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Abstract
Objectives The authors have previously reported on the technical feasibility of subthalamic nucleus deep brain stimulation (STN
DBS) under general anesthesia (GA) with microelectrode recording (MER) guidance in Parkinsonian patients who continued
dopaminergic therapy until surgery. This paper presents the results of a prospective cohort analysis to verify the outcome of the
initial study, and report on wider aspects of clinical outcome and postoperative recovery.
Methods All patients in the study group continued dopaminergic therapy until GAwas administered. Baseline characteristics,
intraoperative neurophysiological markers, and perioperative complications were recorded. Long-term outcome was assessed
using selective aspects of the unified Parkinson’s disease rating scale motor score. Immediate postoperative recovery from GA
was assessed using the Btime needed for extubation^ and Btotal time of recovery.^ Data for the Bstudy group^ was collected
prospectively. Examined variables were compared between the Bstudy group^ and Bhistorical control group^ who stopped
dopaminergic therapy preoperatively.
Results The study group, n = 30 (May 2014–Jan 2016), were slightly younger than the Bcontrol group,^ 60 (51–64) vs. 64 (56–
69) years respectively, p = 0.043. Both groups were comparable for the recorded intraoperative neurophysiological parameters;
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Bnumber of MER tracks^: 60% of the Bstudy group^ had single track vs. 58% in the Bcontrol^ group, p = 1.0. Length of STN
MER detected was 9 vs. 7 mm (median) respectively, p = 0.037. A trend towards better recovery fromGA in the study group was
noted, with shorter Btotal recovery time^: 60 (50–84) vs. 89 (62–120) min, p = 0.09. Long-term improvement in motor scores and
reduction in L-dopa daily equivalent dose were equally comparable between both groups. No cases of dopamine withdrawal or
problems with immediate postop dyskinesia were recorded in the Bon medications group.^ The observed rate of dopamine-
withdrawal side effects in the Boff-medications^ group was 15%.
Conclusions The continuation of dopaminergic treatment for patients with PD does not affect the feasibility/outcome of the STN
DBS surgery. This strategy appears to reduce the risk of dopamine-withdrawal adverse effects and may improve the recovery in
the immediate postoperative period, which would help enhance patients’ perioperative experience.
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Abbreviations
CSF Cerebrospinal fluid
DBS Deep brain stimulation
GA General anesthesia
IQR Interquartile range
LEDD L-dopa equivalent daily dose
LOR Length of recording
MER Microelectrode recording
NOTs Number of tracks
PD Parkinson’s disease
STN Subthalamic nucleus

Introduction

The role of subthalamic deep brain stimulation is well
established for medically intractable idiopathic Parkinson’s
disease. In addition to its obvious benefits in improving selec-
tive aspects of motor function, namely rigidity and bradykine-
sia [9, 15, 27], subthalamic nucleus deep brain stimulation
(STN DBS) is proposed to have wide ranging advantages in-
cluding a significant reduction in PD medications, significant
improvement in quality of life, and non-motor functions and
more significantly a distinct survival benefit [11, 16, 20, 25].

The technique of STN DBS has evolved over time
reflecting the technical advancement in the field. The de-
ployment of microelectrode recording for target localiza-
tion can be credited for facilitating the adoption of general
anesthesia effectively eliminating the need for Bawake^
macro-stimulation in many functional units. The authors
have previously reported their experience with performing
these procedures under general anesthesia [13, 24]. This
approach is proposed to be a better alternative to Bawake
surgery^ with comparable clinical outcome and safety
profile [2, 14, 18].

This technique has raised further questions about the
need to stop dopaminergic therapy preoperatively in pa-
tients who are undergoing DBS insertion under general
anesthesia (GA) and microelectrode recording (MER)

guidance. In a preliminary observational study, the au-
thors have recently reported comparable clinical outcome
and no added technical difficulty in a small cohort of
patients who inadvertently continued their treatment up
until the time of surgery [3]. The retrospective study fo-
cused mainly on the feasibility of MER recording with
dopaminergic medications. Clinical outcome measures
were secondarily examined as surrogates for the accuracy
of electrode placement.

These positive findings led the authors to change the
perioperative medication policy and allowed all PD pa-
tients to continue on their regular dopaminergic medica-
tions until surgery. Parameters of clinical improvement,
postoperative recovery time, perioperative complications,
and technical aspects of the procedures were recorded pro-
spectively to verify the previously reported outcomes and
examine the effect of dopaminergic therapy on wider as-
pects of the perioperative care.

Patients and methods

The study examined a cohort of idiopathic PD patients treated
with bilateral STN DBS under GA with MER guidance over
the period April 2014–January 2016. All patients were
allowed to continue their medications up until surgery, the
Bnew protocol,^ n = 30. All collected data for this group was
done prospectively.

This was compared to a similar cohort of patients who
underwent the same procedure in the last 18 months under
the old protocol (retrospective data), i.e., with dopaminergic
treatment withheld the night before surgery as a historical
control group, the Bold protocol^ n = 26.

Data for the study group was collected prospectively by
two DBS specialist nurses. The same variables were examined
from retrospective data for the historical control group. The
examined variables were chosen to address three key ques-
tions related to the effectiveness of the procedure and its tech-
nical feasibility:
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1. Did the continuation of dopaminergic treatment preclude
or practically interfere with the intraoperative MER map-
ping of the STN?

2. Did it affect patients’ recovery in the immediate postop-
erative period?

3. Did it affect the long-term clinical outcome?

To adequately assess these three main aspects, the follow-
ing endpoints were examined: intraoperative neurophysiology
markers (number of tracks (NOTs) required to obtain satisfac-
tory STNMER and length of recording (LOR) for the detected
STNMER). The recovery time in the post-anesthesia recovery
unit was recorded prospectively and this was divided into time
needed for extubation and time needed for patients to fully
recover and be deemed suitable for discharge from the recov-
ery area to the ward. Long-term clinical outcome was assessed
using aspects of the unified Parkinson’s disease rating scale
(UPDRS) motor score (Hoehn and Yahr scores, number of
awake hours spent in BOff^ state, and the proportion of the
BOn^ hours spent with dyskinesia) as well as the reduction in
the L-dopa equivalent daily dose (LEDD). These clinical out-
comes were prospectively recorded at 6 months postoperative-
ly. The examined parameters were compared between the two
study groups.

To examine Brecovery^ in the immediate postoperative
stage, two variables were recorded: Btime for extubation^
and Btime for recovery.^ The attending anesthetist recorded
the time of termination of GA on the anesthetic charts.
Subsequently, the time required for extubation (extubation
time) and the time spent in the post-anesthesia recovery suite
(recovery time) were recorded by the theater staff. This was
done prospectively for the study group and compared to the
retrospectively retrieved data for the control group. The same
comparison was done for any recorded adverse events during
hospital stay. The authors defined dopamine-withdrawal ef-
fects to include freezing, anxiety, panic attacks, sweating, nau-
sea, generalized pain, fatigue, dizziness, and increased respi-
ratory complications and urinary disturbances—these might
be directly related to increased rigidity and poor mobility
while off medication.

Statistical analysis

Power calculations (assuming 80% power and alpha value of
5%) showed that the number of subjects required to make the
detected difference in Bextubation time^ and Brecovery time^
statistically significant was 837 patients per group and 77
patients per group respectively. Recruiting such a large num-
ber was not practically feasible.

Ordinal and continuous variables were compared using
Mann-Whitney tests and reported as medians with interquar-
tile ranges. Dichotomous variables were compared between
the groups using Fisher’s exact tests. The LOR and NOTs

were recorded separately for the left and right sides of the
brain. Hence, the analysis was performed separately for each
side, as well as for the total of both sides. The NOTs was
dichotomized into 1 vs. > 1 for the left/right side analysis,
and 2 vs. > 2 for the analysis of the totals.

The examined clinical parameters were compared pre- and
postoperatively for the new protocol group using Wilcoxon’s
tests, to identify significant changes over time.

All analyses were performed using IBM SPSS 22 (IBM
Corp. Armonk, NY), with p < 0.05 deemed to be indicative
of statistical significant throughout.

Results

The clinical indications and preoperative selection process
was in line with the authors’ standard practice and remained
the same for both groups. The surgical technique for STN
DBS under GA with MER guidance was also identical for
both groups. This was described by the authors previously [3].

Baseline characteristics

In total, 56 patients were included (median age of 62 years,
68% male), of whom 26 were on the old protocol and 30 on
the new protocol. Patient demographics and baseline charac-
teristics were compared between the two groups, Table 1.
Patients on the old protocol were found to be older than those
on the new protocol (median: 64 vs. 60 years, p = 0.043). No
significant differences in gender distribution (p = 0.779), du-
ration of PD (p = 0.603), or the preoperative LEDD at time of
surgery were detected between the two groups.

Intraoperative neurophysiology recording markers:
LOR and number of MER tracks

No significant difference was detected between the two
groups for the total NOTs used, with 60% in the new protocol
group, and 58% of patients in the old protocol requiring only
one track on either side of the brain to detect satisfactory STN

Table 1 Comparison between old and new protocols

Old (N = 26) New (N = 30) p value

Age (year) 64 (56–69) 60 (51–64) 0.043

Gender (male) 17 (66%) 21 (70%) 0.779

Duration of PD (years) 11 (8–14) 12 (9–15) 0.603

LEDD 744 (525–3591) 1221 (1000–1640) 0.650

Data reported as median (IQR), with p values from Mann-Whitney tests,
or N (%), with p values from Fisher’s exact tests, as applicable.

Italicized p values are significant at p < 0.05
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MER (p = 1.000). Analysis of the total LOR found this to be
significantly higher in the new protocol group, with a median
of 9 vs. 7 mm (p = 0.037). Breaking this down by the side
found that this significant difference was mainly driven by
the left side, with a median LOR of 4 mm in the new protocol,
compared to 3 mm in the old protocol (p = 0.011), Table 2.

Postoperative recovery parameters: time for recovery
and dopamine-withdrawal side effects

A comparison between the two groups suggested better
Brecovery time^ in the new protocol compared to the old pro-
tocol cohort although this fell short of statistical significance.
However, a significant difference in the recorded perioperative
complications was evident with four patients in the old cohort
reported to have mainly respiratory and urinary complications
compared to none in the new cohort, Table 3.

The continuation of dopaminergic medications might be
associated with reduction in the length of hospital stay. The
average hospital stay for old cohort was 3.5 days compared to
2.5 days in the new cohort, p > 0.05.

Long-term clinical outcome: motor scores
and reduction of LEDD

Practical aspects of the UPDRSmotor scores were selected for
clinical outcome assessment and were recorded preoperatively
at the time of enlisting patients for the surgical procedure and
subsequently at 6 months postoperatively. The authors used
the formula previously reported in the same unit [26] for cal-
culating the LEDD. The reduction in LEDD is widely accept-
ed as a surrogate marker for clinical improvement after DBS
and appears to show good outcome in the new protocol co-
hort. The comparison of the preoperative and postoperative
scores for the examined endpoints suggests a clear clinical
improvement in the study group, Table 4. This is in line with
previously reported data for patients who underwent the pro-
cedure after withholding their medications [13].

Discussion

The value of MER remains a subject of debate for many au-
thors [12] with some proposing that direct anatomical targeting
is good enough [29]; however, MER advocates have reported
significant adjustments of Banatomical^ targeting using MER
without significant added complications [6, 22, 23].

The cessation of dopaminergic medications preoperatively
is a practical necessity for awake macro-stimulation but in the
context of MER-guided DBS insertion under GA, it lacks a
solid evidence foundation.

However, some neurophysiological studies have previously
suggested that dopaminergic therapy might interfere with beta-
oscillations potentially masking the pathological STN activity
[21]. This could make obtaining a satisfactory STN recording
intraoperatively more difficult and add the associated risks of
extra brain penetrations. This consideration appears to be more
of a theoretical risk as it is suggested that the electrical activity
picked up by MER is not solely comprised of B-range oscilla-
tions but includes other local field potentials of variable fre-
quencies [7, 8, 28]. Indeed these local field potentials remain
even after DBS insertion for a considerably long time [1].

The authors have previously suggested the feasibility of
obtaining good-quality microelectrode recording of the STN
in patients who continue on dopaminergic treatment until sur-
gery [3, 4]. The choice of LOR and NOTs serves as practical
surrogates for the quality of recording and correlates with the
debated risk of increased intra-parenchymal hemorrhage with
added brain penetrations for the MER electrodes [5]. In this
study, the authors report a statistically significant difference in
LOR between the two study groups in favor of the study group.

Table 2 Comparison of LOR and number of tracks between old and
new protocols

Old (N = 26) New (N = 30) p value

Left LOR 3 (3–4) 4 (3–5) 0.011

Right LOR 4 (3–5) 4 (3–6) 0.186

Number of tracks left (> 1) 6 (23%) 11 (37%) 0.384

Number of tracks right (> 1) 8 (31%) 4 (13%) 0.191

Total number of tracks (> 2) 11 (42%) 12 (40%) 1.000

Data reported as median (IQR), with p values from Mann-Whitney tests,
or N (%), with p values from Fisher’s exact tests, as applicable

Italicized p values are significant at p < 0.05

Table 3 Postoperative recovery times

Overall
(N = 56)

Old
(N = 26)

New
(N = 30)

p value

Extubation
time (mins)

23 (15–37) 25 (15–44) 22 (15–30) 0.621

Recovery
time (mins)

73 (53–113) 89 (62–120) 60 (50–84) 0.096

Data reported as median (IQR), with p values from Mann-Whitney tests

Table 4 Pre- and postoperative comparisons in the new protocol group

Preoperative Postoperative p value

Hoehn-Yahr 2 (2–3) 1 (1–2) < 0.001

BOff^ awake hours 5 (2–7) 0 (0–1) < 0.001

Dyskinesia %
of BOn^ hours

30 (10–50) 0 (0–0) < 0.001

LEDD 1221 (1000–1640) 553 (360–728) < 0.001

Data reported as median (IQR), with p values from Wilcoxon’s tests

Italicized p values are significant at p < 0.05
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The significance of this result is uncertain as this might reflect
an artifact due to slightly higher degree of brain atrophy (age-
related) in the Bolder^ cohort of the control group leading to the
risk of brain shift after opening the dura and loosing CSF [10].

The continuation of dopaminergic therapy combined with
the Blesioning effect^ from the DBS electrode placement
might be argued to increase the risk of postoperative dyskine-
sia [17, 19]. The authors’ experience from both studies have
not shown evidence of this problem.

The reported effect of dopaminergic medication continua-
tion on the Brecovery time^ in this study fell short of statistical
significance. This, however, should be taken in context of the
study limitations, mainly the small cohort size and the fact that
the data collection for the study group was done prospectively
but compared to a retrospective data for the historical control
group. This can be argued to compromise the internal validity
of such comparison.

In considering these limitations, the authors acknowledge
that the study was statistically underpowered to detect signif-
icant difference in the recovery times between the two groups
based on the required large sample size as calculated previ-
ously. However, despite the lack of statistical significance, the
authors suggest that the effect of continuing dopaminergic
therapy may be reflected beyond the immediate post-GA re-
covery with earlier mobilization and lower risk of respiratory
and urinary complications. These would be related to in-
creased rigidity and poor mobility in the perioperative period.

The authors also acknowledge the fact that the study design
might be challenged by the use of historical controls. This
might be suggested to introduce some inconsistency in the
way that the time for intubation or time for recovery was
recorded. Such inconsistencies, if exist, would be inconsol-
able. Nevertheless, the recording of these times is an
established practice in the authors’ institute as the time for
cessation of GA is automatically logged on the system when
the anesthetic agent is switched off. The same practice follows
when the patient is extubated.

The arrival time to the post-GA Recovery suite as well as
the time when the patient was deemed ready to leave are
routinely recorded on an electronic log.

In view of these facts, the authors believe—despite the
obvious limitation of retrospective data in the historical
group—that such comparison remains valid as the data was
collected in a controlled fashion as standard practice in all
cases prospective or historical. Moreover, the data collection
for these variables is not done by the surgical team but rather
by independent recovery/theater staff who are not concerned
with the specific details of the surgical procedure or the status
of preoperative medications.

The improvement in postoperative recovery is further sug-
gested by the apparent reduction in the length of hospital stay
(average hospital stay for old cohort 3.5 days vs. 2.5 days in
the new cohort, p > 0.05).

In the authors’ current practice, patients are admitted on the
morning of surgery rather than the night before which was
previously required due to the anticipated reduction in mobil-
ity from withdrawal of medication. It is suggested that the
avoidance of dopamine withdrawal and its consequential risks
will allow patients to be discharged home sooner.

The long-term clinical outcome has been examined using
standard measures utilized by the UPDRS scale. These clearly
show good outcome for all patients effectively reflecting good
placement of the DBS electrodes in line with the reported
literature.

The authors are encouraged by these positive findings which
seem to support the desirable effect of keeping PD patients on
their dopaminergic treatment up until the time of surgery.

In considering the limitations of this study, the authors
highlight the limited cohort size and the lack of controlled
design in this observational comparative study. The fact that
the new protocol cohort had an average younger age group
might have resulted in an artifact with slightly better LOR for
microelectrode recordings in the study group.

Despite these limitations, the authors believe that the re-
sults of this prospective study confirm that it is possible to
achieve good electrophysiological recording without with-
holding dopaminergic medication. There is further support
of the initial observation that dopaminergic therapy continua-
tion leads to a better perioperative experience and appears to
project into sustained good clinical outcome with lower com-
plications rates.

Conclusions

Subthalamic deep brain stimulation under GA can be effective-
ly performed with intraoperative MER guidance in patients on
dopaminergic therapy. The quality of STN microelectrode re-
cordings and the clinical effectiveness of the procedure appear
not to be compromised by continuing the medications.

Keeping patients on their regular therapy appears to carry
lower risk of postoperative complications (due to drug-
withdrawal effects). It provides good long-term clinical outcome
and potentially smoother recovery from general anesthesia.

Based on the authors’ current experience, the cessation of
dopaminergic therapy for this group of patient is not justifiable
and might compromise the clinical outcome.
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