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The prerequisites for neurons to function within a circuit and be able to contain and

transfer information efficiently and reliably are that they need to be homeostatically stable

and fire within a reasonable range, characteristics that are governed, among others, by

voltage-gated ion channels (VGICs). Nonetheless, neurons entail large variability in the

expression levels of VGICs and their corresponding intrinsic properties, but the role of this

variability in information transfer is not fully known. In this study, we aimed to investigate

how this variability of VGICs affects information transfer. For this, we used a previously

derived population of neuronal model neurons, each with the variable expression of

five types of VGICs, fast Na+, delayed rectifier K+, A-type K+, T-type Ca++, and HCN

channels. These analyses showed that the model neurons displayed variability in mutual

information transfer, measured as the capability of neurons to successfully encode

incoming synaptic information in output firing frequencies. Likewise, variability in the

expression of VGICs caused variability in EPSPs and IPSPs amplitudes, reflected in the

variability of output firing frequencies. Finally, using the virtual knockout methodology, we

show that among the ion channels tested, the A-type K+ channel is the major regulator

of information processing and transfer.
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INTRODUCTION

One of the important features of neurons within a homogenous population is that they express
variability in their various physiological parameters, both intrinsic and extrinsic (Marder, 2011;
Marder et al., 2014; Rathour and Narayanan, 2019; Goaillard and Marder, 2021). While there
are multiple studies concerning homeostasis that accounted for this variability (Goldman et al.,
2001; Taylor et al., 2009; Marder and Taylor, 2011; Rathour and Narayanan, 2012, 2014), studies
on information encoding/transfer in face of variability are few (Padmanabhan and Urban, 2010,
2014; Tripathy et al., 2013). The general theme that has emerged from studies on homeostasis and
variability is that variability of physiological parameters between neurons is critical for maintaining
the homeostasis on multiple levels, both the single neuron and circuit functioning, serving the
aim of information encoding (Goldman et al., 2001; Prinz et al., 2003, 2004; Taylor et al., 2009;
Padmanabhan and Urban, 2010; Marder, 2011; Marder and Taylor, 2011; Tripathy et al., 2013;
Padmanabhan and Urban, 2014; Rathour and Narayanan, 2014; Anirudhan and Narayanan, 2015;
Srikanth and Narayanan, 2015; Rathour et al., 2016; Mittal and Narayanan, 2018; Mishra and
Narayanan, 2019; Basak and Narayanan, 2020; Jain and Narayanan, 2020; Goaillard and Marder,
2021; Roy and Narayanan, 2021).
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The role of variable expression of voltage-gated ion channels
in maintaining homeostasis in neuronal physiology is well
established, but how this variable expression of voltage-gated ion
channels and homeostasis affect information encoding/transfer
is not fully understood. Variability in voltage-gated ion channels
is crucial for information encoding by enabling variability
in input and output processing, thereby reducing spike train
correlations and redundancy in the population of neurons
(Padmanabhan and Urban, 2010, 2014). Hence, understanding
the effects of intrinsic variability on neuronal responses and
neuronal coding is essential. Furthermore, it raises the question
of whether maintaining homeostasis occurs at the expense of
robust information transfer or homeostasis itself brings about
robust information transfer, which has not been answered.

In this study, we aimed to investigate the relations between
the variability of intrinsic properties between neurons and their
ability to encode information while maintaining the intrinsic
homeostasis of their functional maps—a graded progression
of physiologically relevant measurement along the spatial axis
of the neuron. Specifically, we asked whether maintaining
homeostasis occurs at the expense of robust information transfer
or homeostasis itself brings about robust information transfer.

For this, we utilized previously derived CA1 neuronal models,
which showed homeostasis of six coexistent functional maps and
expressed variability in five voltage-gated ion channels (Rathour
and Narayanan, 2014). We found that neurons in the model
population displayed variability in mutual information transfer.
Likewise, we found that the input of EPSPs and IPSPs showed
huge variability in their amplitudes, due to the variability in
the expression of voltage-gated ion channels, which was also
reflected in output processing, as firing frequencies of model
neurons similarly displayed huge variability. Finally, using virtual
knockout models we show that the A-type K+ channel is the
major regulator of these effects.

RESULTS

We utilized a previously derived base model neuron and
valid neuronal population (n = 228) (Rathour and Narayanan,
2014) to test how variability in voltage-gated ion channels
(VGICs) expression in neurons affects robust information
transfer. To this end, we first computed information encoding
capabilities of a base model neuron (Figure 1), in which we
employed a 3D reconstructed neuronal morphology (Figure 1A)
expressing experimentally constrained six coexistent functional
maps (Rathour and Narayanan, 2014), and included AMPA
and GABAA receptor-type excitatory and inhibitory synapses
(Figure 1A). To reduce the computational cost, we uniformly
distributed an excitatory synapse only on the apical side within
a distance of 303µm from the soma, while inhibitory synapses
were placed in the perisomatic region within a distance of
50µm from soma (Figure 1A). This led to a total of 327
excitatory synapses and 50 inhibitory synapses. We activated
these synapses in a Poisson manner at different frequencies. This
led to variability in inputs.

This variability in inputs led to variable output
(Figures 1B,C). We also generated an input–output curve
for the base model (Figure 1D). From the input–output curve,

we noted that firing frequencies were exponentially distributed
(Figure 1E). Under rate coding schema, mutual information
was computed as the ability of the model neuron to successfully
encode incoming information (different stimulus frequencies)
in distinct neuronal outputs (firing frequencies). To do this, we
computed response and noise entropy from neuronal inputs and
outputs (Figures 1F,G). Then, we subtracted noise entropy from
response entropy to obtain mutual information (Figure 1G). We
found that a base model neuron had good information encoding
capabilities (Figure 1G).

Validation of Model Population Using F–I
Relationship
The previously derived model population was validated with
respect to the experimental data of six functional maps (Rathour
and Narayanan, 2014). Here, we intended to test the information
encoding capabilities of the model population neurons under
the rate coding schema. At first, we aimed to show that the
model population is truly representative of real-world neurons.
To show this, we tested the F–I relationship of the model
population to that of the experimental counterpart. For that,
we generated the F–I relationship of the model population by
injecting current from 0 to 250 pA in steps of 50 pA for 1 s
and counted the number of spikes elicited, which provided us
with various firing rate profiles of the neurons. Comparisons
of these firing rates against the experimental data demonstrated
that firing rates were largely within the experimentally observed
ranges (Supplementary Figure S1) [experimental data taken
from Narayanan and Johnston (2007), Narayanan et al. (2010),
Rathour et al. (2016)], with no statistically significant differences.
It is noteworthy that these models were never optimized
for firing rate profiles, further proving the validity of our
model population.

Variability in Voltage-Gated Ion Channel
Expression Causes Variable Input
Processing
In order to study the role of variable VGIC expression in input
processing, we first hand-tuned synaptic permeability values in
the base model so that each excitatory synapse had unitary EPSP
(uEPSP) amplitude at the soma of about 0.2mV, irrespective
of the synapse location (Supplementary Figure S2A). This
ensured that a dendritic democracy (Magee and Cook,
2000) was maintained. Similarly, inhibitory synapses were
fixed for uIPSP amplitude at the soma of about −1mV
(Supplementary Figure S2B).

Next, in order to examine how variability in VGICs expression
affects the variable input processing, we placed the same synapses
with the same permeability values on a valid neuronal population,
which generated somatic uEPSP and uIPSP amplitude maps
(Figures 2A,B) for the entire valid neuronal population. As
expected, we found that variability in VGICs expression and
passive membrane properties induced variability in somatic
uEPSP and uIPSP amplitude maps (Figure 2). Following, we
examined whether somatic uEPSP and uIPSP amplitude maps
of a valid neuronal population are significantly different from
the base model neuron. KS tests between each pair of base
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FIGURE 1 | Input–output relationship and mutual information of base model. (A) A morphological reconstruction of CA1 pyramidal neuron used as a substrate for all

simulations. (B) Trial-to-trial variability in spike times for 5-Hz Poisson-distributed inputs. (C) Trial-to-trial variability in firing frequency for different stimulus frequencies.

(D) Input–output relationship in the base model. (E) Firing frequency distribution in the base model. Solid black line denotes the exponential fit. (F) Probability

distribution of firing frequency, given stimulus frequency. (G) Graph showing the computation of mutual information from total response entropy and noise entropy for

the base model.
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FIGURE 2 | Variability in expression of functional maps leads to variable input processing in neuronal population. (A,B) uEPSP (A) and uIPSP (B) amplitudes at the

soma as a function of synapse location for four valid model neurons and the base model neuron. (C,D) Color-coded uEPSP (C) and uIPSP (D) amplitudes at the

soma as a function of synapse location for all the valid neurons. (E,F) Distribution of all uEPSPs (E) and uIPSPs (F) amplitudes in valid neuronal population. Note that

conductance values of the given type of synapse are same for all the model neurons.

model neuron and neuron of the valid neuronal population
(total 228 pairs) showed that somatic uEPSP amplitude maps
of the valid neuronal population were significantly different
from those of the base model neuron for all pairs (Figure 2C;
black dash against color-coded uEPSP amplitude maps denotes
significance). Similarly, for somatic uIPSP amplitude maps of
the valid neuronal population, we found that out of 228 pairs
of neurons 122 pairs were significantly different from uIPSP
amplitude map of the base model neuron (Figure 2D; black dash

against color-coded uIPSP amplitude maps denotes significance).
The p-value for performing the KS test was set at 0.001.

Following, we aimed to determine the boundaries for this
variability and whether it is in a physiological range. For
that, we generated histograms of all somatic uEPSP and uIPSP
amplitudes in response to a single-synapse activation. This
simulation yielded a rather large variability in the somatic uEPSP
and uIPSP amplitudes (Figures 2E,F). Specifically, somatic
uEPSP amplitude exhibited about ±25% variability in their
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amplitudes from the mean value of 0.19mV, whereas somatic
uIPSP amplitude exhibited about +12 and −10% variability
in their amplitudes from the mean value of −1.01mV.
Nonetheless, somatic uEPSP and uIPSP amplitudes were still
within physiological ranges. Taken together, these analyses clearly
demonstrated the role of VGICs in input processing and
showed that variability in VGICs expression leads to variable
input processing.

Variability in Neuronal Outputs Leads to
Decorrelation in Firing Frequencies
Afterward, we assessed the role of variability in VGICs expression
and passive membrane properties in modulating the variability
of neuronal output. Specifically, we aimed to investigate whether
variability in neuronal input processing is translated to variability
in neuronal output. For this aim, we first generated a raster plot of
spike times for all neurons for a given stimulus frequency of 8Hz
(Figure 3A). For this, all synapses were activated in a Poisson
manner at once. The controlled input of a spatio-temporal
activation pattern of synaptic inputs was kept constant for all
neurons. As visible from the graph, the simulation shows that
different neurons emit different numbers of spikes for this given
stimulus frequency, which suggests that the firing frequency of
neurons is variable. Similarly, it is demonstrated that apart from
firing frequency, spike timings also show variability (Figure 3A).

Thereafter, we examined the variability in response to
the entire physiological range of stimulus frequencies. For
that, we computed firing frequencies for all neurons for all
stimulus frequencies. Again, a spatio-temporal activation pattern
of synaptic inputs was kept constant for all neurons and
was trail matched. Thus, any variability incurred in firing
frequencies across neurons would be due to variability in
VGICs expression and passive membrane properties. Plotting the
firing frequencies for all neurons against stimulus frequencies
showed that firing frequencies exhibit huge variability across
all neurons (Figure 3B). To get a deeper understanding of
this variability, we plotted minimum and maximum firing
frequencies for all neurons (Figure 3C). From this, we noted
that minimum firing frequencies did not show huge variability as
most of the neurons did not fire action potentials at minimum
stimulus frequency (5Hz). However, in contrast to minimum
firing frequencies, maximum firing frequencies displayed huge
variability across neurons, from 2 to 100Hz (Figures 3C,D).
These analyses showed that variability in VGICs expression and
passive membrane properties cause large variability in neuronal
firing frequencies.

Next, given that correlation among firing frequencies between
neuronal pairs could have a profound effect on information
encoding (Panzeri et al., 1999), we investigated how variability
in VGICs expression and passive membrane properties would
affect this correlation of firing frequencies across the neuronal
pairs. When we generated average correlation coefficient values
among all possible pairs of neurons across the range of stimulus
frequencies, we found that the average correlation coefficient
values were generally small (Figures 3E,F) in the range of
−0.2 to 0.5. Only a subset of neuronal pairs had average

correlation coefficient values >0.5. This analysis demonstrates
that variability in VGICs expression and passive membrane
properties enables the decorrelation in firing frequencies among
the neuronal pairs.

Variability in Voltage-Gated ion Channel
Expression Causes Variable Information
Encoding Capabilities
Next, we determined whether the variability in input and output
processing impacts the information encoding capabilities of
neurons. For that, we employed a rate coding schema, and
by using a well-established Shannon entropy principle, we
computed mutual information of individual neurons. In this
scenario, a synaptic activation at different stimulus frequencies
forms the incoming information which is subsequently encoded
by neurons’ output firing frequencies. In this system, mutual
information is defined as the capability of the neuron to
successfully encode or represent different stimulus frequencies by
the variability of the neuron’s output firing frequencies. In such
a system, a synaptic activation pattern was Poisson-distributed
spike trains at different stimulus frequencies.

First, we computed response entropy for the given range
of stimulus frequencies (5 to 25Hz) for individual neurons.
With this, we found that response entropies of individual
neurons displayed large variability (Figures 4A,B). Similarly,
the noise entropy of individual neurons also showed variability
(Figures 4C,D). Mutual information was then calculated by
subtracting noise entropy from response entropy. We found
that the mutual information of individual neurons showed
huge variability across the neuronal population (Figures 4E,F).
This neuronal population spanned the spectrum of mutual
information from as low as 0.1761 bits to as high as
4.02 bits. These analyses demonstrated that variability in
VGICs expression and passive membrane properties causes the
variability in information encoding capabilities of neurons.

Following, we explore the underlying principle that
determines the parameters that enable the high and low
information encoding capabilities of neurons. Specifically, we
asked whether neurons with high mutual information transfer
capabilities have any kind of preference toward any distinct
parametric space for each parameter. To do this, we selected
neurons whose mutual information was in the range of >3
bits, which yielded 80 neuronal models. Next, we generated
histograms of all 32 parameters of the 80 neuronal models
(Figure 5A, bottom-most row). This analysis showed that all
the parameters were spanning through their entire range. To
conclude, we observed no restriction on the parametric space of
the 32 tested parameters that cause high mutual information, at
least for the tested range.

Because a previous study showed that morphology and
connected nature of compartments were insufficient for
inducing a high correlation among the parameters when the
population was sampled based upon intrinsic properties,
we tested whether high mutual information capabilities
enforce a significant correlation between parameters. For
that, we took the aforementioned 80 neuronal models
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FIGURE 3 | Variability in expression of functional maps leads to decorrelation in firing rates of the neuronal population. (A) Spike raster for all the valid model neurons

in response to 8-Hz Poisson-distributed synapse activation. A spatio-temporal activation pattern of synapses was same across the neuronal population. (B)

Color-coded mean firing frequency, averaged over 50 trials, as a function of stimulus frequency. (C) Distribution of minimum and maximum firing frequencies in model

neurons. (D) Histogram of maximum firing frequencies in model neuron population. (E) Color-coded matrix of correlation coefficient values for firing frequencies. (F)

Histogram of correlation coefficient values for firing frequencies in model neuron population. Note that for a given stimulus frequency, a spatio-temporal activation

pattern of synapses was trial-matched across the neuronal population.

and performed linear correlations among their parameters
(Figure 5A). We found that the correlation coefficient
values were relatively low (>-0.3 and <0.4) among all of
the possible pairs of parameters (Figures 5B,C), suggesting that
collective channelostasis is the mechanism underlying robust
information transfer.

Virtual Knockout Models Suggest KA
Channels Are Major Regulators
Within the framework of the herein modeling, we examined
whether one of the channels is a major contributor in
determining the effects on mutual information. To answer this,
we utilized a previously derived virtual knockout methodology
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FIGURE 4 | Variability in expression of functional maps leads to distributed mutual information in the neuronal population. (A) Total response entropy for all the valid

neurons. (B) Distribution of total response entropy in the population of valid neurons. (C) Noise entropy for all the valid neurons. (D) Distribution of noise entropy in the

population of valid neurons. (E) Mutual information for all the valid neurons. (F) Distribution of mutual information in the population of valid neurons.

(VKM) technique on our model neurons. Specifically, we
removed a specific conductance from each of the 228 valid
models and repeated our simulations on uEPSP, uIPSP, firing
frequency, andmutual information. Given that fast Na+ channels
and delayed rectifier K+ channels are basic requirements for
action potential generation, we used virtual knockout models
(VKMs) of only three types of channels:A-type K+,T-type Ca++,

and HCN channels. These analyses demonstrated the impact
of knocking out the specific conductance of either A-type K+,
T-type Ca++, or HCN channels on information processing and
transfer (Figure 6, Supplementary Figures S3, S4).

At first, we looked at the role of A-type K+, T-type Ca++,
and HCN channels in affecting input processing. In accordance
with the VKM, we removed each time the specific conductance
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FIGURE 5 | Weak pair-wise correlations between parameters for the models with similar mutual information. (A) Lower diagonal of a matrix depicting interactions

among the 32 parameters derived from all valid models (n = 80). Each subpanel depicts a scatter plot of the values of two parameters (labeled below and left) derived

from all valid models. Correlation coefficients were computed for each of the scatter plots. The bottom-most row denotes the normalized histograms of individual

parameters in the models with similar mutual information. (B) Lower diagonal of a color-coded matrix of correlation coefficients corresponding to the scatter plots in

(A). (C) Distribution of correlation coefficients for the 496 pairs corresponding to the scatter plots in (A).

related to either A-type K+ or T-type Ca++ or HCN channels
and simulated the uEPSP and uIPSP responses from each of
the three VKMs. Next, we generated histograms of uEPSPs and
uIPSPs and compared the histograms of the VKMs responses

to the responses histograms of the baseline valid (BLV) neurons
(Supplementary Figure S2). These comparisons show that the
removal of A-type K+ channels led to an increase in uEPSP
and uIPSP amplitude (Supplementary Figure S3). Specifically,
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FIGURE 6 | Knocking out conductance has variable impact on mutual information. (A–C) Distribution of total response entropy in valid neuronal population (black

trace) and virtual knockout model population of KA (A), HCN (B), and CaT (C). (D–F) Distribution of noise entropy in valid neuronal population (black trace) and virtual

knockout model population of KA (D), HCN (E), and CaT (F). (G–I) Distribution of mutual information in valid neuronal population (black trace) and virtual knockout

model population of KA (G), HCN (H), and CaT (I).

removing A-type K+ channels increased the mean uEPSP
response from 0.192 to 0.357mV (D = 0.55, p < 0.0001, in
Kolmogorov–Smirnov [K–S] between A-type K+-KO and BLV
neuron) and the response of the uIPSP increased from a mean
value of−1.01–−1.19mV (D= 0.46, p< 0.0001, in K–S between
A-type K+ KO and BLV neuron). Removing HCN channels did
not alter the uEPSP response (0.192–0.201mV) (D = 0.20, p
= 0.34, in K–S between HCN-KO and BLV neuron) and the
uIPSP response (−1.01–−1.05mV) (D = 0.09, p > 0.99, in K–
S between HCN-KO and BLV neuron). Similarly, removing T-
type Ca++ channels did not change the uEPSP (0.192mV to
0.1.85mV) (D= 0.10, p > 0.99, in K–S between T-type Ca2+-KO
and BLV neuron) and the uIPSP amplitude (−1.01–−1.00mV)
(D = 0.09, p > 0.99, in K–S between T-type Ca2+-KO and BLV
neuron). These analyses showed that only the removal of A-
type K+ channel-specific conductance had an impact on input
processing in the neuronal population.

Next, we analyzed the role of A-type K+, T-type Ca++, and
HCN channels in affecting output processing. To this end, we
generated the input/output relationship of all valid models after
removing the specific conductance of either A-type K+, T-type

Ca++, or HCN channels and compared the resultant firing
frequency to that of the baseline valid model population. These
analyses showed that the removal of A-type K+ channels results
in an increased firing frequency (Figure 4SA), from a mean
firing frequency of neurons of 26.78Hz in the baseline model
to 49.57Hz after removing A-type K+ conductance (D = 0.31,
p = 0.0001, in K–S between A-type K+ KO and BLV neuron). In
contrast, the removal of either HCN or T-type Ca2+ channels did
not change the firing frequency outputs distribution and mean
frequencies (28.59 and 26.76Hz for HCN-KO and T-type Ca2+-
KO, respectively; D = 0.12, p = 0.47, and D = 0.04, p > 0.99,
in K–S between HCN-KO and BLV neurons and between T-
type Ca2+-KO and BLV neurons, respectively) (Figures 4SB,C).
In conclusion, among the channels we examined, only A-type
K+ conductance is a significant contributor toward constraining
neuronal firing frequency.

Next, we examined each channel’s contribution to information
transfer. For this, we used a similar approach of analyzing
elements of information transfer after removing each specific
conductance. An analysis of response entropy in model neurons
showed that the removal of the A-type K+ channels significantly
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altered the distribution of response entropy, with a significant
increase in mean response entropy from 4.5 to 4.8 bits (t(454) =
2.93, p < 0.01, for unpaired t-test; D = 0.40, p < 0.0001, in K–
S between A-type K+ KO and BLV neurons) (Figure 6A), while
the removal of the HCN or T-type Ca2+ conductance did not
affect the response entropy distribution or their means (t(454)
= 0.87, p = 0.38, for unpaired t-test and D = 0.05, p > 0.99;
t(454) = 0.15, p = 0.89, for unpaired t-test and D = 0.08, p =

0.99, in K–S between HCN-KO and BLV neurons and between
T-type Ca2+-KO and BLV neurons, respectively) (Figures 6B,C).
On the other hand, when we looked into noise entropy, we found
that removing A-type K+ channels decreased the noise entropy
in model neurons, with a mean noise entropy reduction from
2.20 to 1.68 (t(454) = 7.97, p < 0.0001, for unpaired t-test),
although the distribution was not significantly altered (D= 0.31,
p = 0.17, in K–S) (Figure 6D). However, the removal of HCN
and T-type Ca2+ channels did neither alter the means nor the
distributions of noise entropy (t(454) = 1.13, p = 0.26, and t(454)
= 0.22, p = 0.83, in unpaired t-tests; D = 0.11, p > 0.99, and
D = 0.04, p > 0.99, in K–S, between HCN-KO and BLV neurons
and between T-type Ca2+-KO and BLV neurons, respectively, for
each test) (Figures 6E,F). Next, we analyzed mutual information
and found that removing A-type K+ channels improved the
mutual information, with mean mutual information increasing
from 2.28 bits to 3.10 bits (t(454) = 8.63, p < 0.0001, for unpaired
t-test; D = 0.35, p < 0.05, in K–S between A-type K+-KO and
BLV neurons) (Figure 6G). In contrast, removing T-type Ca++

and HCN channels did not affect mutual information (t(454) =
0.37, p = 0.71, for unpaired t-test and D = 0.08, p > 0.99; t(454)
= 0.05, p = 0.96, for unpaired t-test and D = 0.05, p > 0.99, in
K–S between HCN-KO and BLV neurons and between T-type
Ca2+-KO and BLV neurons, respectively) (Figures 6H,I). Taken
together, these analyses showed that the A-type K+ channel is
the major regulator of information transfer at least within the
framework of our analyses.

DISCUSSION

Intricate regulation of information encoding/transfer capabilities
is extremely important for the individual neurons, their circuits,
and the brain as a whole. Hence, it is essential to elucidate
how neurons achieve this regulation, given the fact that they
express a rich and differential repertoire of voltage-gated ion
channels (VGICs) across the dendrite–soma–axon continuum.
The presence of these VGICs has a tremendous influence on the
input, integration, and output module of the neuron.

Furthermore, neurons are affected by additional multiple
factors, which are given as follows:

1. Intracellular biochemical milieu, upon which cellular
processes are heavily dependent and receive continuous
perturbations (Marder and Thirumalai, 2002; Desai, 2003;
Frick et al., 2004; Turrigiano and Nelson, 2004; Fan et al.,
2005).

2. Various ion channels, which define basic neuronal properties
undergo continuous trafficking at the plasma membrane

(Lai and Jan, 2006; Shepherd and Huganir, 2007; Vacher et al.,
2008; Shah et al., 2010; Nusser, 2012).

3. Properties of ion channels are susceptible to change by various
factors including phosphorylation/dephosphorylation,
interaction with intracellular messengers, and lipid
composition of the plasma membrane (Levitan, 1994;
Ismailov and Benos, 1995).

4. Continuous rewiring of synaptic connectivity (Chen et al.,
2014; Attardo et al., 2015).

5. Changes in dendritic arborization at microscopic (spines) and
macroscopic (dendritic branches) levels (Ikegaya et al., 2001;
Yuste and Bonhoeffer, 2001; Attardo et al., 2015).

6. Dynamics related to various functions brought about by
astrocytes, oligodendrocytes, and microglial cells (Baumann
and Pham-Dinh, 2001; Haydon and Carmignoto, 2006;
Sierra et al., 2014). Yet, despite all of these ongoing
dynamics of perturbations, neurons maintain their stability
and functionality and perform robust functions.

In this study, by performing global sensitivity analyses on
neuronal information encoding/transfer capabilities, we show
that neurons can achieve similar information encoding/transfer
capabilities in several non-unique ways (Figure 5). This
implies that neural mechanisms, involved in information
encoding, e.g., VGICs, need not maintain the density and
properties of individual channels at particular specific values
(Rathour and Narayanan, 2014). This brings a tremendous
opportunity for neurons to encode novel information through
several non-unique combinations of ion channels. Therefore,
collective channelostasis presents an important answer to the
aforementioned question.

In addition, we have demonstrated that the contribution of
the various VGICs is highly differential. In our simulations, we
showed that between the three VGICs, namely,A-type K+, HCN,
and T-type Ca2+, the major contribution was of the A-type K+

channel, and its knockout completely altered the information
processing, resulting in a significantly aberrant output (Figure 6,
Supplementary Figures 3S, 4S). Investigating the differential
contribution of each channel to information encoding has the
potential to contribute to a more comprehensive understanding
of the effects of various genetic mutations on brain functioning,
leading to cognitive and behavioral deficits. Our finding suggests
that genetic variations in some VGICs are less lenient, and
will cause a much more severe impact on brain functioning
than others.

Variability in VGICs and passive membrane properties could
be crucial where inputs are highly correlated in a homogeneous
neuronal population, which eventually leads to the correlated
output spiking (Panzeri et al., 1999). Output correlation could
have a severe effect on the information. There are a number of
factors that could contribute toward a decrease in correlation.
One such factor is variability in VGICs and passive membrane
properties. Our analysis with firing rate correlation showed that
correlation values among their firing frequencies were generally
low (Figure 4), while inputs that were introduced by us were
perfectly correlated. Therefore, variability in VGICs and passive
membrane properties helps in inducing decorrelation of the
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output activity. Although we did not explicitly analyze spike
times correlation, analyses of the raster plots for all neurons for
a given input frequency and trial showed that the neurons firing
patterns were phase shifted to each other (Figure 3A). This gave
us a glimpse that variability in VGICs and passive membrane
properties could help in causing decorrelation in spike times.

Although ourmodel neurons were homeostatically stable with
a reference to six coexistent functional maps, the model neurons
did not show high mutual information (Figure 4). How do we
reconcile this? A possible explanation can be that each neuron
is tuned to different optimal variabilities to encode incoming
stimuli (Tripathy et al., 2013). Therefore, it stands to reason
that during learning these neurons could adjust their level of
variability such that they could encode incoming stimuli more
efficiently. Further studies should focus on how a different degree
of variability affects mutual information and homeostasis.

METHODS

Model and Valid Neuronal Population
A 3D reconstructed CA1 neuronal morphology was used
as a substrate for all the simulations. The base model and
valid neuronal population were taken from the previous
study (Rathour and Narayanan, 2014). In brief, our model
neurons expressed five voltage-gated ion channels (VGICs):
fast Na+, delayed rectifier K+, A-type K+, T-type Ca++, and
HCN channels. A valid neuronal population was generated
by performing a global sensitivity analysis on a hand-tuned
base model. The base model was hand-tuned in such a way
that six coexistent functional maps matched their experimental
counterparts. After having the experimentally constrained base
model, we randomized 32 parameters, associated with five
voltage-gated ion channels and passive membrane properties,
within a large neighborhood of its default values, and followed
an independent uniform distribution within that range. We
generated a population of 20,420 models, with each model
built by assigning independently random values for each of
the 32 parameters in the base model. After having the model
population, we tested the model properties corresponding to
an experimental counterpart. Specifically, from the experimental
data, we assigned a range for six measurements at three
different locations along the somato-apical trunk. Each model
neuron’s properties were tested against these experimental
ranges, and if a model neuron satisfies all the 18 constrains
(six measurements at three different locations), it is called a
valid neuron. Performing this validation procedure on each
model resulted in 228 valid neurons. Owing to the validation
procedure, this valid neuronal population of 228 neurons was
heavily constrained by the experimental data and expressed
variability in well-defined six coexistent functional maps. This
valid neuronal population of 228 neurons was used throughout
the study.

Synaptic Inputs
Excitatory synapses were modeled as only AMPA receptor-type
conductance as modeled previously (Narayanan and Johnston,
2010). Inhibitory synapses were modeled as only GABA-A

receptor-type conductance as modeled previously (Sinha and
Narayanan, 2015). Each model neuron was endowed with 327
excitatory and 50 inhibitory synapses. Excitatory synapses were
distributed uniformly only on an apical dendrite and in the
distance from 12 to 294µm from the soma. Inhibitory synapses
were distributed uniformly only in a perisomatic region. As
the model population was generated by randomly assigning
the values of 32 parameters, related to five VGICs and passive
membrane properties, the number of compartments for neurons
in the valid neuronal population was highly variable. Thus,
in order to match the synaptic locations across the neurons,
all neurons were recompartmentalized such that for a given
section, a number of compartments were counted across all
the neurons of the population, and then the section was
recompartmentalized with the higher most count value, thus
insuring the uniformity of numbers of compartments for a given
section across all the neurons of valid population. Doing this
recompartmentalization on each section yielded a total of 909
compartments for a given neuron of the valid population. A
synaptic activation pattern was Poisson-distributed. Excitatory
synapses were activated at different frequencies ranging from 5 to
25Hz in steps of 1Hz, and each stimulus frequency had 50 trials.
Inhibitory synapses were activated only at 5Hz irrespective of the
excitatory synaptic stimulus frequency and were used throughout
the study. A spatio-temporal activation pattern of excitatory and
inhibitory synapses was trial-matched across the neurons of the
valid population.

Mutual Information
Mutual information between response frequency and stimulus
frequency was computed as described previously (Honnuraiah
and Narayanan, 2013). Specifically, mutual information was
taken to be the difference between total response entropy and
noise entropy:

Im = H −Hnoise

where Im is the mutual information, H is the total response
entropy, and Hnoise is the noise entropy. The total response
entropy, H, was computed as follows:

H = −
∑

r

p[r] log2(p[r])

where p[r] denotes the response probability distribution
of response frequency, r, over the entire range of stimulus
frequencies (see synaptic inputs section). The response
probability distribution of response frequency was computed
as follows:

p[r] =
∑

s

p[s] p[r|s]

where p[r|s] denotes the response probability distribution of
response frequency, r, for a given stimulus frequency, s. p[s] was
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assumed to be uniformly distributed as the presentation of any
stimulus frequency was equally probable. p[r|s] was computed
from the array containing response frequency values for 50 trials
for a given stimulus frequency. The first- and second-order
statistics of an array containing response frequency values for
50 trials for a given stimulus frequency were used to generate
p[r|s] with an implicit assumption of a normal distribution
for p[r|s].

In order to compute noise entropy, the entropy of the
responses for a given stimulus, s, was computed:

Hs = −
∑

r

p[r | s] log2(p[r | s])

and then, noise entropy was computed as follows:

Hnoise =
∑

s

p[s]Hs

.

COMPUTATIONAL DETAILS

All simulations were performed using the NEURON simulation
environment (Carnevale and Hines, 2006) at −65mV, and
a temperature was set at 34◦ C, which accounted for ion
channel kinetics relative to their q10 values. For solving various
differential equations, an integration time step was set at 25 µs.
All analyses were performed using custom-built software written
with IGOR Pro (WaveMetrics Inc., USA). A correlation analysis
was performed using the statistical computing package R (http://
www.R-project.org).
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Figure S1 | Validation of model population using firing rate profiles. (A) Firing rate

profiles of model neurons (red dots) and neurons from experiments (black dots) for

different current injections. (B) Same as A. But data is presented as mean ± SEM.

Figure S2 | Synaptic permeability values and corresponding somatic PSP

potentials in base models. (A-D) Somatic EPSP (A) and IPSP (C) amplitudes and

their corresponding synaptic permeability values for excitatory (B) and inhibitory

(D) synapses.

Figure S3 | Effects of removing a specific voltage gated ion channels on PSP

potentials in a population of valid model neurons. (A & D) Removal of A-type K+

channels causes an increase in EPSP (A) and IPSP (D) amplitudes. (B & E)

Removal of h channels causes a non-significant trend for an increase increase in

EPSP (B) and IPSP (E) amplitude. (C & F) Removal of T-type Ca+ channels does

not affect EPSP (C) and IPSP (F) amplitude.

Figure S4 | Effects of removing a specific voltage gated ion channels on firing

frequency in a population of valid model neurons. (A) Removal of A-type K+

channels causes an increase in firing frequency. Removal of either h channels (B)

or T-type Ca+ channels (C) does not affect firing frequency.

Figure S5 | Effect of removing a specific voltage gated ion channels on firing

frequency correlation in a population of valid model neurons. (A-B) Removal of

A-type K+ channels causes an increase in firing frequency correlation. Removal of

either h channels (C-D) or A-type K+ channels (E-F) does not affect firing

frequency correlation.
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