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Eicosanoid production by Candida parapsilosis and other pathogenic yeasts
Tanmoy Chakrabortya, Renáta Tótha, and Attila Gácser a,b

aInterdisciplinary Excellence Centre, Department of Microbiology, University of Szeged, Szeged, Hungary; bMTA-SZTE “Lendület”
“Mycobiome” Research Group, University of Szeged, Szeged, Hungary

ABSTRACT
Eicosanoids are bioactive lipid mediators generated in almost all mammalian cells from the
oxidation of arachidonic acid and other related twenty-carbon polyunsaturated fatty acids
(PUFA). Eicosanoids regulate various physiological functions, including cellular homoeostasis
and modulation of inflammatory responses in mammals. The mode of action of these lipid
mediators depend on their binding to different G-protein coupled receptors. The three main
enzymatic pathways associated with their production are the COX pathway, LOX pathway and
cytochrome P450 pathway. Interestingly, investigations have also revealed that several human
pathogenic fungi are capable of producing these bioactive lipid mediators; however, the exact
biosynthetic pathways and their function in pathogenicity are not yet extensively characterized.
The aim of the current review is to summarize the recent discoveries pertaining to eicosanoid
production by human pathogenic yeasts with a special focus on the opportunistic human fungal
pathogen Candida parapsilosis.
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Introduction

Oxylipins are oxidized lipid molecules generated from
the oxidation of polyunsaturated fatty acids [1].
Eicosanoids are oxylipin molecules and the main pre-
cursor for their production is the twenty-carbon chain
fatty acid molecule, arachidonic acid. Prostaglandins,
thromboxanes, prostacyclins, leukotrienes, lipoxins,
hepoxilins, hydroxy fatty acids, hydroxylated fatty acids
and epoxy derivatives all belong to the eicosanoid family
[2]. They are synthesized through enzymatic as well as
non-enzymatic pathways (non-enzymatic free-radical-
induced peroxidation of PUFAs) [3–5]. The majority of
our knowledge available regarding eicosanoid biology
derives from research performed on mammalian cells.
Eicosanoids regulate various functions, mainly during
inflammation and protective immune responses, and
they also act as messengers in the central nervous sys-
tem. Remarkably, they function as both pro-, as well as
anti-inflammatory or pro-resolving mediators during
immune responses against infections [3]. Although
bioactive eicosanoid production by yeasts has been
acknowledged since the early 1990’s [6], detailed descrip-
tions of their biosynthetic pathways and function is still
unavailable. Based upon the currently available studies,
in this review, we provide an up-to-date and brief sum-
mary of eicosanoid production in pathogenic yeasts as
well as their role in pathogenesis development, with

a special focus on an emerging fungal pathogenic spe-
cies, Candida parapsilosis.

Eicosanoid production by human pathogenic yeasts

In human pathogenic yeasts, the presence of fungal eico-
sanoids was first reported in the opportunistic fungal
pathogen Candida albicans. In 2001, Deva et al. reported
the production of 3,18-dihydroxy-5,8,11,14-
eicosatetraenoic acid (3,18 di-HETE) by C. albicans
from exogenous arachidonic acid, as determined by GC/
MS analysis [7]. In the same year, Noverr et al. showed
that both C. albicans and Cryptococcus neoformans were
able to generate immunomodulatory prostaglandin from
exogenous arachidonic acid [8,9]. The authors referred to
this molecule as PGEx due to its cross-reactivity with the
“E” class of prostaglandin in ELISA, although mass spec-
troscopic analysis later revealed that the identified pros-
taglandin was PGE2 [10]. Besides HETE and PGE2, these
species are also able to produce PGD2 and PGF2α as well
as leukotrienes (LTB4, cysteinyl leukotrienes) from exo-
genous arachidonic acid [11]. Subsequently, C. albicans
was also shown to produce the pro-resolving lipid med-
iator Resolvin E1 (RvE1), that is chemically identical to
those produced by human cells and its biosynthetic pre-
cursors, 18-hydroxyeicosapentaenoic acid (HEPE), 15-
HEPE and 5-HEPE [12]. In recent years, investigations
have shown that non-albicans Candida species are also

CONTACT Attila Gácser gacsera@gmail.com; gacsera@bio.u-szeged.hu

VIRULENCE
2019, VOL. 10, NO. 1, 970–975
https://doi.org/10.1080/21505594.2018.1559674

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0003-2939-9580
http://crossmark.crossref.org/dialog/?doi=10.1080/21505594.2018.1559674&domain=pdf


capable of producing immunomodulatory prostaglan-
dins. These species include C. dubliniensis, C. tropicalis
and C. glabrata [13,14]. Interestingly, C. albicans plank-
tonic cells and biofilms are able to produce PGE2 from
exogenous arachidonic acid [15–17] and the production
of 15-HETE by C. albicans biofilm has also been reported
[18]. It has also been reported that both the high and low
virulent strains of the human pathogenic dimorphic fun-
gus Paracoccidioides brasiliensis produce PGE2 and leu-
kotriene B4 from the same substrate [19–21]. Pathogenic
dimorphic fungi with an infectious yeast phase such as
Histoplasma capsulatum, Blastomyces dermatitidis and
Sporothrix schenckii can also produce a range of eicosa-
noids namely PGE2, PGD2, PGF2α and leukotrienes from
exogenous arachidonic acid [11]. Our current knowledge
on eicosanoid production by pathogenic yeasts is sum-
marized in Table 1. and Figure 1.

Fungal eicosanoids in pathogenesis and immune
regulation

Eicosanoid signaling regulates the mammalian immune
system similarly to cytokine signaling [3]. They func-
tion during both the generation and the resolution of
inflammatory reactions, and also participate in cellular
homoeostasis [3] . Fungal infections can also induce the
production of eicosanoids in different host cells, which

contributes to the generation of an antifungal immune
response [22–29]. Fungal eicosanoids modulate host
immune responses as well as pathogenesis [30,31]. For
example, the PGE2 produced by C. albicans induces
yeast to hyphal transition, which is an important viru-
lence trait of pathogenic fungi [32,33]. However, it has
been shown previously that the null mutant strain of
FET3 did not alter pathogenicity compared with the
wild-type strain in the mouse model of systemic candi-
diasis [34]. In contrast, C. neoformans deletion mutants
of phospholipase B (PLB) or laccase (LAC) enzymes are
less virulent in mice compared to the wild type strain,
indicating the role of these genes in pathogenesis
[33,35], albeit their functions impact more than eicosa-
noid biology. Fungal prostaglandins produced by these
two species have also been confirmed to have immu-
nomodulatory functions as they alter host cytokine
responses by down-regulating chemokine (IL-8) and
pro-inflammatory cytokine (e.g. TNFα) production,
while up-regulating anti-inflammatory responses by
promoting IL-10 release [8]. In the presence of
human keratinocytes, C. albicans, C. tropicalis as well
as C. glabrata produced 10-fold more PGE2 [14]. Taken
together, these observations indicate the importance of
fungal eicosanoids in host-pathogen interactions during
fungal infection.

Eicosanoid biosynthesis genes identified in human
pathogenic yeasts

The three main enzymatic pathways involved in eico-
sanoid production in mammals include cyclooxy-
genases (COX), lipoxygenases (LOX) and cytochrome
P450 enzymes [4]. In silico analysis of the recently
available whole genome sequences of pathogenic fungi
did not identify homologues of the corresponding
mammalian genes. This indicated the presence of
novel fungal eicosanoid biosynthetic pathways that
may differ from the previously described mechanisms
in mammals [36]. The use of different enzyme inhibi-
tors against COX, such as acetylsalicylic acid (ASA) and
other non-steroidal anti-inflammatory drugs (NSAIDs),
as well as LOX inhibitors was inconclusive [8,12,22,23]
as the addition of these inhibitors reduced eicosanoid
production as well as concomitantly reducing the via-
bility of the fungi.

After the discovery of prostaglandin molecules in
C. albicans, two non-COX/LOX-related enzymes were
reported to be involved in PGE2 production in this species:
a fatty acid desaturase, Ole2p, and a multicopper oxidase,
Fet3p [10]. The homozygous deletion mutant strains of the
corresponding genes showed a significant reduction in
PGE2 levels. The fact that PGE2 production was still

Table 1. Eicosanoids produced by human pathogenic yeasts
and genes identified for PGE2 production in C. albicans,
C. parapsilosis and C. neoformans.

Species Eicosanoid
Genes identified for
PGE2 production References

C. albicans 3,18
di-HETE; 15-
HETE; cysteinyl
leukotrienes;
LTB4; PGD2;
PGE2; PGF2α;
Resolvin1.

FET3, OLE2 7,9,10,11,17

C. dubliniensis 3,18 di-HETE,
PGE2.

15

C. glabrata PGE2 13
C. tropicalis PGE2 13
C. parapsilosis PGE2, PGD2, 15-

k-PGE2
CPAR2_603600,
CPAR2_800020,
CPAR2_807710

44,45

C. neoformans Cysteinyl
leukotrienes;
LTB4; PGD2;
PGE2; PGF2α

LAC1, PLB2 8,10,24,25

P. brasiliensis PGEx, LTB4 18, 19, 20
B. dermatitidis PGE2, PGD2,

PGF2α,
CysLT,LTB4

10

H. capsulatum PGE2, PGD2,
PGF2α, CysLT,
LTB4

10

S. schenckii PGE2, PGD2,
PGF2α, CysLT,
LTB4

10
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detectable in both ole2Δ/Δ and fet3Δ/Δ strains, indicated the
presence of additional enzymes that could also be involved
in the biosynthesis of this eicosanoid. Using a specific inhi-
bitor 6-(2-propargyloxyphenyl)hexanoic acid (PPOH)
against cytochrome P450, the involvement of these
enzymes was confirmed in PGE2 production in both
C. albicans and C. dubliniensis biofilms [16]. The biosynth-
esis of RvE1 in C. albicans is also sensitive to lipoxygenase
and cytochrome P450 monooxygenase inhibitors [12]. In
C. neoformans, the LAC1 laccase, another multicopper
oxidase, was further identified as a regulator of PGE2 pro-
duction, as the lac1Δ/Δ deletion mutant strain showed
a reduction in PGE2 production. Additionally, the recom-
binant cryptococcal laccase enzyme is efficient in convert-
ing PGG2 to PGE2 but did not generate any new
prostaglandins when incubated with only arachidonic
acid or PGH2 [24]. The deletion of the C. neoformans

phospholipase (PLB1) gene also resulted in a reduction in
PGE2 production [25].

The inclusion of COX like enzymes in PGE2 biosynth-
esis has been implicated in P. brasiliensis, although the
corresponding biosynthetic pathway is yet unexplored
[19,20]. The significant reduction of LTB4 production by
both selective or non-selective LOX inhibitors (MK886 or
nordihydroguaiaretic acid) in P. brasiliensis indicated that
the fungus produces LTB4 by using the LOX pathway or
with a biochemically similar enzyme [21].

Eicosanoid production by Candida parapsilosis

Candida species remain the most prevalent cause of
invasive fungal infections, exceeding invasive aspergil-
losis and mucormycosis [37,38] and other infections by
pathogenic fungi. Although, C. albicans is still the most

Figure 1. Schematic representation of eicosanoid biosynthesis, their production by fungi and the corresponding genes involved in
their production.
Eicosanoid production from the precursor arachidonic acid or eicosapentaenoic acid. Besides mammals, cysteinyl leukotrienes, 3,18-diHETE,
15-HETE, PGD2, PGF2a, PGE2, 15-keto-PGE2 and resolvin-E1 are also produced by different pathogenic fungi. Although the exact biosynthetic
pathways remain unknown, several fungal genes have been proposed to regulate their synthesis. These include FET3 and OLE2 in
C. albicans, FET3 (CPAR2_603600), CPAR2_800020 and CPAR2_807710 in C. parapsilosis, and LAC1 and PLB1 in C. neoformans.
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common cause of invasive candidiasis, bloodstream
infections caused by non-albicans Candida species
such as C. glabrata, C. krusei, C. auris, C. parapsilosis,
and C. tropicalis, altogether have risen to account for
approximately one-half of all candidemia cases [39].
C. parapsilosis is a commensal of the skin and it is
also frequently isolated from the gastrointestinal tract
[40]. This species is one of the major causes of invasive
fungal infections in premature infants [41]. The inci-
dence of C. parapsilosis is increasing in this particular
patient group and it outnumbers C. albicans infections
in some geographic regions [42]. C. parapsilosis is
known for its ability to form biofilms on catheters
and other implanted devices [43,44]. Different risk fac-
tors that are associated with C. parapsilosis driven neo-
natal candidiasis include low birth weight (<1500 g),
prematurity, prior colonization, the use of parenteral
nutrition, intravascular catheters and prolonged treat-
ment with antibiotics or steroids [45].

C. parapsilosis is capable of producing a variety of eico-
sanoids. The prostaglandin profile of C. parapsilosis is quite
similar to that of C. albicans, with PGE2 and PGD2 being
predominantly produced in the presence of arachidonic
acid as a sole carbon source. Interestingly, unlike in case
of C. albicans, the fatty acid desaturase homologous gene
OLE2 does not play a role in their synthesis [46]. Recently,
CPAR2_603600 (homologous of CaFET3), CPAR2_807710
(homologue of the acyl-coenzyme A oxidase, ScPOX1-3)
and CPAR2_800020 (homologue of 3-ketoacyl-CoA thio-
lase, ScPOT1) have been demonstrated to be involved in the
generation of fungal eicosanoids inC. parapsilosis [47]. LC/
MS analysis showed that the disruption of each gene led to
a decrease in the production of PGE2, PGD2 and 15-keto-
PGE2. The deletion mutant strains of CPAR2_603600,
CPAR2_800020 and CPAR2_807710 produced less prosta-
glandin D2 (PGD2) and also had a significant decrease in
PGE2 production.However, only the deletionmutant strain
of CPAR2_807710 has a reduction in 15-keto-
prostaglandin E2 (15-keto-PGE2) production. This study
also reported the presence of fungal 5-D2-isoprostane in
C. parapsilosis by LC/MS analysis. The eicosanoid mutant
strains were also shown to induce more pro-inflammatory
cytokines by human peripheral blood derivedmacrophages
and they were less virulent in a mouse model of systemic
candidiasis compared to the wild type strain [47], which
indicates the importance of these fungal derived eicosa-
noids in C. parapsilosis virulence and pathogenicity
mechanisms.

Future perspectives

The significance of fungal eicosanoid lipid mediators in
pathogenesis is increasingly validated through interesting

published and ongoing research, although their biosyn-
thetic pathways and exact function in pathobiology is not
yet fully explored. Furthermore, it is also unclear whether
these pathogenic yeasts contain specific receptors for their
recognition, such as G-protein coupled receptors
(GPCRs) in mammalian cells. These immunomodulatory
lipid molecules are produced by not only pathogenic
yeasts, but also filamentous fungi such as Aspergillus
nidulans and A. fumigatus [48]. Interestingly, eukaryotic
parasites, such as Plasmodium falciparum [49] and
Trypanosoma brucei [50], have also recently been shown
to produce prostaglandin like compounds. It is possible
that eicosanoids secreted by eukaryotic pathogenic organ-
isms can vary in function, and influence microbial growth
and maturation, or effect host interactions, by modulating
immune responses. Although it remains to be fully eluci-
dated whether microbial eicosanoids are also virulence
factors and why the pathogenic fungi belong to
a different family evolved with mechanisms for producing
these eicosanoid molecules that are structurally similar to
the bioactive lipid mediators generated by human hosts.
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