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Introduction

Ethylene affects plant growth and development. It is 
responsible for several processes in plants and, depending 
on the level, can e.g. promote root initiation, inhibit root 
elongation, activate plant hormone synthesis, and promote 
flower wilting. Ethylene is also involved in the response 
to both biotic and abiotic stresses. An increase in ethyl-
ene synthesis may accompany for example extreme tem-
peratures, water flooding, drought, radiation, salinity, and 
presence of various pathogens. It has also been described 
that ethylene affects various stages of symbiosis (Vach-
eron et al. 2013; Glick 2014). Ethylene can inhibit nodule 
development in different fabacean plants, for example in 
Phaseolus vulgaris, Lotus japonicas, and Trifolium repens 
(Tamimi and Timko 2003).

In the literature, there is a “stress ethylene” concept. The 
model of “stress ethylene” includes the synthesis of ethyl-
ene in two peaks. The first one is small and reflects ethyl-
ene that consumes the pool of ACC (1-aminocyclopropane-
1-carboxylate) existing in stressed plant tissues. Probably, 
this ethylene is responsible for initiation of transcription of 
genes whose products are involved in defensive or protec-
tive mechanisms. The second, bigger ethylene peak reflects 
synthesis of additional ACC in plant response to stress. It 
is responsible for initiation of such processes as cell death, 
senescence, and chlorosis (Glick 2014; Singh et al. 2015).

Plant growth promotion by rhizosphere microorganisms 
(plant growth-promoting rhizobacteria, PGPR) is a result of 
various mechanisms such as production of indole-3-acetic 
acid (IAA), siderophores, 2,3-butanediol, lytic enzymes, 
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and 1-aminocyclopropane-1-carboxylate deaminase (ACC 
deaminase) as well as induction of plant systemic resist-
ance to pathogens. It has been demonstrated that inocula-
tion of plants with ACC deaminase-producing rhizobia 
causes a decrease in the plant ethylene level, which in turn 
protects plant from the effects of biotic and abiotic stresses 
(Saleem et al. 2007; Bhattacharyya and Jha 2012; Beneduzi 
et al. 2012).

ACC deaminase (EC:4.1.99.4) synthesized by microor-
ganisms converts ACC, the immediate precursor of ethyl-
ene in plants, into ammonia and ketobutyrate, which can 
be used as a source of nitrogen and carbon, respectively. 
This enzyme synthesized by soil bacteria decreases the 
level of ethylene in plants and, in consequence, stimulates 
plant growth. A low level of ethylene correlates with higher 
resistance of plants to various kinds of biotic and abiotic 
stresses such as high salt, extreme temperature, phytopath-
ogenic infection. The presence of ACC deaminase-produc-
ing microorganisms in soil contributes to longer plant roots 
and shoots and to higher plant resistance to inhibition of 
growth by ethylene stress (Bhattacharyya and Jha 2012; 
Glick 2014).

It is worth noting that, under stress conditions, some 
microorganisms produce the phytohormone indole-3-acetic 
acid (IAA). IAA is a natural plant auxin that is the com-
mon product of l-tryptophan metabolism. The indole-
3-acetic acid enhances development of longer roots with 
an increased number of root hairs and lateral roots. IAA 
inhibits or delays leaf abscission and affects plant flower-
ing and fruiting. This auxine may stimulate such processes 
as tissue differentiation, xylem formation, nitrogen fixa-
tion, and plant stress resistance. It has been found that pro-
duction of IAA by bacteria can promote plant growth and 
increase acdS gene transcription (Zaidi et  al. 2010; Zhao 
2010). The application of microorganisms producing both 
IAA and ACC deaminase as plants inoculates did not result 
in any increase of the ethylene level in contrast to plants 
inoculated only with IAA-producing bacteria (Glick 2014).

PGPR are able to synthesize different compounds that 
have a positive impact on the growth, development, and 
tolerance to different stresses in plants. These effects are 
related, inter alia, to nutrient enrichment of soil by phos-
phate solubilization, nitrogen fixation, or lipase and pro-
tease production. PGP microorganisms are often character-
ized by tolerance to abiotic stresses such as pH, drought, 
salinity, and heavy metal pollution (Zaidi et al. 2010; Zhao 
2010; Beneduzi et al. 2012; Ahemad and Kibret 2014).

We have studied eight mesorhizobium strains isolated 
from nodules of Astragalus cicer and Astragallus glycy-
phyllos growing in Poland, Ukraine, and Canada (Wdowiak 
and Małek 2000; Gnat et al. 2014). In our earlier studies, 
A. glycyphyllos and A. cicer symbionts were classified into 

the genus Mesorhizobium, based on sequence analysis of 
16S rRNA and housekeeping genes (Wdowiak-Wróbel and 
Malek 2010; Gnat et al. 2014, 2015a). Additionaly A. gly-
cyphyllos nodule isolates were affiliated into the M. amor-
phae and M. ciceri species by DNA/DNA hybridization 
and to the new symbiovar, glycyphyllae” using nodA and 
nodC sequence analysis (Gnat et al. 2015a, b). The strains, 
representing different phenotypic and genomic groups of A. 
glycyphyllos and A. cicer isolates, were used to determine 
the ability to use ACC as a sole nitrogen source, the pres-
ence of the acdS gene in their genome, phylogeny of the 
acdS genes, tolerance of bacteria to heavy metals, and their 
capability of IAA synthesis and phosphate solubilization.

Materials and methods

Bacterial strains

Mesorhizobium strains ACMP18, USDA 3350, AW1/3, and 
CIAM0210 isolated from A. cicer and AG1, AG15, AG17, 
and AG27 isolated from root nodules of A. glycyphyllos, 
i.e. two fabacean plant species, were used in this study. 
Mannitol-yeast extract liquid medium YEM and mannitol-
yeast extract agar YEMA were routinely used for culturing 
and maintenance of the rhizobia (Vincent 1970). The ana-
lysed rhizobia were maintained on the YEMA medium at 
4 °C.

Phosphate solubilization

The phosphate solubilizing ability of the rhizobia was 
tested on Pikovskaya’s agar medium (Pikovskaya 1948). 
After 7  days of growth at 28  °C, bacteria that induced a 
clear zone around the colonies were considered to be posi-
tive for phosphate solubilization. The capability of the 
bacteria of phosphate solubilization was described by the 
solubilization index =  the ratio of the total diameter (col-
ony  +  halo zone) to the colony diameter (Edi-Premono 
et al. 1996).

IAA production

A. cicer and A. glycyphyllos microsymbionts were screened 
for their ability to produce IAA. The isolates were grown in 
Tris-TMRT medium (Manassila et al. 2007) and incubated 
at 28 °C for 5 days. The presence of IAA was estimated by 
adding 2 ml of Salkowski’s reagent (2 % 0.5 FeCl3 in 35 % 
HClO solution) into the bacterial culture and incubation of 
the mixture in the dark at 28 °C for 30 min. IAA concentra-
tions ranging from 10 to 100 µg/ml were used as a positive 
control.
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Detection of siderophores

Chrome-Azurol S (CAS) agar medium devoid of iron was 
used for detection of siderophores (Schwyn and Neilands 
1987). The bacteria were grown in the synthetic medium 
described by Jadhav and Desai (1992) with and without 
10 μM iron for 24 h on a rotary shaker at 28 ± 2 °C. Next, 
the cultures were centrifuged and the cell free supernatant 
was dropped onto CAS plates and incubated in the dark at 
28 °C for 4–5 days. The blue colour of the CAS medium is 
due to the dye complexed with iron. In the presence of the 
siderophore, the ferric ions are bound, releasing a free dye, 
which is orange in colour (positive reaction).

Zn, Cd, Pb

The tolerance of A. cicer and A. glycyphyllos symbi-
onts to heavy metals was investigated on yeast mannitol 
agar (YMA) medium supplemented with various solu-
ble heavy metal salts, namely Cd, Pb, and Zn, at differ-
ent concentrations. Pb was applied as Pb(CH3COO)2 
(500 and 750 μg  ml−1), Cd as CdSO4 ×  8H2O (50 and 
100 μg  ml−1), and Zn as ZnSO4 ×  7H2O (250, 500 and 
750 μg ml−1). Resistance of the Astragalus sp. microsym-
bionts to heavy metals was determined by their growth on 
plates incubated at 28 °C for 4–5 days.

Ability to utilize ACC as a sole source of nitrogen

The analysed mesorhizobia were screened for their abil-
ity to utilize ACC as a sole nitrogen source in microtiter 
plates according to the method described by Shahzad et al. 
(2010).

ACC deaminase activity

To determine ACC deaminase activity, A. cicer and A. gly-
cyphyllos symbionts were grown in 5 ml of TY medium 
(Beringer 1974) at 30 °C for 2–3 days until they reached 
the stationary phase. The bacterial cells were centri-
fuged and washed twice with 0.1  M Tris–HCl (pH 7.5). 
Next, the bacteria were suspended in 2  ml of M9 mini-
mal medium supplemented with ACC (final concentration 
of 5 mM) and incubated at 30 °C with shaking for 36 h. 
ACC deaminase activity was determined according to the 
method described before (Ma et  al. 2003; Penrose and 
Glick 2003). ACC deaminase activity was determined by 
measuring the production of α-ketobutyrate (Honma and 
Shimomura 1978).

The protein concentration in the cell extracts was deter-
mined by the method of Bradford (1976) using the Bio-Rad 
protein reagent (Bio-Rad; Protein Assay Dye Reagent Con-
centrate #500-0006).

PCR amplification and sequencing

The bacterial strains were grown in 5  ml of YEM liq-
uid medium at 28  °C for 2–3 days until they reached the 
stationary phase. Next, the rhizobia were centrifuged at 
20,000×g for 10  min. Genomic DNA was isolated from 
the rhizobial strains using the GES method (Pitcher et  al. 
1989).

To obtain the acdS gene sequences, the following set of 
degenerate primers was designed: primers acdSF (5′CAA-
GCTGCGCAAGCTCGAATA3′) and acdSR (5′CATCC-
CTTGCATCGATTTGC3′). The PCR assay was performed 
according to the manufacturer’s description using 25-μl 
of a reaction mixture (Sigma) under the following condi-
tions: initial denaturation for 5  min at 95  °C, followed 
by 35 cycles of 30 s at 95 °C, 30 s at 50 °C, and 1 min at 
72 °C, and final 5 min elongation at 72 °C. The PCR prod-
ucts were purified using a Clean-up kit (A&A Biotechnol-
ogy) and sequencing reactions were performed using the 
BigDye Terminator Cycle Sequencing Kit (Applied Bio-
systems, USA). The products obtained were cleaned with 
an Ex-Terminator kit (A&A Biotechnology) and analysed 
in an automatic 3500 Genetic Analyzer sequencer (Applied 
Biosystems). The sequences of the acdS genes were com-
pared with the sequences available in the GenBank and 
aligned using ClustalX2 multiple sequence alignment 
(Larkin et al. 2007). The phylogenetic tree of the acdS and 
AcdS sequences were constructed by MEGA 4.0 software 
(Tamura et  al. 2007). The sequence similarity rate of the 
acdS sequence genes was determined according to the 
Kimura’s two-parameter model (Kimura 1980). The phylo-
genetic tree of the acdS gene sequences and deduced AcdS 
sequences were constructed using the neighbour-joining 
(NJ) method (Saitou and Nei 1987).

Labelling the probe with digoxigenin

The purified PCR product was tagged with digoxigenin 
(DIG) using a DIG Oligonucleotide 3′–end labelling kit 
(Roche Diagnostics GmbH, Mannheim, Germany). The 
reactions were carried out in a 50-μl reaction mixture 
containing 50  ng of template (DNA of Mesorhizobium 
huakuii MAFF303099), 5  μl reaction buffer (1×), 5  μl 
PCR DIG labelling Mix (200 μM dNTP), upstream and 
downstream primer (30  pmol each), and 0.75 μl enzyme 
mix (2.6 U). PCR was conducted in a DNA 2720 Thermal 
Cycler (Applied Biosystems) under the following condi-
tions: 2 min initial denaturation at 94 °C, 10 cycles of 30 s 
denaturation at 95 °C, annealing at 60 °C for 30 s and 40 s 
of elongation at 72  °C, 20 cycles of 30  s denaturation at 
95 °C, annealing at 60 °C for 30 s and 40 s plus 20 s for 
each successive cycle of elongation at 72 °C, followed by 
final extension at 72 °C for 7 min. The presence of the PCR 
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labelling product (~710 bp) was checked by electrophoresis 
on 1 % agarose gel.

Preparation of the genomic DNA for Southern 
hybridization

Approximately 2  μg of genomic DNA isolated from 
each rhizobial strain was completely digested overnight 
with 10 U restriction enzyme HindIII (MBI Fermentas, 
Inc.) at 37 °C. The digested DNA was loaded and run on 
a 1  % agarose gel. 1-kb DNA ladder (MBI Fermentas, 
Inc.) was used as a molecular weight standard. HindIII 
digested genomic DNA of M. huakuii MAFF303099 was 
used as a positive control of the presence of the acdS 
gene. The DNAs were transferred onto a nylon mem-
brane according to Sambrook and Russell (2001). The 
blot was hybridized with the acdS probe. Hybridization 
was performed according to the procedure described 
by the manufacturer (DIG Luminescent Detection Kit, 
Roche).

Accession numbers

The acdS sequences of the milkvetch microsymbionts stud-
ied in this work have been deposited in the GenBank data-
base under accession numbers KU745724-KU745731.

Results

Growth of A. cicer and A. glycyphyllos microsymbionts 
on ACC medium as a sole nitrogen source

Four symbionts of A. cicer and four strains isolated from 
root nodules of A. glycyphyllos were tested for the capac-
ity of utilization of ACC as a sole N source. The studied 
milkvetch microsymbionts showed good growth on the 
control medium-(NH4)2SO4 and much weaker growth on 
the ACC medium even after 96 h. The ability to use ACC 
as a sole nitrogen source suggests that the strains isolated 
from Astragalus sp. plants can possess ACC deaminase, i.e. 
an ACC-hydrolysing enzyme.

Southern analysis

The Southern hybridization was used to determine the 
number of acdS gene copies in each investigated mes-
orhizobium strain. The DNAs of the milkvetch micros-
ymbionts were digested with the HindIII enzyme, which 
does not possess restriction sites within the amplified acdS 
genes. Then, restriction fragments were separated by aga-
rose gel electrophoresis and blotted onto Hybond-N+. The 

blot was hybridized with a M. huakuii MAFF303099 strain 
acdS gene probe.

In the microsymbionts of the Astragalus sp., the copy of 
the acdS gene encoding ACC deaminase was detected using 
the Southern hybridization method. The results showed that 
strains AG1, AG15, AG17 and AG27 had a single band 
with the size of ca. 8000 bp. Strains ACMP18, USDA3350, 
CIAM0210, and AW1/3 also showed a single band, whose 
sizes were in the range of ca. 2500, 2200, 4000, and 4000, 
respectively.

Analysis of nucleotide and protein sequences of acdS 
genes of A. cicer and A. glycyphyllos symbionts

Phylogenetic analysis of the housekeeping genes of astra-
gali isolates determined in the earlier studies indicated that 
the analysed isolates represent the genus Mesorhizobium 
(Wdowiak-Wróbel and Małek 2010; Gnat et al. 2015a, b). 
It was found that many bacteria of the genus Mesorhizo-
bium have the ACC deaminase-coding acdS gene, which 
plays an important role in the growth and nodulation of 
fabacean legume plants (Ma et al. 2003, 2004; Glick et al. 
2007; Conforte et al. 2010; Nascimento et al. 2012a, b).

Although the astragali symbionts did not show ACC 
deaminase activity in  vitro, the acdS gene sequences 
were obtained for all the analysed strains. The phyloge-
netic analysis of the aligned 529-bp acdS gene sequences 
resulted in the tree shown in Fig.  1. In the phylogenetic 
tree of partial acdS gene sequences, the A. cicer and A. 
glycyphyllos strains were split into 3 main well supported 
clusters and all of them grouped together with the genus 
Mesorhizobium strains within one monophyletic group 
(99 % bootstrap support). The phylogenetic analysis of the 
acdS genes revealed that A. glycyphyllos microsymbionts 
showed the greatest similarity to the sequences of the M. 
ciceri and M. mediterraneum strains (93–94  % sequence 
similarity), forming a strongly (99 % bootstrap) supported 
subgroup with these bacteria (Fig.  1). The sequences 
of the acdS genes of A. cicer microsymbionts AW1/3, 
ACMP18, CIAM0210 were related to the acdS of M. loti 
(with 89–90  % similarity). The phylogenetic analysis of 
the acdS gene of the USDA3350 strain used in this study 
showed that it belongs to a common group together with M. 
chacoense, M. albiziae, and M. tianshanense strains (86, 
89, and 90 %, respectively).

The next cluster grouped bacteria of the genera Rhizo-
bium and Ensifer. The last one comprised bacteria of 
the genus Bradyrhizobium. The high bootstrap values 
of both these groups showed robustness (100 and 95  %, 
respectively).

The phylogenetic tree derived from the AcdS protein 
sequences deduced from the acdS genes constructed by 
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the neighbour-joining method is shown in Fig. S1. Only 
minor topological differences were found when the acdS 
nucleotide sequence tree and the tree based on AcdS amino 
acid sequences were compared. At the amino acid level, 
the AcdS protein sequences of A.cicer and A. glycyphyl-
los symbionts were 87–100 % identical to each other and 
84–95 % to the AcdS proteins of reference Mesorhizobium 
strains.

Heavy metals

Heavy metal resistance patterns of Astragalus sp. microsym-
bionts were investigated using three heavy metals, i.e. zinc, 
cadmium, and lead at the concentration specified in the mate-
rials and methods. All isolates were found to be resistant to 
a 500 µg/ml concentration of Zn and Pb. Moreover, approxi-
mately 62 and 87 % of the analysed bacteria were found to 

Fig. 1   Phylogenetic relationship between A. cicer and A. glycyphyllos microsymbionts and reference strains based on partial acdS sequences. 
Bootstrap values (1000 replicates) are shown when higher than 50 %. The scale bar represents the percentage of substitutions per site
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be tolerant to 750 µg/ml of Zn and Pb, respectively (Table 1). 
Assessment of the tolerance of the A. cicer and A. glycyphyl-
los symbionts to cadmium revealed that they were much 
more sensitive to this heavy metal. They grew in the pres-
ence of 50 µg Cd in 1 ml medium but their growth was almost 
completely inhibited by 100 μg ml−1 of Cd in the medium. 
In the presence of 100 µg of Cd per 1 ml of medium, only 
two of the eight strains analysed showed weak growth. The 
inhibitory effect of heavy metals on the growth of the astra-
gali symbionts was the following (in an increasing order): 
Pb(CH3COO)2, ZnSO4 × 7H2O, and CdSO4 × 8H2O.

Characterization of A. cicer and A. glycyphyllos 
rhizobia for phosphate solubilization ability, 
and production of IAA and siderophores

All the milkvetch nodulators analysed exhibited phosphate 
solubilizing activity, which was detected by the formation 
of a clear halo around bacterial colonies growing on Pit-
kovskay’s medium (Table 1). The isolates showed a vary-
ing P-solubilizing index, i.e. from 1.45 to 2.87. The highest 
P-solubilization index was shown by strains USDA3350 
and ACMP18, i.e. the A.cicer symbionts, and the lowest 
index was noted for A. glycyphyllos isolate AG15.

The microsymbionts of A. cicer (3 strains) and A. gly-
cyphyllos (4 strains) showed positive reaction in the test 
for IAA production. The strongest pink colour, i.e. the 
highest IAA concentration, was detected in the case of the 
CIAM0210 strain, while the AW1/3 strain did not synthe-
size IAA. No ability to produce siderophores was detected 
in any strains tested (Table 1).

Discussion

Some soil bacterial strains have a positive impact on plant 
growth and development. Such bacteria are called plant 

growth-promoting rhizobia (PGPR) (van Peer and Schip-
pers 1989; Frommel et  al. 1991; Kloepper et  al. 1988). 
The positive effect of microorganisms on plant growth is 
related, inter alia, to protection of plants against phytopath-
ogenic organisms or bacterial synthesis of compounds 
that improve plant growth and development (Glick 1995; 
Glick et  al. 1999). PGPR can synthesize, e.g. phytohor-
mones (auxin, cytokinins), siderophores, and enzymes that 
can positively influence plant growth and development or 
are able to solubilize minerals (i.e. phosphorus, potassium, 
zinc). One of the mechanisms is connected with produc-
tion of the phytohormone indole-3-acetic acid (IAA). It 
was shown that IAA synthesized by bacteria participates in 
plant–microbe signalling and contributes in roots prolifera-
tion and elongation (Vessey 2003). It should be noted that 
bacterial IAA can also stimulate the activity of ACC syn-
thetase, thereby increasing ACC synthesis (Glick 2012). 
The ability to synthesize IAA has been found in many 
rhizobia. Studies have shown that this auxin produced by 
rhizobia affects the nodulation process (Glick et al. 1998; 
Spaepen and Vanderleyden 2011). Our research showed 
that 87.5  % of A. cicer and A. glycyphyllos microsymbi-
onts were able to produce indole-3-acetic acid. The ability 
to synthesize IAA has also been described, among others, 
for Rhizobium leguminosarum, Mesorhizobium cicer, and 
Mesorhizobium loti strains (Chandra et  al. 2007; Ahmad 
et al. 2008).

Phosphorus is one of the nutrients necessary for plant 
growth and development. Unfortunately, it occurs in soil 
mainly in the insoluble forms. Plants can absorb phos-
phorus only in two soluble forms, i.e. as the monobasic 
(H2PO4

−) and the diabasic (HPO4
2−) ions (Glass 1989). 

Some PGPR are able to transform the insoluble form 
of phosphorus to a form available to the plant by acidifi-
cation of the medium and by phosphorus chelation and 
transport to the cell (Hameeda et  al. 2008; Richardson 
et al. 2009). It was noticed that inoculation of plants with 

Table 1   Plant growth-promoting features of A. cicer and A. glycyphyllos microsymbionts

+ positive reaction; ± weak reaction; − negative reaction

Strain P-solubiliza-
tion

IAA produc-
tion

Siderophore 
production

Tolerant to Zn Tolerant to Cd Tolerant to Pb

500 μg ml−1 750 μg ml−1 50 μg ml−1 100 μg ml−1 500 μg ml−1 750 μg ml−1

ACMP18 + + − + − + − + −
AW1/3 + − − + + + − + +
CIAM0210 + + − + − + − + +
USD3350 + + − + − + − + +
AG1 + + − + + + +/− + +
AG15 + + − + + + − + +
AG17 + + − + + + − + +
AG27 + + − + + + +/− + +
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phosphorus-solubilizing bacteria positively affects the 
development of the plants (Kucey et al. 1989; Chabot et al. 
1996). The ability to solubilize inorganic phosphate has 
been described in many rhizobial species e.g. R. legumino-
sarum bv. viciae, Ensifer meliloti, Mesorhizobium mediter-
raneum, and M. loti (Peix et al. 2001; Chandra et al. 2007; 
Bianco and Defez 2010). Our studies showed that mes-
orhizobia isolated from the root nodules of A. cicer and A. 
glycyphyllos caused P-solubilization visible as a clear zone 
around the bacterial colony on Pikovskaya’s medium. It is 
worth noting that the P-solubilization zone for mesorhizo-
bia isolated from the A. cicer root nodules was bigger than 
that for the A. glycyphyllos symbionts.

The development of rhizobium–fabacean plant sym-
biosis depends on various environmental factors, inter alia, 
salinity, pH, and the presence of heavy metals. It is worth 
noting that the presence of heavy metals at low concentra-
tions is essential for many cellular processes in bacteria. 
For instance, molybdenum, zinc, and nickel are cofac-
tors of many enzymes, cobalt is the central metal compo-
nent of the vitamin B12 cofactor, and manganese can be 
an electron acceptor (Ahemad 2012). It has been shown, 
however, that heavy metals present in soil at higher con-
centrations interfere with the metabolism of soil bacteria 
and can decrease their activity and affect the rhizobium–
fabacean plant interaction (Ahemad 2012). Bacteria have 
developed some mechanisms enabling them to survive 
in the presence of heavy metals, i.e. precipitation of met-
als as insoluble salts, efflux of metals from the cells, and 
chelation of metals (Wani et  al. 2009; Zaidi et  al. 2012). 
The mechanism of heavy metal toxicity in respect to rhizo-
bia and rhizobium–fabacean symbiosis is poorly known. 
Wani et  al. (2009) described tolerance of Mesorhizobium 
sp. RC1 and RC4 strains to Cr(VI). These strains exerted 
a beneficial effect on the development of chickpea grow-
ing in Cr-contaminated soil (Wani et al. 2009). Vidal et al. 
(2009) described highly metal-resistant Mesorhizobium 
metallidurans strains, symbionts of Anthyllis vulneraria, 
which tolerated even 16–32 mM Zn and 0.3–0.5 mM Cd in 
YEM liquid medium (Vidal et al. 2009). A majority of the 
strains isolated from A. cicer and A.glycyphyllos root nod-
ules tolerated much lower concentrations of heavy metals, 
i.e. 0.65 mM Zn, 0.14 mM Cd, and 2.3 mM Pb. A similar 
resistance level to Zn (0.05–0.5  mM) and Cd (0.05  mM) 
was described by Vidal et al. (2009) in the case of M. tian-
shanense ORS 2640T and M. mediterraneum ORS 2739T.

The rhizobium–fabacean symbiosis is a complicated 
process regulated by both partners of this interaction. It is 
known that the plant hormone ethylene can inhibit rhizo-
bial infection and nodule formation and limit the number 
of nodules. Some rhizobia are able to reduce “ethylene 
stress” by 1-aminocyclopropane-1-carboxylic acid (ACC) 
deaminase synthesis. ACC deaminase breaks down ACC, 

an ethylene precursor, into ammonium and α-ketobutyrate. 
It was shown that bacteria producing ACC deaminase pro-
tect plants against various environmental stress factors and 
phytopathogens, delay plant senescence, and affect the 
nodulation process (Glick 2014; Nascimento et al. 2012a). 
The presence of the acdS gene encoding ACC deaminase 
has been described in many Gram-positive, i.e. Bacil-
lus pumilus, Mycobacterium sp., and Rodococcus sp., 
and Gram-negative bacteria, e.g. rhizobial species such 
as R. leguminosarum bv. viciae, E. meliloti, Ensifer medi-
cae, Bradyrhizobium japonicum, M. loti, and M. ciceri bv. 
biserrulae (Belimov et al. 2001, 2005; Sullivan et al. 2002; 
Madhaiyan et  al. 2006; Murset et  al. 2012; Nascimento 
et al. 2012a, b; Singh et al. 2015). Some investigations have 
also shown that many bacteria of the genus Rhizobium pro-
duce ACC deaminase under free-living conditions, whereas 
the free-living bacteria of the genus Mesorhizobium do not 
exhibit ACC deaminase activity (Nascimento et al. 2012a, 
b). In mesorhizobia, the activity of ACC deaminase can 
be observed during their symbiosis with the plant host, 
as shown in the case of M. huakuii bv. loti MAFF303099 
(Uchiumi et al. 2004; Nukui et al. 2006). In this study, we 
identified acdS genes in the analysed A. cicer and A. gly-
cyphyllos microsymbionts. The presence of a single copy 
of the acdS gene in the astragali strains was confirmed 
by Southern hybridization with the acdS gene of M. loti 
MAFF303099 as a hybridization probe. As in the case of 
the mesorhizobia studied by Nascimento et  al. (2012a, 
b), no ACC deaminase activity was detected in the free-
living A. cicer and A. glycyphyllos microsymbionts. It is 
also worth noting that the rhizobia display a low level of 
ACC deaminase activity in comparison with free-living and 
endophytic plant growth-promoting bacteria (Glick 2014). 
The induction of ACC deaminase activity in bacteria is a 
complex and relatively slow process. It was demonstrated 
that expression of this enzyme depends on the presence of 
ACC but some other amino acids such as l-alanine, DL-
alanine, and d-serine are also capable to induce this pro-
cess. It was also found that abiotic and biotic stress can also 
induce ACC deaminase activity (Glick 2014; Singh et  al. 
2015). This indicates that different factors may induce and 
affect the ACC deaminase activity.

The presence of the acdS genes in the genomes of A. 
cicer and A. glycyphyllos microsymbionts as well as the 
capability of these bacteria of P-solubilization, utiliza-
tion of 1-aminocyclopropane-1-carboxylic acid (ACC) as 
a sole N source, and production of phytohormone IAA 
indicate that the analysed studied rhizobia can be treated 
as plant growth-promoting rhizobia. Further studies are 
needed to prove this assumption, especially these con-
cerning the impact of these bacteria on plant growth and 
expression of astragali acdS genes during their symbiosis 
with fabaceans.
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