti-
AQP4 autoantibodies involved in neuromyelitis optica (NMO)
is probably based on perturbation of AQP4 surface dynamic
and distribution. This impact differed between both isoforms of
AQP4. Notably, in this study, the water transporting function
of single AQP4 molecules remained intact despite exposition
to AQP4 antibodies. This puts the nanoscale distribution of
AQP4 in the spotlight as a major pathophysiological mechanism
and the target for potential therapeutic strategy (15, 115), see
also Chapter 6.

4. AQUAPORIN 4: ITS PHYSIOLOGICAL
FUNCTION

The biochemical and molecular properties of AQP4 including its
expression, assembly of subunits, and integration into organelle
clearly define it as one of the membrane proteins. Indeed, the
proper physiological function of AQP4 requires its polarized
integration and anchoring into astrocytic cell membranes (116–
119) and this process is regulated already at the stage of
translation and protein folding (120). In particular, the location
of the AQP4 along the parts of astrocytic membranes reflects
its crucial function in regulating the water exchange between

intra- and extravascular space: the density of AQP4 arrays is
about 10 times higher in endfeet areas adjacent to cerebral
microvasculature than in other zones (90, 117, 121) and
this inhomogeneous localization seems to be crucial for the
BBB integrity (122, 123). But even if the majority of AQP4
complexes are located in endfoot areas, the presence of AQP4
has also been demonstrated in astrocytic membrane zones,
directly neighboring synaptic areas (124, 125), in particular
excitatory synapses (90). This localization of AQP4 defines its
main physiological functions: a direct impact on the clearance
of water and cellular metabolites, altering extracellular fluid
dynamics, and (most probably indirect and less precisely
described) regulation of neuronal and synaptic activity including
plasticity (thus impacting memory and behavior). Certainly, the
role of AQP4 and the whole AQP family in the physiology
of the nervous system is not limited to these two domains.
Currently, up to 13 different AQPs have been identified. The
diversity of their physiological roles comprises physiological
solute transport including glycerol, ammonia, urea, carbon
dioxide, and hydrogen peroxide (126). The permeability of
water channels for different small, polar substrates depends not
exclusively on transmembrane proteins, which form a more
narrow or wider space but expresses considerably more complex
interactions between the features of the solute as well as the
pore constriction and polarity. Especially important in the
highlighting of these phenomena seems to be recently described
relevance between the single amino acid substitutions within the
aromatic/arginine (ar/R) motifs known as the selectivity filters
of different AQPs and between glycerol and urea permeability.
In AQP4 the ar/R- motif is formed by phenylalanine in position
1, histidine, in position 2, and, being a small residue, alanine
in position 3. In vitro, the mutagenesis of ar/R motifs of AQP4
consisting in substitution of histidine in position 2 and arginine
in position 4 creates glycerol or urea permeable channels.
The H201A and H206G substitutions, respectively, allow the
glycerol and the urea permeable channels to form, while the
R216A substitution creates the channel permeable for both
substrates. Some authors hypothesized that the H201A mutation
along with F77 composes a hydrophobic corner contacting with
the alkyl chain of the glycerol due to van der Waals forces,
while the loss of the alanine in the H201G mutation causes a
disruption of this corner and accessibility of the V197 backbone
carbonyl group for binding with water or solutes such as urea
due to hydrogen bounds. Oppositely, analogous mutagenesis
of AQP1 (R195A and H180/G) did not lead to the formation
of urea or glycerol permeable channels (127). AQPs are also
responsible for the trafficking of other membrane proteins and
are involved in intercellular molecular interactions resulting
in cell-cell adhesions. Due to their selectivity in ion transfer
across the cell membrane and ability to counteract the osmotic
changes, AQP has been attributed the role of cell volume/size
regulators. As to the AQP4 itself, its role in cell adhesion
(probably by facilitating aggregation or localization of other
adhesion molecules) has been previously described (128, 129).
For the exhaustive reviews on diversity in AQP family and AQP4
function see also (13, 130, 131), however for the sake of clarity
and clinical context of this review we will focus on the AQP4
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functions that are the most relevant for the function of the
perivascular unit.

4.1. Role of AQP4 in Fluid Management
The information that is crucial for understanding AQP4 function
for fluid homeostasis has been mostly (but not exclusively)
gained through studies implementing animal lines with the
genetic modification of AQP4 function. Accordingly, AQP4
knockout animals demonstrate enlarged interstitial fluid spaces
(132, 133), increased brain water content (134, 135), and
reduced capability to get rid of extracellular brain water excess
(135, 136). These findings are highly suggestive of a regulatory
role of AQP4 in water transportation across BBB between
extracellular and perivascular space (137). Indeed, multiple
attempts to trace the fluid movement demonstrated suppression
of glymphatic flow in the absence of AQP4. Of note, this
observation has been made not only in regard to exogenous,
drug-like substances as mannitol (138) or dextran (137) but
also applied to endogenous substances like tau (139–141), beta-
amyloid (138, 140, 142, 143) or lipoproteins (144), which are
involved in the pathogenesis of degenerative encephalopathies.
Of note, the AQP4 role in facilitating the exchange of solute
distribution and waste substance clearance is strongly dependent
on adequate localization of AQP4 in the perivascular processes
(145). Disturbance in the cell-level distribution of AQP4, as
provoked by syntrophin-1-alpha (Snta-1) gene deletion (146) or
seen in brains affected by aging (147), trauma (148), or ischemic
damage (149) is related to impaired function of glymphatic
clearance. Undoubtedly, it sheds new light on the role of the
glymphatic system in the pathophysiology of diseases such as
Alzheimer’s disease or posttraumatic neurodegeneration.

Notably, based on the results of (150) and (151) a competitive
hypothesis has emerged, assuming that an alternative,
AQP4 independent system of fluid transportation exists. In
both experiments, implementing alternative ways of tracer
administration to the extracellular fluid space in experimental
animals, the fluid/tracer transportation was not impacted by the
AQP4 genetic status and thus by aquaporin function in both
wildtype and AQP4-knockout animals.

However, the recent multicenter research effort, provided
by five laboratories implementing independently developed
transgenic animal models with impaired AQP function, clearly
demonstrated, that transport of the tracers, cleared from
extracellular space via perivascular fluid compartment is
strongly dependent on the proper function of perivascular
aquaporins (146).

In conclusion, the main and widely accepted role of AQP4 is
the facilitation of fluid exchange between the extracellular space
and the perivascular spaces (both being essential parts of the
glymphatic system and incorporated in brain fluid circulation) as
well as in the cleavage of several cerebral metabolites, crucial in
pathophysiology of neurodegeneration. Importantly, even under
the physiological condition, transportation of cerebral fluid does
not represent a steady-state but is a very dynamic process
constantly adapting to the current needs, being related to the
energetic state of neurons and thus linked to autoregulation

of microvasculature. Let us take a closer look at the previous
evidence regarding this area.

4.2. AQP4 as a Potential Regulator of
Glymphatic Flow
Soon after describing glymphatic system with the continuous
fluid flow as its main function, the evidence about its dynamic
adaptation to the current physiological status appeared. Of
importance, the increased energetic demand of neurons on the
one hand clearly increases cerebral blood flow on the level
of microcirculation (152–155) [a phenomenon described as
neurovascular coupling, for some recent reviews of molecular
background, see also (156–159)], but on the other hand reduction
of interstitial flow as the neuronal activity grew has been observed
(160). More so, the conditions, that are clearly related to reduced
neuronal activity i.e., sleep (161–163) and general anesthesia
(164–167)—albeit in a dose-dependent manner (168) [reviewed
also recently in (169, 170)]—have been associated with the
enhanced glymphatic flow and interstitial fluid circulation.

Is the activity of AQP4 channels somehow responsible for
this inversed relationship between neurovascular coupling and
glymphatic flow? Indeed, the trend to the physiological flow
reduction in regions of neuronal activation was reversed in
AQP4 knockouts (171). AQP4 expression and polarization
are also strongly dependent on circadian rhythm (162, 172),
suggesting that proper AQP4 activity is required for physiological
glymphatic stagnancy in periods/areas of neuronal excitation.
Also, in clinical conditions, an increased volume of extracellular
fluid/PVS spaces [as seen in AQP4 knockout animals (132, 133)]
have been observed in subjects affected by neurodegenerative
conditions with documented reduced daily cognitive activity
(41). The linkage between neuronal excitation, increased blood
microcirculation, and reduced glymphatic flow is not completely
understood, but the properties of AQP4 allow us to hypothesize
several interrelations between these physiological phenomena.
One possibility is the direct impact of vasoactive substances
on AQP4 function and expression. Indeed, NO was able to
modulate AQP4 expression in cultured astrocytes via a cGMP-/
MAPK controlled mechanism (173, 174) as well as in the setting
of animal experiments (175). Also, vasopressin an activation
of its receptors seems to impact the density and function of
AQP4 (176, 177) or AQP1 (178) channels. Finally, inflammatory
vasoactive substances as thromboxane (179) seem to share AQP4
as the parallel lever of action triggering astrocytic swelling.
However, some more direct and swifter response mechanisms of
AQP4 response to increased neuronal activity do exist. Here, the
participation of AQP4 channels in moderating the K+ exchange
related to increased neuronal activity needs to be discussed
[albeit some reports deny the importance of Kir4.1/AQP4
complex for the mechanism of astrocytic swelling (180), being
proposed as the mechanism of the reduced glymphatic flow
(181)]. The participation of AQP4 channels in potassium
homeostasis is well-documented [as reviewed exhaustively in
(130) and (182)] and relies mostly on providing the water
flux necessary for spatial redistribution of K+ ions, released
during the phase of neuronal activation (183). Importantly,
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the key role of AQP4 in managing K+ excess has been
underlined by molecular studies in conditions directly related to
neuronal hyperexcitation as spreading depolarization (184, 185)
or seizures [both in experimental (186–190) and clinical (191–
193) settings]. Since K+ surplus in extracellular fluid space is
linked to the function of cerebral micro perfusion, including
neurovascular coupling (194–197), it may be hypothesized,
that disturbed AQP4 function underlies the pathophysiology
of several conditions related to improper reactivity of small
vessels, including migraine and cluster headache (198, 199)
via this mechanism. More importantly, the disturbance in
potassium homeostasis attributable to AQP4 misfunction seems
to result in ischemic exacerbation of secondary brain damage as
may be noticed in stroke (200–202), subarachnoid hemorrhage
(203–207), spontaneous intracerebral hemorrhage (208, 209)
or traumatic brain injury (210–213). With regard to these
conditions, even stronger links between secondary injury and
AQP4 function do exist, namely the development of brain
edema, which is the most direct result of impaired cerebral
fluid homeostasis.

5. BRAIN EDEMA AND ROLE OF AQP4 IN
ITS PATHOPHYSIOLOGY

Certainly, the role of AQP4 in the development and subsiding
of brain edema in different cerebral pathologies is of paramount
importance for our understanding of the (patho-) physiology
of cerebral fluid circulation. According to the canonical
concept, forged by Klatzo and his research group, there
are two main forms of cerebral edema existing. Vasogenic
edema is characterized by extracellular water accumulation
due to BBB dysfunction and increased transcytosis of plasma
elements, including water (145). In turn, in cytotoxic edema
water excess is gathered inside the cells (both neurons and
astrocytes), manifested by beading i.e., swelling of astrocytic
cells and neuronal dendrites (214–218). This dichotomy has,
later on, been refined by numerous works by Marmarou and
associates, describing in detail energetic depletion as the major
drive for cytotoxic edema development as well as radiological
manifestation of both edema types (219–224). In more recent
works, a third kind of brain swelling, namely ionic edema, is
distinguished. This type of edema is characterized by an early
influx of both water and sodium ions from the perivascular
compartment into the brain parenchyma, predominantly into the
astrocytic cells. Ionic edema usually precedes the impairment of
tight junctions being the first phase of ischemia-related edema
formation (217, 225) and is associated with brain swelling of
cytotoxic character (145, 217). Until the appearance of AQP4 on
the stage, the main role in the molecular performance of both
ionic and vasogenic edema remained vacant. Upon discovery
and description of AQP4 function in water transportation (both
in physiological and pathological conditions), our view on
extracellular space and, more recently, the glymphatic system for
development of brain edema has evolved dramatically (226).

Initially, the results of the experiments both in vivo and
in vitro seemed to be inconclusive, since AQP4 and its expression

demonstrated both surge and depletion of its activity due to
developing brain edema. Thus, Ke et al. reported a reduction
of AQP4 expression in areas of the traumatically swollen brain
(227) and a similar observation has been made by Kiening
et al. (228) and Bixt et al. in a rat model of posttraumatic
edema (229). On the other hand, Fukuda et al. reported a
delayed but significant raise in AQP4 level, following the
development of posttraumatic brain edema (230) in juvenile
rats, and similar observation has been made in adult animals
by Taya et al. (231) and Zhang et al. (232). These observations
were hard to reconcile until AQP4 knockout animals were
available. Here, consequent analysis of different forms of edema
in diverse experimental paradigms revealed that in the models
with predominating cytotoxic edema demonstrable in transient
or persistent ischemia models, lack of AQP4 function resulted
in reduced water accumulation (233–235) and/or improved
outcome (236–238). One possible explanation of these findings
is, that in the absence of AQP4 channels, water excess, that would
be accumulated in the swelling astrocytes due to compensatory
mechanism after energetic depletion, remains in extracellular
space and is managed by the glymphatic system and transported
by perivascular spaces, being less effective (141) although more
abundant in AQP4 knockouts (233). In conditions of vasogenic
edema, the AQP4 channels seem to play a beneficial role, helping
in the transportation of the fluid excess from the interstitial space
to the glymphatic system. This hypothesis is sound with the
observation, that in animal models of predominantly vasogenic
edema, as in hemorrhagic stroke (209, 239–241) brain infection
(136, 242–245) or brain tumor/cold lesion model (136, 246)
brain edema subsides more efficiently in the presence of properly
functioning AQP4. Importantly, not only the crude amount of
AQP4 units defines its impact on brain edema or spinal cord
edema development. AQP4-related permeability of astrocytic
membranes is strongly dependent from subcellular localization
of AQP4 water channels (112, 114). Pivotal study of Kitchen et al.
demonstrated, that relocation of AQP4 units is modulatedmainly
by calmodulin (CaM), binding directly with AQP4 domains,
while this action is further enhanced by AQP4 phosphorylation,
performed by protein kinase A (PKA) (15). Thus, subcellular
localization of AQP4 particles seems to be even more important
for brain edema formation than expression of AQP4 genes.

The topic of AQP4 dual impact on brain edema
development/resolution is the most clearly seen in neurotrauma
research. Here, several traumatic brain injury (TBI) models
exist, in which the dominance of cytotoxic or vasogenic edema
type relies not only on the mechanism of primary injury
but changes dynamically over time as the influence of AQP4
does. Several studies implementing controlled cortical impact
paradigm (CCI) (227, 229, 247) (with an initial predominance
of cytotoxic edema) demonstrated a decrease in AQP4 activity
and expression accompanying edema development (227–229)
[although Taya et al. (231) and Fukuda et al. (248) described
an AQP4 concentration raise in early stages of CCI]. To the
contrary, animal studies using fluid percussion injury (with
predominantly vasogenic edema) (249, 250) or weight drop
models (148) demonstrated a rise of AQP activity/expression.
Notably, in models of more severe brain damage, the molecular
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effect of AQP4 activation may be counteracted by loss of the
cells being AQP4 carriers, possibly making the interpretation of
data even more difficult (251). The same refers to the models
with mixed type of posttraumatic edema (232), demonstrable
in several head injury studies conducted in AQP4 knockout
animals, where the net differences in edema development
were not as clear as in experiments, in which conditions of
purely cytotoxic or purely vasogenic edema were analyzed
(13, 252). Nevertheless, in long-term outcome analysis, it was
documented that animals lacking AQP4 demonstrated better
recovery regarding neuroinflammatory events and cognitive
function (18). On the other hand, AQP4 deficiency was also
associated with the lower threshold of posttraumatic seizures
(188). Notably, in the animal model of minor head injury,
where brain edema is of lesser relevance for the posttraumatic
course, lack of AQP4 was demonstrated to be neuroprotective
(253) (an effect similar to pathophysiological conditions with
cerebral edema of cytotoxic type) (13). As was discussed above,
previous studies have shown that AQP4 seems to have different
functions and outcomes in different CNS disorders. Hence,
the need for accurate and reproducible methods evaluating the
activity of AQP4 should be underlined. These needs meet the
recently developed calcein fluorescence assay. Shortly, calcein
is a dye with fluorescent properties that is provided to plate
adherent cells as the membrane-permeable and non-fluorescent
acetoxymethyl ester (calcein-AM). Next, the calcein-AM is
metabolized by intracellular enzymes to fluorescent calcein.
Then, cell shrinkage is induced by using a hypertonic medium
and the quenching fluorescence of calcein is continuously
measured. The concentration-dependent fluorescence reflects
cells volume and enables the evaluation of water transport across
the plasma membrane. Obtained curves of the shrinkage of the
cell allow quantifying relative and absolute water permeability
(254). Of note, calcein fluorescent assay is only one of several ex
vivo methods to assess AQP4 function. Here, the spectrum of
methodology reaches from cell culture-based osmotic swelling
tests over stopped-flow spectroscopy tests in e.g., liposome
suspensions up to in silico computational assays. This variety
of research methods should be critically considered, since every
single assay carries its advantages and limitations, as outlined
in exhaustive reviews of Verkman et al. (255) and Abi-Awan
et al. (256).

6. DISCUSSION: AQP4 AS A TARGET FOR
THERAPEUTICAL APPROACHES

Due to the ambiguous properties of AQP4 regarding its impact
on water homeostasis in different types of edema, the results
of experimental studies in which AQP4 function is blocked or
enhanced need to be critically analyzed before being translated
into clinical practice. Indeed, recently several compounds have
been claimed to execute beneficial impact on the course of
secondary brain damage, including brain edema via interference
with AQP4 function and expression. Here, neuroprotective
and antiedematous action of erythropoietin has been linked
with the preservation of AQP4 function in trauma (257),

hydrocephalus (258), and cerebral ischemia (259). Further, the
neuroprotective action of several (food) antioxidants has been
explained by the adjustment of AQP4 channel functions (260–
264). Notably, the antiedematous effect of well-known osmolar
drugs such as hypertonic saline and mannitol has been recently
linked to modulation of AQP4-water channel permeability (265,
266). Finally, the idea of repurposing some of these well-
known drugs like acetazolamide (267–269) or levetiracetam
(270) was based on their presumed or proven effect on AQP4
channels. Even more promising is the therapeutic strategy,
in which the AQP4 subcellular relocation as the main driver
promoting brain or spinal cord edema is targeted. Here, the
pharmacological inhibition of PKA and CaM as main regulators
for AQP4 subcellular localization was efficient against spinal
cord edema formation, breakdown of blood-spinal cord barrier,
and improved functional outcome in a rat model of spinal cord
injury (15). Since CaM inhibition was provided by trifluoperazine
(TFP), a compound that is already approved as an antipsychotic
drug, the perspective of swift clinical implementation of these
experimental results emerges. Significantly, TFP has proven its
neuroprotective and antiodematous effect also in experimental
models of brain ischemia (271, 272). In the most recent
study, implementing photothrombic stroke model, TFP has
downregulated AQP4 expression, reduced the amount of brain
edema, and improved the metabolic function (as demonstrated
via increased glycogen level of astrocytes located in ischemic
penumbra) (271).

Certainly, analyses of Kitchen et al. (15) and Sylvain et al.
(271) clearly document the relationship between AQP4, its
subcellular location, and the beneficial role of interfering
AQP4 relocalization after an injury as the main mechanism
for beneficial action of TFP. Nevertheless, for most of the
other studies, the question emerges: are the antiedematous
or neuroprotective properties truly mediated via impact on
AQP4 activity, or is the shift in AQP4 expression/function
only secondary and thus reflects rather an adapting reaction
of the whole glymphatic system to the beneficial action of
the given drug? This question should not hinder the research
community in further search for treatment strategies, in which
the pivotal position of AQP4 in cerebral edema management
is utilized for the improvement of outcome and neuronal
protection. A good example here is the use of decompressive
craniectomy. This rapid change in physical properties of the
skull and brain, including hydrostatic pressure change has been
associated with increased AQP4 activity, at least in areas not
affected by the abundant loss of neural and glial cells (250, 251).
It is imaginable, that adding AQP4-targeted therapy [like
acetazolamide (267, 273) or selective AQP4 channel blocker as
TGN-020, being one of the most promising candidate drugs
(274–277)] to the surgical decompression would allow reducing
the risk of edema surplus, related with loss of hydrostatic
resistance in the decompressed brain (267). Importantly, the
list of structurally non-related compounds displaying the
AQP4-inhibitory properties is long and includes ethoxzolamide,
topiramate, lamotrigine, zonisamide, acetylsulfanilamide,
phenytoin, bumetanide, furosemide, tetraethylammonium, and
IMD0354 (273, 274, 278, 279). Obviously, this list encompasses
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several drugs that, similar to acetazolamide, have been already
approved or tested for uses other than counteracting brain
edema. Hence, the strategy of drug repurposing will open a fast
track for the search for efficient AQP4-targeted treatment of
brain edema. The importance of this approach is underlined
by the fact, that despite several assays of AQP4 water transport
function are available and has been abundantly used in basic
research studies [for exhaustive review see (255, 256)], no single
drug exists, that has yet been approved to successfully target
AQP4 water channel function in a clinical setting (256). One of
the possible obstacles is the toxicity and reduced selectivity of the
compounds (including heavy metal derivates), which attempted
to be used according to the traditional pore-blocking approach.
It is difficult to circumvent this problem, even if modern
pharmacodynamic forms of drug administration (e.g., liposome-
encapsulated compounds) are used (256). Unfortunately, the
strategy of virtually screening myriads of candidate inhibitors
does not solve this problem but rather multiplies the number of

putative AQP4 blockers that fail to exert their function in vivo.
The possible reason here is the characteristic of AQP4 molecule,
with the relatively small diameter of its pore and simple structure
of its molecule, that, contrary to regular membrane receptors,
lacks any complex intrinsic gating and transport mechanism
(255). This makes AQP4 channels less prone to be targeted
by the small inhibitory molecules, dramatically shortening
the list of candidate drugs (255, 256). For this reason, the use
of AQP4 targeted immunotherapy or AQP4-gene targeted
treatment should be considered. Here, in the specific condition
of NMO, the anti-AQP4 monoclonal antibody (aquaporumab),
competitively binding to AQP4 has proven its efficacy in reducing
lesions, at least in preclinical tests (280–283). It is noteworthy to
consider an antibody-based approach in conditions where AQP4
function (as cytotoxic edema, ocular neovascularization, and
astroglia proliferation including glial scarring and infiltration
of glial tumors) is related to exacerbation or propagation of
pathologic conditions. Limiting AQP4 expression by use of

FIGURE 1 | Summary figure, demonstrating aquaporin-4 (AQP4) cellular trafficking as a possible target for treatment. Blue arrows represent the process of AQP4

production and relocation, the groups of potential therapeutics are labeled by red text and their impact is marked by green (enhancing) or red arrows (blocking

activity). AQP4 expression (transcription of the AQP4 gene and translation of AQP4 mRNA with ribosomal production of AQP single subunits may be disturbed by

small interfering RNA (siRNA), attaching selectively to AQP4 mRNA domains and preventing the translational readout. The single subunits of AQP4 are organized into

orthogonal arrays of particles (OAPs) and as tetramers are transferred by endosomal vesicles to the proximity of cell membrane (predominantly in astrocytic endfoot

area). Here, the AQP4 translocation to the cell surface takes place. This process relies on the activity of vanilloid-receptor-related subfamily 4 calcium channel (TRPV4)

and calmodulin (CaM), directly binding to the AQP4 particles. Importantly, blocking CaM activity by trifluoperazine (TFP) was efficient against AQP4 relocation and the

formation of cytotoxic brain edema. Notably, hypothermia exerts opposite action enhancing AQP4 surface exposition and this effect may be counteracted by TRPV4

inhibitors, Ca2+ chelating compounds, or CaM blockers. This effect is more relevant than the impact of hypothermia on AQP4 expression, with increased transcription

reported by some, but not all relevant studies. The AQP4 channel, while integrated into astrocytic surface membrane, may be simply blocked by a number of

compounds, including acetazolamide, topiramate, lamotrigine, zonisamide, acetylsulfanilamide, phenytoin, bumetanide, furosemide, tetraethylammonium, and

IMD0354 as well as by heavy metal derivates or—more selectively—by TGN-020. In conditions of autoimmune response that is driven against AQP4 channels, as

seen in neuromyelitis optica (NMO), blocking of antigen epitopes by monoclonal antibodies (aquaporumab), has been demonstrated as an effective NMO treatment, at

least in experimental conditions. Figure created with the use of Servier Medical Art images/content of smart.servier.com in compliance with the terms of the Creative

Commons Attribution 3.0 Unported Licence.
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small interfering RNAs (siRNA) to suppress the translation
process is another viable option (256), efficiently reducing the
development of posttraumatic brain edema, at least in animal
models (284, 285). Finally, the implementation of physical
methods interfering with AQP4 function should be mentioned.
For instance, global or focal brain hypothermia seems to exert
their beneficial action not only by increasing AQP4 expression
(286) but also partially via impacting the function of AQP4
channels (251, 287–289). Focusing on this aspect and enhancing
the impact of cerebral hypothermia treatment with AQP4-active
drugs would potentially allow the second renaissance of the
latter treatment mode (currently abandoned due to clinical
burden of side effects, including ionic disbalance) (290, 291).
The key points of cellular AQP4 trafficking that are relevant for
developing new treatment strategies are outlined in Figure 1.

7. CONCLUSION

There is growing interest in the structure and function of cerebral
extracellular spaces described recently as the glymphatic system.
Certainly, the glymphatic flow as well as water metabolismis
dependent on numerous physical laws and molecular factors.
However, evidence from recent years, regarding the role of

cellular water channels in physiological conditions and diverse
brain pathologies clearly point out AQP4 as the key component
of cerebral fluid homeostasis, acting not only as a passive
channel for water and small molecular substances but playing

a key role in the proper functioning of blood-brain barrier and
perivascular unit. Hereby adapting the glymphatic flow to the
phases of neuronal activity with increased blood flow demand in
an alternating manner. The knowledge about the role of AQP4
in cerebral fluid homeostasis is vast and continually growing,
however, there is still a lot to discover in this field. For this
reason, as well as the ambiguity of the impact of AQP4 on the
neurological outcome of cerebral edema, attempts to translate
somehow the positive results of in vivo studies into clinical
practice should await more precise and more critical benefit-
risk calculations for an inhomogeneous group of conditions,
in which brain edema and/or neurovascular uncoupling play
a major role.
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