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Placenta is the crucial organ for embryo and fetus development and plays a critical role in the development of fetal growth restriction
(FGR).There are increasing evidences on the role of microRNAs (miRNAs) in a variety of pregnancy-related complications such as
preeclampsia and FGR.More than 1880 miRNAs have been reported in humans andmost of them are expressed in placenta. In this
paper, we aimed to review the current evidence about the topic. According to retrieved data, controversial results about placental
expression of miRNAs could be due (at least in part) to the different experimental methods used by different groups. Despite the
fact that several authors have demonstrated a relatively easy and feasible detection of some miRNAs in maternal whole peripheral
blood, costs of these tests should be reduced in order to increase cohorts and have stronger evidence. In this regard, we take the
opportunity to solicit future studies on large cohort and adequate statistical power, in order to identify a panel of biomarkers on
maternal peripheral blood for early diagnosis of FGR.

1. Introduction

Fetal growth restriction (FGR) refers to a condition in which
there is the stop or the decrease of the genetic determined
potential growth of a fetus during pregnancy. FGR is due
to different causes, including maternal smoking, undernu-
trition, infection, and congenital abnormalities; conversely,
if it is not possible to individuate a clear cause, it is defined
as idiopathic. FGR is often associated with preeclampsia [1]
and represents the most common pregnancy complication,
accounting for about a third of all preterm births. Usually
FGR is diagnosed when, through ultrasound, fetal weight is
estimated to be less than the 10th percentile for gestational
age using a validated fetal growth scale [2]. The most

studied cause of FGR in animal models is maternal calorie
restriction during gestation, but while much is known about
the consequences of this deprivation, molecular mechanisms
that underlie these conditions still remain unclear.

Placenta is the crucial organ for embryo and fetus
development and plays a critical role in the development of
FGR. In this regard, FGR could be considered as a placen-
tation disorder, derived from a dysregulation in trophoblast
invasion with characteristic tissue morphology that leads
to uteroplacental insufficiency. This condition would greatly
benefit from the availability of early diagnostic tests to give an
opportunity for early intervention or prevention, to improve
maternal-fetal outcomes, and to substantially contain the
public health costs.
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There are increasing evidences on the role of microRNAs
(miRNAs) in a variety of pregnancy-related complications
such as preeclampsia and fetal growth restriction. More than
1880 miRNAs have been reported in humans and most of
them are expressed in placenta. This kind of nucleic acid
belongs to the family of small noncoding RNAs of on average
22 nucleotides in length, which regulates gene expression
at the posttranscriptional level, inhibiting translation or
promoting specific mRNAs degradation through interaction
with the 3 untranslated region [3, 4]. In detail, miRNAs
seem to modulate cell development, differentiation, and
proliferation, cell type-specific function, and are involved
in the pathogenesis of many human diseases [5]. In several
cases, miRNA expression is tissue-specific and, in addition,
is significantly different between physiology and pathological
conditions: for these reasons, investigations about miRNAs
gained increasing attention for the possibility of future
application in clinical diagnostics [6, 7].

Starting from these considerations, we aimed to review
the current literature focusing on the role of miRNAs in FGR.

2. Materials and Methods

We performed a selective literature search of articles in
English language, published from 2002 to 2017 and indexed
in PubMed. We searched the following Medical Subject
Headings (MeSH): “MicroRNAs” AND “Fetal Growth Retar-
dation”. The initial database screening was performed by
three authors (Laganà AS, Vaiarelli A, La Rosa VL), who were
blinded to the aim of the study. Subsequently, other three
authors (Chiofalo B, Rossetti D, Vitale SG) selected relevant
information from the screened literature. We considered
eligible all original manuscripts (randomized, observational,
and retrospective studies), case series, and case reports. Fur-
thermore, we extracted relevant information from selected
reviews.

3. Results

3.1. PlacentalMicroRNAs. Several studies focused their atten-
tion on the expression of differentmiRNAs in placentas using
real-time-PCR. Cindrova-Davies et al. [8] analyzed miRNA-
21 expression from placentas of a small cohort (𝑛 = 6) of
early-onset FGR cases and found its significant upregulation.
Guo et al. [9] identified a significant downregulation of
miRNA-194 in placentas from 26 FGR cases and from 16
preeclamptic women (16), compared to those from 29 normal
pregnancies (29). Hromadnikova et al. [10] for the first time
explored, in two different experiments, the placental expres-
sion profile of miRNAs known to be involved in cardiovas-
cular and cerebrovascular diseases. They found that upregu-
lation of miR-499a-5p is a common feature of all placental
insufficiencies such as preeclampsia (𝑛 = 80), gestational
hypertension (𝑛 = 35), and FGR (𝑛 = 35); in addition, they
demonstrated an upregulation of miR-1-3p in FGR pregnan-
cies with abnormal umbilical fetal flows (𝑛 = 19); finally,
they found downregulation of a series of miRNAs (miR-
16-5p, miR-26a-5p, miR-100-5p, miR-103a-3p, miR-122-5p,

miR-125b-5p,miR-126-3p,miR-143-3p,miR-145-5p,miR-195-
5p, miR-199a-5p, miR-221-3p, miR-342-3p, and miR-574-3p)
in FGR requiring the delivery before 34 weeks of gesta-
tion.

Other authors studied miRNA-424 and its target gene
(mitogen-activated protein kinase) that play a role in en-
dothelial cell proliferation through fibroblast growth factor
receptor 1 and regulate vascular endothelial growth factor
[11]. According to their data analysis, the levels of this
miRNA are increased in placentas from 25 FGR pregnancies
compared with 25 placentas from uncomplicated pregnan-
cies, suggesting that miRNA-424 is involved in placental
disorders. Another study by Su et al. [12] searched, in a
cohort of placentas, the miRNAs that regulate endocrine
gland derived vascular endothelial growth factor (EG-VEGF)
expression: they concluded that miR-346 and miR-582-3p
regulate EG-VEGF-induced trophoblast invasion through
repressing metalloproteinases 2 and 9. In addition, FGR
placental tissues show an aberrant high expression level of
miR-141, suggesting that this miRNA might play important
roles in the pathogenesis of the disease by suppressing E2F
transcription factor 3 and pleomorphic adenoma gene 1
[13].

To date, many studies focused their attention on chromo-
some 19 miRNA cluster (C19MC) [14–16]. In detail, C19MC
comprises 46 miRNAs and is the largest gene cluster of
miRNAs in humans, exclusively expressed in undifferentiated
cells and in placenta. In this regard, comparing 14 placentas
from FGR pregnancies with 14 from normal pregnancies, it
was recently found that hypoxic stress does not affect C19MC
miRNA expression, except for downregulation of miR-500c-
3p [14]. Similarly, Hromadnikova et al. [17] detected a down-
regulation of 6 miRNAs (miR-517-5p, miR-518f-5p, miR-
519a, miR-519d, miR-520a-5p, and miR-525) in placental
tissues of 36 FGR pregnancies: compared to the previous
studies, these results seem more robust since that authors
investigated more types of miRNAs and used those that
were previously demonstrated to be exclusively expressed
or highly expressed in placental tissues. The significantly
decreased expression of miR-519d, but not of miR-520a-5p
andmiR-525, was also confirmed by others on a larger cohort
(50 healthy pregnancies compared with 45 FGR cases) [15].
Nevertheless, other experiments found that the expression of
miR-518b was decreased, whereas miR-519a was significantly
increased, in 30 FGR placentas [16]. Some of these miRNAs
studied in human placentae were also studied in animal
models.

3.2. Circulating miRNAs. During pregnancy, due to a normal
extravillous trophoblast invasion, nucleic acids of the placen-
tal compartment are released into the maternal circulation:
this release occurs through the migration of microvesicles
from apoptotic/necrotic cells and active cellular commu-
nication system, involving also nanovesicles/exosomes and
subcellular fragments [18, 19]. Due to placental continu-
ous remodeling, these extracellular nucleic acids may be
detected in maternal blood during the course of gestation
and can be measured to monitor placental function and
allow early diagnosis of pregnancy complications [20–23].
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For these motivations in recent years there has been a
trend to develop noninvasive methods for the detection
in maternal circulation of cell-free nucleic acids, includ-
ing miRNAs coming from the embryo-placental compart-
ment [24–43]. Some studies detected FGR-specific miRNA
expression changes in placentas, but these differences were
not detectable in plasma [15–44]. A significant elevation
of several extracellular placenta-specific miRNA levels was
recently showed (miR-516-5p, miR-517, miR-518b, miR-520a,
miR-520h, miR-525, and miR-526a,) during early gestation
in 7 pregnancies with later onset of preeclampsia and/or
FGR [44]. According to these data, an early screening (i.e.,
within the 12th to 16th weeks) of miRNA circulating levels
may differentiate between women with normally progressing
pregnancies and those who could later develop placen-
tal insufficiency–related complications [44]. Nevertheless,
recent data showed that C19MC microRNAs might play a
role in the pathogenesis of preeclampsia, but not of FGR
[45]. Last year, Hromadnikova’s group investigated maternal
blood levels of specific miRNAs involved in cardiovascular
and cerebrovascular diseases, finding a downregulation of
miR-100-5p, miR-125b-5p, and miR-199a-5p in 39 patients
with gestational hypertension, in 68 with preeclampsia,
and in 33 with fetal growth restriction compared with
55 healthy controls; in addition, they showed downregu-
lation of miR-17-5p, miR-146a-5p, miR-221-3p, and miR-
574-3p only in FGR pregnancies [46]. In a small-scale
analysis, others found that a group of miRNAs that are
altered by hypoxia in trophoblasts (miR-27a, miR-30d, miR-
141, miR-200c, miR-424, miR-205 and miR-451, miR-491,
miR-517a, miR-518b, miR-518e, and miR-524) is elevated in
FGR pregnancies (𝑛 = 14 FGR versus 𝑛 = 14 controls)
[47].

Some of these miRNAs, such as miR-141, miR-200c, and
miR-205, were studied also in animal models [48, 49]. In
particular, it was found that they play important roles in
the maintenance of the integrity of the folded trophoblast-
endometrial epithelial bilayer in porcine placentas [48].

4. Discussion

Based on the abovementioned data, miRNAs seem to be
involved in placental development and consequently in
placenta related disorders. As showed in Table 1, contro-
versial results among these studies in placental expression
of miRNAs could be due, at least in part, to the different
experimental methods used by different groups. Despite
the fact that several authors have demonstrated a relatively
easy and feasible detection of some miRNAs in maternal
whole peripheral blood [44–47], costs of these tests should
be reduced in order to increase cohorts and have stronger
evidence.

In this regard, we acknowledge that it may be extremely
important to address future research directions taking into
account the already available data from in vitro experi-
ments and animal models: indeed, accumulating evidence
suggests that miR141-3p and miR-200a-3p play a pivotal
role for placental development in mouse and regulate

the expression of insulin-like growth factor 2 [50]. Inter-
estingly, upregulation of miR-125b was found to reduce
significantly ethanol-induced caspase-3 activation and to
diminish ethanol-induced growth retardation in mouse
embryos [51], suggesting a possible protective role that is
worthy of further investigation. Conversely, miR-24 and
miR-103-2, which are related to adipocyte development,
were both increased in low birth weight male guinea pig
pups [52]. Probably this last element could be further con-
firmed in future studies, since several sex-specific effects
were already found to be more pronounced in males with
respect to females [53]. Last but not least, recent data
showed that FGR is associated with increased lung miR-126-
3p levels, which is known to modulate the expression of
angiogenic factor, in rats [54]. The importance of angiogenic
regulatory pathways was also highlighted by the abnor-
mal upregulated expression of miR-127, miR-21, and miR-
16 in placentas of deceased cloned sheep with respect to
controls [55]. These data are extremely fascinating, since
miR-21 expression was associated with increased vascular
resistance also in growth-restricted human pregnancies [8,
56].

As suggested by accumulating evidence, miRNAs play
also a pivotal role in epigenetic processes [57, 58]. Epige-
netic mechanisms include DNA methylation, imprinting,
and RNA transcriptional regulation through RNAmolecules,
such as miRNAs. These processes are influenced by multi-
ple factors: intrauterine nutrient availability (determined by
maternal nutrition and placental function) [59–62], maternal
age [63, 64], use of drugs [65, 66], endocrine disruptors
[67], toxins, and infectious agents. For this reason, integrated
assessment of early pregnancy should evaluate a combina-
tion of biomarkers and ultrasound [68–73]. In addition,
we take the opportunity to stress how future investigations
about miRNA levels in both sera and placentas should
evaluate the possible overlapping among preeclampsia, FGR,
and gestational diabetes, since they all have in common
placental vascular alterations due to angiogenic disbalance
[74].

It is however clear that epigenetic information is trans-
mitted, and potentially inherited, across generations through
the remodeling of chromatin states. In this regard, selective
miRNA expression may be involved in FGR through epige-
netic mechanism.

5. Conclusion

Understanding which miRNAs are associated with the onset/
progression of FGR seems mandatory to improve early
diagnosis and management of the disease. In this regard, we
take the opportunity to solicit future studies on large cohort
and adequate statistical power, in order to identify a panel of
biomarkers on maternal peripheral blood for early diagnosis
of FGR.
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“Intergenerational epigenetic inheritance in models of devel-
opmental programming of adult disease,” Seminars in Cell and
Developmental Biology, vol. 43, pp. 85–95, 2015.

[58] S. Tabano, P. Colapietro, I. Cetin et al., “Epigenetic modulation
of the IGF2/H19 imprinted domain in human embryonic and
extra-embryonic compartments and its possible role in fetal
growth restriction,” Epigenetics, vol. 5, no. 4, pp. 313–324, 2010.
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