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Abstract 

Purpose: Aim of this study was to comprehensively analyze BRCA1-associated protein-1 (BAP1) 
somatic mutation in clear cell renal cell carcinoma (ccRCC) and explore potential therapeutic 
pathways and molecules. 
Patients and methods: In this study, we analyzed 445 ccRCC cases from The Cancer Genome 
Atlas (TCGA). Comprehensive analysis including survival, transcriptome and methylation between 
BAP1 mutated and wild-type cases was performed using bioinformatics tools in silico. Pathways and 
molecules related to BAP1 mutation were analyzed using Database for Annotation, Visualization and 
Integrated Discovery (DAVID) and protein-protein interaction (PPI) network. 
Results: BAP1 mutated ccRCC patients had a worse overall survival (OS) and disease free survival 
(DFS) than BAP1 wild-type patients. We found 583 up-regulated and 1216 down-regulated different 
expressed genes (DEGs) in BAP1 mutated tumors. Up-regulated DEGs were enriched in molecular 
functions and biological processes like protein binding, protein transport and ubiquitin protein ligase 
binding. Down-regulated DEGs were enriched in pathways like Rap1 signaling pathway, Notch 
pathway and altered molecular functions like metal ion binding and ubiquitin-protein transferase 
activity. Furthermore, CAD, TSPO, CTNNB1 and MAPK3 were top hub genes selected using PPI 
network analysis. Finally, BAP1 mutation had a strong correlation with CpG island methylator 
phenotype (CIMP).  
Conclusion: Our study provides a comprehensive understanding of BAP1 functional somatic 
mutation in ccRCC patients. Several hub genes like CAD and TSPO may become potential therapeutic 
targets. 
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Introduction 
Renal cell carcinoma (RCC) is one of the most 

common malignant urologic tumors worldwide. 
Furthermore, in recent years, RCC has been associated 
with increased morbidity in China, leading to an 
estimated 66,800 new cases and 23,400 deaths in 2015 
[1]. Clear cell RCC (ccRCC), which accounts for about 

70% of all cancers of the kidney [2], is the major 
subtype. Diagnosis of RCC mainly depends on 
imaging tests, and when necessary, a renal biopsy is 
recommended [3]. For the treatment of localized RCC, 
partial or radical nephrectomy is still the first choice. 
Immunotherapy and targeted therapy may also be 
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taken into consideration when surgery alone is not 
enough [3]. However, these treatment measures still 
have some limitations, and new ways to diagnose and 
treat RCC are greatly needed.  

In recent studies, several mutated genes 
including PBRM1, SETD2, KDM6A, BAP1, and others, 
have been identified as having an impact on the 
outcomes and biological properties of RCC [4-6]. 
Among these genes, BRCA1-associated protein-1 
(BAP1) has been reported to have tumor suppressor 
activity, which has drawn a lot of interest and may be 
a target for RCC treatment [7]. BAP1, as a 
deubiquitinating enzyme, exerts its tumor suppressor 
activity based on its deubiquitinating activity and 
nuclear localization, which involves the NH2-terminal 
ubiquitin COOH-terminal hydrolase (UCH) domain 
and nuclear localization signal (NLS), respectively 
(Figure 1A). As previously reported, BAP1-deficient 
cancer cells were more vulnerable to γ-radiation and 
more sensitive to olaparib, which indicated that 
radiotherapy and PARP inhibitors may be more 
effective in BAP1-mutated cases than in BAP1 
wild-type cases [8, 9]. BAP1 loss leads to 

ubiquitinated H2A accumulation, causing various 
abnormal transcriptional changes. Histone 
deacetylase inhibitors may reverse this phenomenon 
[8]. In addition, a comprehensive understanding of 
pathway changes caused by BAP1 mutations may also 
be useful in filtering potential therapeutic targets.  

Previous studies revealed that in ccRCC patients, 
BAP1 has a high mutation rate in somatic cells [7, 10] 
and BAP1 germline mutations will lead to a 
hereditary renal carcinoma syndrome. [11, 12] 
Furthermore, low expression of BAP1 usually predicts 
a poorer prognosis in ccRCC patients. [13-16] 
Recently, a phase II trial (NCT03207347) was 
registered to evaluate the treatment response of the 
PARP inhibitor, niraparib, in BAP1-mutated cancer 
patients, including RCC patients, because BAP1 
protein is intimately involved in DNA double-strand 
break repair. This trial may provide a novel 
therapeutic strategy to improve the prognosis in 
BAP1-mutated patients.  

In this study, we analyzed 445 ccRCC cases 
using the complete gene expression data and somatic 
BAP1 mutation data retrieved from The Cancer 

Genome Atlas (TCGA) database. We 
performed a comprehensive analysis 
including survival, transcriptome, and 
methylation between BAP1-mutated and 
wild-type cases, and highlighted path-
ways and molecules related to BAP1 
mutations. 

Material and methods 
Data retrieval  

The Cancer Genome Atlas (TCGA) 
Provisional clinical data, mRNA 
expression profiles, gene methylation 
data, and somatic mutation data of 
ccRCC cases were downloaded from the 
CbioPortal [17, 18] (http://www.cbio 
portal.org/. Downloading date: 2017-01- 
16). The Cancer Genome Atlas (TCGA) is 
a collaboration between the National 
Cancer Institute (NCI) and the National 
Human Genome Research Institute 
(NHGRI). In the TCGA database, there 
are multiple types of bioinformation, 
including transcriptional data, epigen-
etic data, genomic mutation profiles, and 
clinical data, across more than 30 cancer 
types involving >10,000 patients in total. 
Specifically, the TCGA ccRCC project 
contained 538 cases. We excluded cases 
without gene expression data (generated 
by RNA sequencing and shown in 

 

 
Figure 1. (A) Representative BAP1 protein domains with amino acid sequence. (Numbers on the 
top indicate amino acid position.) UCH: ubiquittin COOH-terminal hydroaase; NLS: nuclear 
localization signal. (B) Flow chart of study design and summary of ccRCC cases filtered in TCGA 
datasets. TCGA: The Cancer Genome Atlas; DEG: different expression gene; CIMP: CpG Island 
Methylation Phenotype; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; 
PPI: protein-protein interaction. 



 Journal of Cancer 2018, Vol. 9 

 
http://www.jcancer.org 

4110 

pre-normalized Z-scores) and somatic BAP1 mutation 
data (generated using genome sequencing). We also 
excluded one ccRCC case with a BAP1 mutation that 
was not in the UCH domain or NLS. Finally, 445 
ccRCC cases were entered in our analysis, including 
39 cases with BAP1 mutations and 406 cases with 
wild-type BAP1.  

Study design 
First, we performed a survival analysis using 

TCGA clinical data. Then, we focused on 
transcriptome data and analyzed differentially 
expressed genes (DEGs) between somatic 
BAP1-mutated and wild-type cases. After DEG 
screening, we carried out Gene Ontology (GO) 
functional analysis [19], Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis 
[20], and protein-protein interaction (PPI) and module 
analysis (Figure 1B). Additionally, we performed a 
gene methylation analysis of these cases.  

Survival analysis 
To test overall survival (OS) and disease-free 

survival (DFS) differences between cases with or 
without BAP1 mutations, the Kaplan–Meier method 
was used to compare survival curves for these two 
groups. Survival data was censored at five years and 
P values less than 0.05 were considered statistically 
significant. 

Analysis of DEGs 
Gene expression data (mRNA level) were 

processed using Multi-Experiment Viewer 4.9.0 [21]. 
The Student’s t test was used to examine differences 
in expression levels between BAP1-mutated and BAP1 
wild-type cases. Only genes with an adjusted P value 
less than 0.01, FDR less than 0.01, and a mean Z score 
difference larger than 0.5 were considered DEGs.  

Functional and pathway enrichment analysis 
The Database for Annotation, Visualization and 

Integrated Discovery (DAVID) is a comprehensive set 
of functional annotation tools that has been used for 
systematic and integrative analysis of large gene lists 
[22]. GO terms are significantly overrepresented in a 
set of genes from three aspects: the cellular 
component, molecular function, and the biological 
process [23]. In our work, the significant GO 
biological processes, molecular function terms, and 
KEGG pathway enrichment analyses of the identified 
DEGs were performed using DAVID, with the 
threshold of P values less than 0.05 and enrichment 
gene counts over 5. For module gene analysis, the P 
value threshold was also set as 0.05 but the gene count 
threshold was 2.  

Protein-protein interaction (PPI) network 
construction 

The Search Tool for the Retrieval of Interacting 
Genes (STRING) database is a pre-computed global 
resource for the exploration and analysis of PPI 
information [24]. In the present study, the STRING 
10.5 online tool was used to screen the PPIs of the 
DEGs. The DEGs with the required confidence level 
(combined score) greater than 0.4 were selected, and 
then the PPI network was constructed and visualized 
using Cytoscape 3.5.1 [25]. Given that most of the 
networks were scale-free, hub genes were selected 
with a connectivity degree larger than 10. 

Module analysis of the PPI network 
Module analysis was performed on the PPI 

network using Molecular Complex Detection 
(MCODE), which finds protein complexes and parts 
of pathways in a network in Cytoscape with a degree 
cutoff =2, node score cutoff =0.2, k-core =2, and max 
depth =100 [26]. Then, significant modules with 
MCODE scores >4 and nodes >6 were selected. Next, 
GO functional and KEGG pathway enrichment 
analyses of the most significant modules were 
performed with a threshold of P value less than 0.05.  

Gene methylation analysis 
Pre-processed gene methylation data (HM450 

platform, shown with β values) downloaded from 
CBioPortal contained 320 tumor samples, including 
260 samples in the 445 selected cases in our study and 
160 normal kidney tissues. In these 260 samples, 23 of 
them were from BAP1-mutated cases.  

With regard to CpG island methylator 
phenotype (CIMP) analysis, we chose genes that were 
not methylated in the 160 normal samples (mean β 
value <0.1) and that had a standard deviation of 
greater than 0.1 (364 genes) in the tumor samples used 
for clustering. Hierarchical clustering with Wald’s 
method was used to cluster 260 samples, and the 
clustering dendrogram was cut into two clusters. One 
of the two exhibited extensive hypermethylation 
across selected genes and was renamed the CIMP 
cluster [27].  

Ethics statement 
The Research Ethics Committee of Shanghai 

Medical College, Fudan University, China approved 
this study. For the public TCGA database, we did not 
require informed consent of patients. 

Results 
Patient characteristics and survival analysis 

Overall, 445 ccRCC cases were divided into two 
cohorts (39 patients with BAP1 mutations and 406 
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patients without BAP1 mutations). Demographics and 
clinical characteristics of these patients were analyzed 
using the Student’s t test and Chi-square test (Table 
1). The two cohorts were similar in terms of age, 
laterality, pN stage, and Fuhrman Grade. However, 
they differed in gender (P=0.003), pT stage (P=0.028), 
pM stage (P=0.025), and tumor stage (P=0.001).  

BAP1 mutations in these patients are shown in 
Table 2, and the total mutation frequency was 8.76% 
(39/445). Among 538 ccRCC cases in TCGA, 40 
patients carried a somatic BAP1 mutation. Most of the 
BAP1 mutations altered the UCH domain or NLS 
(39/40), and only 1 out of 40 mutation sites did not 
involve these two regions, which suggested that 
mutations in the UCH domain or NLS may play a role 
in tumorigenesis.  

Cases in the BAP1-mutated and BAP1 wild-type 
groups showed different prognoses (Figure 2). 
Kaplan–Meier curves of 5-year OS and DFS between 
mutated and wild-type groups indicated that ccRCC 
patients with somatic BAP1 functional mutations had 
a significantly shorter OS (P=0.035) and DFS 
(P=0.036). 

Identification of DEGs 
By processing gene expression data (mRNA 

level), we found a total of 1,799 DEGs between 
BAP1-mutated and BAP1 wild-type cases. Among 
them, 583 were upregulated DEGs, while 1,216 were 
downregulated DEGs. 

GO functional and pathway enrichment 
analysis  

The significant GO biological processes and 
molecular function term analysis of the identified 
DEGs were carried out using DAVID. In all, 
upregulated DEGs were mainly enriched in 25 GO 
functions and downregulated DEGs were mainly 
enriched in 96 GO functions. The most significant 10 
GO terms for these two groups of DEGs are listed in 
Figures 3 A & B. Protein binding was the most 
significant GO term for upregulated DEGs and metal 
ion binding was the most significant GO term for 
downregulated DEGs. 

In addition, KEGG pathway enrichment analysis 
was also performed. Ten pathways for upregulated 
and 28 pathways for downregulated DEGs were 
found. The 10 most significant pathways are listed for 
both groups, as well (Figures 3 C & D). 

PPI network, hub genes, and module analysis 
The STRING database was used to build up the 

PPI network of DEGs. Furthermore, 36 hub proteins 
in the upregulated PPI network and 158 in the 
downregulated PPI network were discovered. The top 
20 hub proteins in each network are shown in Table 3. 

Table 1. Clear-cell renal cell carcinoma patient demographics and 
clinical characteristics in TCGA. 

 
Characteristics 

TCGA ccRCC cohort P value Total 
cohort 
(N=445) 

BAP1 mutation 
carriers (N=39) 

Non-BAP1 mutation 
carriers (N=406) 

Age, median 
(range) 

58 (32 - 85) 61 (26 - 90) 0.872 a 60 (26 - 
90) 

Number (%)     
Gender   0.003 b  
 Male 17 (43.6) 273 (67.2)  290 (65.2) 
 Female 22 (56.4) 133 (32.8)  155 (34.8) 
Lateral    0.417 b  
 Left 21 (53.8) 191 (47.0)  212 (47.6) 
 Right 18 (46.2) 215 (53.0)  233 (52.4) 
pT stage   0.028 b  
 T1 & T2 18 (46.2) 260 (64.0)  278 (62.5) 
 T3 & T4 21 (53.8) 146 (36.0)  167 (37.5) 
pN stage   0.069 c  
 N0 24 (61.5) 180 (44.3)  204 (45.8) 
 N1 4 (10.3) 10 (2.5)  14 (3.1) 
 Nx 11 (28.2) 216 (53.2)  227 (51.0) 
pM stage   0.025 b  
 M0 28 (71.8) 347 (85.5)  375 (84.3) 
 M1 11 (28.2) 59 (14.5)  70 (15.7) 
Tumor stage   0.001 b  
 I & II 13 (33.3) 249 (61.3)  262 (58.9) 
 III & IV 26 (66.7) 157 (39.7)  183 (41.1) 
Fuhrman Grade  0.087 c  
 I & II 12 (30.8) 185 (45.6)  197 (44.3) 
 III & IV 26 (66.6) 217 (53.4)  243 (54.6) 
 Unclear 1 (2.6) 4 (1.0)  5 (1.1) 
 *CIMP     
 CIMP 14 (60.9) 67 (28.3) 0.001 b 81 (31.2) 
 Non-CIMP 9 (39.1) 170 (71.7)  179 (68.8) 
a. Student’s t test; b. Chi-square test; c. Chi-square test, exclude unclear cases. 
* Numbers do not sum to total because of missing values. 

 

Table 2. BAP1 mutation summary in TCGA ccRCC cohort. 

Characteristics BAP1 mutation carriers in  
TCGA ccRCC cohort (N=39) 

Mutation frequency, (%) 39/445 (8.76) 
Number of mutation carriers, (%)  
Mutation type  
Missense mutation 12 (30.77) 
Inframe-shift InDels 0 
Truncating mutation 28 (71.79) a 

Mutation site  
 Altering UCH domain 11 (28.21) 
 Altering NLS 16 (41.03) 
 Altering both UCH domain and NLS 12 (30.77) 
a. one ccRCC patient had a missense mutation and a truncating mutation both. One 
patient had two different truncating mutations. UCH domain: ubiquitin COOH- 
terminal hydrolase domain; NLS: nuclear-localization signals. 

 
 
In the upregulated PPI, two modules were 

chosen with MCODE scores >4 and nodes >6: 
Module-Up-A with 21 nodes (MCODE Score=4.50) 
and Module-Up-B with 9 nodes (MCODE Score=4.25). 
At the same time, three modules were chosen in the 
downregulated PPI network: Module-Down-A with 
31nodes (MCODE Score=7.67), Module-Down-B with 
21 nodes (MCODE Score=6.10), and Module-Down-C 
with 30 nodes (MCODE Score=4.48) (Table 4). 
Proteins involved in Module-Up-A and Module- 
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Down-A are shown in Supplementary Figure 1. 
GO functional and KEGG pathway analyses of 

DEGs in Module-Up-A and Module-Down-A were 
implemented. The results were as follows: In 
Module-Up-A, DEGs were enriched in GO functions 
like antigen processing and presentation of exogenous 
peptide antigen via MHC class II and intracellular 
protein transport. Regarding the KEGG pathway, it 
included endocrine and other factor-regulated 
calcium reabsorption, Huntington's disease, and 
synaptic vesicle cycle pathways. Regarding Module- 
Down-A, DEGs were enriched in GO functions such 
as negative regulation of transcription from RNA 
polymerase II promoter and rRNA transcription. For 
the KEGG pathway, DEGs tended to be enriched in 
calcium signaling pathways, cGMP-PKG signaling 
pathways, and Chagas disease (American trypanoso-
miasis) pathways (Tables S1 & S2). 

Gene methylation analysis 
Gene methylation data of 260 ccRCC tumor 

tissues (23 with BAP1 mutations) were clustered and 
cases were divided into a CIMP cluster and non-CIMP 
cluster based on the clustering results (Figure 4). It 
indicated that BAP1-mutated cases compared with 
BAP1 wild-type cases had a significantly higher 
probability of being in a CIMP cluster (60.9% vs. 
28.3%, P=0.001).  

Discussion 
Combined analysis including genome, 

transcriptome, proteome, and clinical data has been 
widely used in the field of cancer research. In our 
study, we comprehensively analyzed ccRCC cases 
extracted from the TCGA database, focusing on BAP1 
functional somatic mutations. We highlighted several 
pathways or molecules altered dramatically between 
BAP1-mutated and wild-type cases, which may 
indicate new diagnostic biomarkers and targets for 
novel therapy development. 

By analyzing hub genes in the upregulated PPI 
network, we found that TP53, CAD, and translocator 
protein (TSPO) had the highest connective degree. 
The TP53 gene encodes a tumor suppressor protein, 
which plays a vital role in DNA repair, the cell cycle, 
and apoptosis. Mutations in TP53 drives 
carcinogenesis in various cancers [28]. One study 
indicated that TP53 overexpression was an 
independent adverse prognostic factor in laryngeal 
squamous cell carcinoma [29]. TP53 protein levels can 
be determined using a commercial reverse phase 
protein array (RPPA). In addition, we examined TP53 
protein levels using RPPA data deposited in TCGA 
and found that there was no significant difference 
between the BAP1-mutated and BAP1 wild-type 
groups (Figure S2 A). This indicated that although 
TP53 mRNA levels were higher in BAP1-mutated 
cases, a post-transcriptional mechanism was 
inhibiting mRNA translation. This phenomenon 
emphasized the importance of performing a 
comprehensive analysis when using bioinformatics to 
avoid misinterpretation of the data. 

 

Table 3. The hub proteins in the up-regulated and 
down-regulated protein-protein interaction network. (Top 20 in 
each) 

Protein 
Symbol 

Degree Protein 
Symbol 

Degree Protein 
Symbol 

Degree Protein 
Symbol 

Degree 

Up-regulated      
TP53 61 DNM2 22 CCT3 18 ORC1 15 
CAD 49 GRB2 22 CDK16 17 PABPC1 15 
TSPO 48 SMARCA4 22 BIRC5 15 RFC5 15 
SRC 42 ALDH18A

1 
20 CFL1 15 SEC61A1 15 

RAD51 33 DECR1 20 NME2 15 AP2M1 13 
Down-regulated       
CTNNB1 76 MAPK8 61 SIRT1 45 PRKACB 37 
MAPK3 69 KDR 56 INSR 42 EDN1 36 
FYN 68 RHOB 48 EGR1 39 KALRN 36 
HDAC1 64 ITGA2 47 SMARC

A2 
39 SMAD2 36 

BCL2 63 KAT2B 47 FLT1 37 SMAD4 36 

 

 

 
Figure 2. (A) The Kaplan-Meier plot of overall survival (censored at 60 months) in TCGA ccRCC patients (BAP1 mutation cases versus BAP1 wild-type cases). (B) 
The Kaplan-Meier plot of disease-free survival (censored at 60 months) in TCGA ccRCC patients (BAP1 mutation cases versus BAP1 wild-type cases).  
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Figure 3. (A) Top 10 significant GO terms (biological process or molecular function) in up-regulated DEGs in BAP1 mutated cases. (B) Top 10 significant GO terms 
(biological process or molecular function) in down-regulated DEGs in BAP1 mutated cases. (C) Top 10 significant KEGG pathways in up-regulated DEGs in BAP1 
mutated cases. (D) Top 10 significant KEGG pathways in down-regulated DEGs in BAP1 mutated cases. 

 

Table 4. Module Analysis of up- and down- regulated DEGs 
between BAP1 WT/Mutated cases.  

Modules No. of DEGs No. of connections MCODE Score 
Up-regulated    
 Module-Up-A  21 45 4.50 
 Module-Up-B 9 17 4.25 
Down-regulated    
 Module-Down-A  31 115 7.67 
 Module-Down-B  21 61 6.10 
 Module-Down-C  30 65 4.48 

 
Regarding CAD, it is a multifunctional enzyme, 

composed of carbamoyl-phosphate synthetase II, 
aspartate transcarbamylase, and dihydroorotase [30]. 

Previous studies demonstrated that CAD had the 
potential to be developed as an antitumor target [31]. 
The de novo pyrimidine synthesis pathway is 
essential for cancer development, and CAD controls 
the first three steps in the pathway. Activity of CAD is 
further modulated by phosphorylation through the 
ERK-MAP kinase, cAMP-dependent protein kinase, 
and mTOR signaling cascade. Thus, the mTOR 
inhibitor everolimus and temsirolimus may be used to 
inhibit mTOR signaling and thereby inhibit CAD 
activity to block cancer cell proliferation. Further-
more, the structure of CAD has been determined 
recently. The structural data suggests that targeting 
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the dihydroorotase domain of the human CAD 
protein may have antitumoral potential. In 
accordance with the upregulation of CAD in ccRCC, 
one study also revealed that CAD expression was 
increased in invasive and relapsing androgen- 
dependent tumors [32]. 

Regarding TSPO, it is a cholesterol- and 
drug-binding protein primarily located in the outer 
mitochondrial membrane. TSPO not only plays an 
important role in steroidogenesis, but also has a direct 
or indirect link with multiple other cellular functions 
including apoptosis, cell proliferation, differentiation, 
anion transport, porphyrin transport, heme synthesis, 
and regulation of mitochondrial function [33]. Based 
on these characteristics, TSPO-binding chemicals have 
exhibited an inspiring effect in PET imaging and 
anticancer therapies[34]. TSPO-binding drugs have 
also been demonstrated to cause death of several 
cancer cells, and TSPO has already been viewed as a 
novel target for cancer chemotherapy [35].  

In evaluating the downregulated PPI network, 
we found CTNNB1 and MAPK3 to have the highest 
degree of connectivity. CTNNB1 is responsible for 
encoding β-catenin, which is a multifunctional protein 
that plays a significant role in maintaining 
physiological homeostasis. β-catenin not only 
maintains the integrity of epithelial tissues but also 
directs transcription of various genes on extracellular 
instigations [36]. In RCC patients, low expression of 
β-catenin was related to venous growth inside the 

tumor, extratumoral venous growth, and perineural 
growth. Furthermore, downregulated membranous 
expression intensity of β-catenin was predictive of a 
shorter recurrence-free survival (RFS), indicating that 
β-catenin could become a biomarker of aggressiveness 
in RCCs [37]. We also examined CTNNB1 protein 
levels between groups, and the differential expression 
observed was statistically significant (Figure S2 B). 

Mitogen-activated protein kinase (MAPK3) 
plays an important role in one of the MAPK 
pathways, which regulate cell proliferation, 
differentiation, migration, and apoptosis. Several 
studies revealed that positive expression of both 
MAPK3 and AMPK were associated with a better 
prognosis in several cancers [38, 39]. These findings 
suggested that low expression of MAPK3 showed 
potential as a worse prognostic indicator.  

Recently, BAP1 was reported to be mutated in up 
to 14% of sporadic ccRCCs and was associated with 
more aggressive tumors and poorer patient outcomes 
[9, 40]. In addition, ccRCC with a pathogenic germline 
BAP1 mutation has already been defined as a tumor 
predisposition syndrome [41]. It is unlikely that 
biopsy and genetic profiling of BAP1-mutated cases 
could change the treatment principle in localized 
kidney cancer patients; however, for metastatic or 
locally advanced patients with a BAP1 functional 
mutation, this might alter the therapeutic strategy. 
More clinical trials of new therapies like PARP 
inhibitors and immunotherapy, for patients with 

BAP1 mutations, will appear in the 
future. Treatment for BAP1-mutated 
cases, especially advanced cases, will 
become more personalized. 

Our study had some limitations. 
First, all data analyzed in this study 
were derived from the TCGA 
database, not from us. Although 
TCGA is a huge data repository with 
different dimensions of data, most 
patients are Caucasian, African, or of 
Afro-Caribbean descent, and there are 
few Asian people. Thus, comprehen-
sive analysis of BAP1 mutation 
patterns in Asian ccRCC patients is 
still needed in the future. Second, 
results of this study were analyzed, 
clustered, and predicted in silico, and 
not verified using molecular biology 
experiments. Third, there were only a 
limited number (39 patients) of 
BAP1-mutated cases included in this 
study. Therefore, as a next step, 
experimental studies based on our 
findings should be performed.  

 

 
Figure 4. A subgroup of clear cell renal cell carcinoma manifests a CpG island methylator Phenotype 
(CIMP). Molecular subtyping by means of TCGA DNA methylation platform revealed two subtypes of 
ccRCC, one of which showed widespread DNA hypermethylation patterns characteristic of 
CIMP-associated tumors. BAP1 mutation cases had a significantly higher probability to obtain CIMP than 
BAP1 wild type cases 
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Conclusion 
Our study provides a comprehensive 

understanding of BAP1 functional somatic-mutated 
ccRCC patients, and lists several pathways, biological 
processes, and molecules that may be involved in the 
progression and development of BAP1-mutated 
tumors. Furthermore, several top hub genes like CAD 
and TSPO may be potential therapeutic targets in 
BAP1-mutated ccRCC.  

Supplementary Material  
Supplementary figures and tables.  
http://www.jcancer.org/v09p4108s1.pdf  
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