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Abstract

High-mobility group box 1 (HMGB1) was initially discovered as a nuclear protein that interacts with DNA as a
chromatin-associated non-histone protein to stabilize nucleosomes and to regulate the transcription of many genes in
the nucleus. Once leaked or actively secreted into the extracellular environment, HMGB1 activates inflammatory
pathways by stimulating multiple receptors, including Toll-like receptor (TLR) 2, TLR4, and receptor for advanced
glycation end products (RAGE), leading to tissue injury. Although HMGB1'’s ability to induce inflammation has been
well documented, no studies have examined the role of HMGB1 in wound healing in the gastrointestinal field. The
aim of this study was to evaluate the role of HMGB1 and its receptors in the healing of gastric ulcers. We also
investigated which receptor among TLR2, TLR4, or RAGE mediates HMGB1'’s effects on ulcer healing. Gastric ulcers
were induced by serosal application of acetic acid in mice, and gastric tissues were processed for further evaluation.
The induction of ulcer increased the immunohistochemical staining of cytoplasmic HMGB1 and elevated serum
HMGB1 levels. Ulcer size, myeloperoxidase (MPO) activity, and the expression of tumor necrosis factor a (TNFa)
mRNA peaked on day 4. Intraperitoneal administration of HMGB1 delayed ulcer healing and elevated MPO activity
and TNFa expression. In contrast, administration of anti-HMGB1 antibody promoted ulcer healing and reduced MPO
activity and TNFa expression. TLR4 and RAGE deficiency enhanced ulcer healing and reduced the level of TNFa,
whereas ulcer healing in TLR2 knockout (KO) mice was similar to that in wild-type mice. In TLR4 KO and RAGE KO
mice, exogenous HMGB1 did not affect ulcer healing and TNFa expression. Thus, we showed that HMGB1 is a
complicating factor in the gastric ulcer healing process, which acts through TLR4 and RAGE to induce excessive
inflammatory responses.
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Introduction

High-mobility group box protein 1 (HMGB1), a member of the
high-mobility group protein superfamily, is a nuclear protein [1].
HMGB1 interacts with  DNA as a chromatin-associated
nonhistone protein to stabilize nucleosomes and to regulate the
transcription of many genes in the nucleus [2]. When leaked
from a cell during necrotic cell death [3] or actively secreted
into the extracellular environment by monocytes and
macrophages [3,4], HMGB1 acts as an alarmin with potent
proinflammatory properties [5].
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The best studied HMGB1 receptors are Toll-like receptor
(TLR) 2 [6,7], TLR 4 [6-9], and receptor for advanced glycation
end products (RAGE) [6,8]. TLR2 and TLR4 are members of
the TLR family, and they play a crucial role in innate immune
responses to pathogen-associated molecular patterns and
damage-associated molecular pattern molecules [10]. TLR2
primarily recognizes components of the gram-positive bacterial
cell wall, and TLR4 primarily recognizes lipopolysaccharide,
which is the major cell wall component of gram-negative
bacteria. Triggering TLR2 and TLR4 signaling pathways leads
to the activation of nuclear factor kB (NF-kB), through the
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accessory protein MyD88, and the subsequent regulation of
immune and inflammatory genes, including inflammatory
cytokines such as tumor necrosis factor a (TNFa), with the
activation of mitogen-activated protein kinases [11-13].
Receptor for advanced glycation end products (RAGE) is a
multi-ligand receptor that belongs to the immunoglobulin
superfamily [14]. Other known RAGE ligands include amyloid
[15] and S100 [16]. Multiple experiments have suggested that
the ligand-RAGE interaction also activates NF-kB and mitogen-
activated protein kinases [17-20].

Many pathological conditions are related to the
proinflammatory properties of HMGB1. Previous reports
demonstrated that HMGB1 plays a critical role in endotoxemia
[21], acute pancreatitis [22], acute respiratory distress
syndrome [23], some autoimmune diseases [24], cerebral
ischemia injury [25], and ischemia-reperfusion (I-R) injuries of
the liver [26], heart [27], and kidney [28]. With regard to the
gastrointestinal tract, HMGB1 is a complicating factor in
experimental colitis [29,30], and non-steroidal anti-inflammatory
drug induced small intestinal injury [31].

At present, the role of HMGB1 in wound healing is unclear,
although its ability to induce inflammation has been well
documented, as described above. In the gastrointestinal field,
no study has examined the role of HMGB1 in wound healing.
The aim of this study was to investigate the role of HMGB1 in
gastric ulcer healing. We investigated the role of HMGB1 in the
healing process by using an established experimental chronic
gastric ulcer model created in rodent by topical application of
acetic acid from the gastric serosal side. The model closely
mimics human peptic gastric ulcer in histology and morphology
[32]. We also investigated whether HMGB1 affects ulcer
healing through TLR2, TLR4, or RAGE.

Materials and Methods

Animals

TLR2- and TLR4-knockout (KO) mice, which were originally
generated by Dr. S. Akira (Osaka University, Osaka, Japan)
and backcrossed 8 times onto a C57BL/6 background, were
obtained from Oriental Bioservice, Inc. (Kyoto, Japan). RAGE-
KO mice, which had been backcrossed onto a C57BL/6
background, were originally generated by and a gift from Dr. Y.
Yamamoto (Kanazawa Medical University, Kanazawa, Japan).
Wild-type C57BL/6 mice were purchased from Charles River
Japan, Inc. (Atsugi, Japan) as the control strain for TLR2 KO,
TLR4 KO, and RAGE KO mice. Specific pathogen-free 12-
week-old male animals were used. All animals were housed in
polycarbonate cages with paper chip bedding. The cages were
located in an air-conditioned biohazard room with a 12-h light-
dark cycle. All experimental procedures were approved by the
Animal Care Committee of the Osaka City University Graduate
School of Medicine (Permit Number: 11006). All surgeries were
performed under isoflurane, and all efforts were made to
minimize suffering.

Experimental Induction of Ulcer

Gastric ulcer was induced by a method described in detail
elsewhere [33], with minor modifications. Briefly, under ether
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anesthesia, the abdomens of the animals were incised and the
stomach was exposed. A polypropylene tube (4 mm in
diameter) was placed against the serosal side of the stomach.
An 80-pL aliquot of 60% acetic acid was added to the tube,
which was kept in contact with the serosal surface for 30 s.
After immediate removal of acetic acid from the tube by
aspiration, the stomach was returned to its original position,
and the abdomen was closed. Previous reports demonstrated
that the size of the gastric ulcer reached a maximum on day 3
or 4 after ulcer induction, and thereafter, it gradually decreased
[32,34]. The healing phase of the experimental gastric ulcer
starts on day 4 after ulcer induction.

Experimental Groups

To investigate the effect of exogenous HMGB1, mice
received intraperitoneal injections of human recombinant
HMGB1 (rHMGB1; 100-1000 ug/kg; Sigma-Aldrich Co., St.
Louis, MO) or vehicle (phosphate-buffered saline) twice daily,
beginning at 4 days after ulcer induction (from day 4 to day 9).

Next, the effect of immunoneutralization of HMGB1 on
gastric ulcer healing was assessed. Mice were intraperitoneally
administered neutralizing chicken anti-HMGB1 polyclonal
antibody (5 mg/kg; Shino-Test Corporation, Tokyo, Japan) or
normal chicken IgY (5 mg/kg; Sigma-Aldrich Co.) beginning at
4 days after ulcer induction (from day 4 to day 9). Moreover, to
confirm the effect of release of an inhibitor of HMGB1, ethyl
pyruvate or vehicle were injected twice daily, beginning on day
4 after ulcer induction.

Furthermore, to determine the receptor responsible for
HMGB1-related gastric ulcer healing, gastric ulcers were
induced in TLR2 KO, TLR4 KO, and RAGE KO mice with or
without intraperitoneal injection of 1000 ug/kg of rHMGB1 twice
daily beginning on day 4 after ulcer induction.

The stomach was removed and the ulcer size was measured
on day 6 or 9 after ulcer induction. Ulcer size was expressed as
an ulcer index, the product of the maximum length and
minimum length (i.e. maximum length was multiplied by
minimum length). Studies were carried out using 4-8 samples.
The samples of gastric tissue were processed for further
evaluation.

mRNA Expression of Inflammatory Mediators in Gastric
Tissue Determined by Real-time Quantitative Reverse
Transcription-Polymerase Chain Reaction (RT-PCR)
Real-time quantitative RT-PCR was performed as previously
described [35]. In brief, total RNA was isolated from intestinal
tissue by using an ISOGEN kit (Nippon Gene Co., Ltd., Tokyo,
Japan) according to the manufacturer's protocol.
Complementary DNA was acquired using a High Capacity
RNA-to-cDNA Kit (Life Technologies Corporation, Carlsbad,
CA) according to the manufacturer's protocol. Real-time
quantitative RT-PCR analyses were performed using an
Applied Biosystems 7500 Fast Real-Time PCR system and
software (Life Technologies Corporation). The reaction mixture
was prepared according to the manufacturer’'s protocol by
using the TagMan Fast Universal PCR master mixture (Life
Technologies Corporation). Thermal cycling conditions were as
follows: 45 cycles of amplification at 95°C for 15 s and 60°C for
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1 min. Total RNA was subjected to real-time quantitative RT-
PCR for the measurement of target genes using TagMan
glyceraldehyde-3-phosphate dehydrogenase control reagents
(Life Technologies Corporation), which were used as an
internal standard. The expression of mMRNA encoding HMGB1,
TLR4, RAGE, vascular endothelial growth factor (VEGF),
interleukin-1-beta (IL-1B), and TNFa in ulcerated and normal
gastric tissues was quantified using real time RT-PCR and
standardized to glyceraldehyde-3-phosphate dehydrogenase
mRNA levels. The expression of each mRNA is indicated as a
ratio, relative to the mean value in normal gastric tissue. The
primers and probes used for RT-PCR are shown in Table 1.

Immunohistochemical and Immunofluorescence
Staining

Tissue samples were fixed with 0.1 M phosphate buffer (pH
7.4) containing 4% paraformaldehyde. Samples were
embedded in paraffin, and serial 5-um-thick sections were
mounted on silanized slides (Dako, Tokyo, Japan). The
specimens were immersed in a solution of 3% H,O, in absolute
methanol for 5 min in order to inhibit endogenous peroxidase
activity and then incubated in 5% skim milk for 10 min.
Hematoxylin and eosin staining was performed for the
morphological observations. A rabbit monoclonal anti-HMGB1
antibody (diluted 1:250, Abcam, Cambridge, MA) was applied
as the primary antibody and incubated overnight at 4°C with
the specimens. A Secondary antibody (Histofine Simple Stain
MAX Peroxidase kit; Nichirei Biosciences Inc., Tokyo, Japan)
was incubated with the specimens for 1 h according to the
manufacturer's instructions. Immunoreactivity was visualized
by treating the sections with Histofine Simple Stain and
diaminobenzidine solution (Nichirei Biosciences Inc.). The
specimens were then counterstained with hematoxylin. Next,
TLR2, TLR4 and RAGE expression was determined by an
immunofluorescence method. The primary antibodies used in
immunofluorescence staining included a mouse monoclonal
antibody against TLR2 (diluted 1:200; Abcam), a mouse
monoclonal antibody against TLR4 (diluted 1:200; Abcam), and
a rat monoclonal antibody against RAGE (diluted 1:250;
Abcam). Tissue samples, which were prepared as described
above, were incubated overnight at 4°C with the primary
antibodies and then reacted with the corresponding fluorescent
dye-conjugated secondary antibodies (Abcam) for 2 h.
Samples were examined with a confocal microscope equipped
with argon and argon-krypton laser sources.

Measurement of Serum HMGB1 Levels

Blood (1000 pL) samples were obtained in serum separator
tubes by cardiac puncture. After centrifugation at 3,000 rpm for
10 min, the serum was collected and stored at —80°C. Serum
levels of HMGB1 were measured using an HMGB1 sandwich
ELISA kit (Shino-Test Corporation) according to the
manufacturer’s protocol.

Measurement of Myeloperoxidase (MPO) Activity

Methods used to measure MPO activity are described in
detail elsewhere [36]. In brief, the specimens were
homogenized in 50 mM potassium phosphate buffer (pH 6.0)
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Table 1. Primers and Probes.

Gene Primer and Probe
Primer
TNF-a 5'-TCATGCACCACCATCAAGGA-3’
(forward)
Primer
5'-GAGGCAACCTGACCACTCTCC-3’
(reverse)
- 5'-FAM-AATGGGCTTTCCGAATTCACTGGAGC-
robe
TAMRA-3’
Primer
IL-18 5'-ACAGGCTCCGAGATGAACAAC-3’
(forward)
Primer
5'-CCATTGAGGTGGAGAGCTTTC-3’
(reverse)
Prob 5-FAM-GAAAAAGCCTCGTGCTGTCGGACCCATAT-
robe
TAMRA-3’
Primer
RAGE 5'-CCACTGGATAAAGGATGGTGCA-3
(forward)
Primer
5'-CAGCTATAGGTGCCCTCATCCTC-3'
(reverse)
- 5-FAM-AGCCCTGTGCTGCTCCTCCCTGAG-
robe
TAMRA-3’
Primer
TLR2 5-CTCTGGAGCATCCGAATTGC-3'
(forward)
Primer
5'-GCTGAAGAGGACTGTTATGGC-3’
(reverse)
Prob 5-CCTCAGACAAAGCGTCAAATCTCAGAGGA-
robe
TAMRA-3’
Primer
TLR4 5-GGCTGGATTTATCCAGGTGTGA-3
(forward)
Primer
5-CTGTCAGTATCAAGTTTGAGAGGTG-3’
(reverse)
- 5'-AGCCATGCCATGCCTTGTCTTCAATTGT-
robe
TAMRA-3’
Primer
HMGB1 5'-CAGCCATTGCAGTACATTGAGC-3’
(forward)
Primer
5-TCTCCTTTGCCCATGTTTAGTTG-3'
(reverse)
Probe 5-GACAGAGTCGCCCAGTGCCCGTCC-TAMRA-3’
Primer
VEGF 5-TCCGCAGACGTGTAAATGTTC-3’
(forward)
Primer
5-TTAACTCAAGCTGCCTCGCCT-3’
(reverse)
Sl 5'-FAM-TGCAAAAACACACAGACTCGCGTTGC-
robe

TAMRA-3’
doi: 10.1371/journal.pone.0080130.t001

containing 0.5% hexadecyltrimethylammonium bromide (Sigma
Chemical Co.). Suspensions were centrifuged, and MPO
activity in the resulting supernatant was assayed with a
spectrophotometer. One unit of MPO activity was defined as
the amount of enzyme that degraded 1 pmol peroxide/min at
25°C. The results are expressed as units per gram of gastric
tissue.
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Statistical Analysis

Values are expressed as the mean + standard error of the
mean (SEM). One-way analysis of variance (ANOVA) was
used to test the significance of the differences between
treatment group means, and the results were analyzed with
Fisher's protected least-significant-difference test. P-values
less than 0.05 were considered statistically significant.

Results

Time Course of Gastric Ulcer Healing

To evaluate the healing process of gastric ulcers,
experimental gastric ulcer was induced by topical application of
acetic acid from the gastric serosal side. The ulcers were
evaluated microscopically (Figure 1A, 1B) and macroscopically.
The size of the ulcers reached a maximum on day 4 and
decreased over time thereafter (Figure 1C). MPO activity
(Figure 1D) and the expression of TNFa (Figure 1E) and IL-1
(Figure 1E) mRNA in the ulcerated gastric tissue also peaked
on day 4, and their levels were higher in ulcerated tissue than
in normal gastric tissue throughout the examination period.
Ulceration also elevated the expression of VEGF mRNA
(Figure 1F).

HMGB1 Expression following Ulceration

We next evaluated whether HMGB1 was involved in gastric
ulcer healing. HMGB1 mRNA levels in gastric tissue (Figure
2A) and serum levels of HMGB1 (Figure 2B) reached their
maximum at day 4. HMGB1 mRNA levels were almost constant
during the examination period, whereas the serum levels of
HMGB1 dropped to normal levels 6 days after the induction of
ulcer. Immunohistochemically, ulceration induced prominent
cytoplasmic staining of HMGB1 in epithelial cells, especially in
injured areas (Figure 2C, 2D). In contrast, in intact gastric
mucosa, HMGB1 localization was limited to inside the nuclei of
epithelial cells (Figure 2E).

Effects of Exogenous HMGB1, HMGB1
Immunoneutralization, and Inhibition of HMGB1
Release on Gastric Ulcer Healing

mRNA expression and MPO activity were evaluated on day
6, and the ulcer index was evaluated on day 9, according to the
time course study. Mice were administered rHMGB1 or anti-
HMGB1 antibody intraperitoneally following the induction of
ulcer. Administration of rHMGB1 at a dose of either 100 pg/kg
or 1000 ug/kg significantly suppressed gastric ulcer healing
(Figure 3A), which was associated with increased MPO activity
(Figure 3B) and TNFa mRNA expression in ulcerated tissues
(Figure 3C). In contrast, HMGB1 neutralizing antibodies
promoted ulcer healing (Figure 4A) with reduced MPO activity
(Figure 4B) and TNFa mRNA expression (Figure 4C). The
complicating effect of exogenous rHMGB1 on gastric ulcer
healing was canceled by coadministration of anti-HMGB1
antibody (Figure 4F). Expression of VEGF mRNA was not
affected by treatment with either rHMGB1 (Figure 3D, 3E) or
anti-HMGB1 antibody (Figure 4D, 4E). In normal gastric tissue,
administration of rHMGB1 or anti-HMGB1 also did not have
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any effects on cytokine expression or MPO activity (data not
shown). Furthermore, the administration of ethyl pyruvate, an
inhibitor of HMGB1 release, markedly promoted ulcer healing,
compared with vehicle treatment. Healing was accompanied by
the suppression of TNFa mRNA expression (data not shown).

Role of TLR2, TLR4, and RAGE in Gastric Ulcer Healing

To investigate whether TLR2, TLR4, and RAGE contribute to
HMGB1-mediated gastric ulcer healing, experimental gastric
ulcers were induced in TLR2 KO, TLR4 KO, RAGE KO, and
control wild-type mice. TLR4 and RAGE deficiency promoted
gastric ulcer formation and prevented the increase in TNFa
mRNA expression after ulceration, whereas TLR2 deficiency
affected neither the ulcer index nor the expression of TNFa
mRNA (Figure 5A, 5B). Administration of exogenous HMGB1
affected neither the ulcer index nor the expression of TNFa
mRNA in either TLR4 KO or RAGE KO mice (Figure 5C-5F).
Administration of exogenous HMGB1, however, delayed ulcer
healing in wild-type mice and reduced TNFa mRNA expression
(Figure 3).

Expression of TLR2, TLR4 and RAGE during Gastric
Ulcer Healing

We next  investigated mRNA  expression and
immunoreactivity of TLR2, TLR4 and RAGE in wild-type mice.
A significant up-regulation of TLR2 mRNA was observed
following the induction of an ulcer (Figure 6A). TLR2
immunoreactivity was observed mainly in inflammatory cells
(Figure 6B). The expression of TLR4 mRNA was not affected
by the induction of ulcer (Figure 6C). TLR4 immunoreactivity
was observed in the apical part of the epithelial lining at the
ulcer edge and in some inflammatory cells in the ulcer bed
(Figure 6D).

A significant up-regulation of RAGE mRNA was observed on
day 9 after the induction of ulcer (Figure 6E). RAGE
immunoreactivity was observed mainly in inflammatory cells at
the edge of the ulcer beds and in the vascular endothelial cell
membrane (Figure 6F).

Staining of ulcerated tissue from TLR4 KO or RAGE KO
mice with an anti-TLR4 antibody or anti-RAGE antibody,
respectively, revealed no positive signals, confirming the
specificity of these antibodies (data not shown).

Discussion

In this study, we demonstrated that exogenous HMGB1
delays gastric ulcer healing, while inducing TNFa expression
and MPO activity. Conversely, immunoneutralization of
HMGB1 or inhibiting the release of HMGB1 promotes ulcer
healing while reducing TNFa expression and MPO activity.
Additionally, TLR4 and RAGE deficiency promotes ulcer
healing, and exogenous HMGB1 fails to delay ulcer healing in
TLR4 KO and RAGE KO mice. These results suggest that
HMGB1 is a complicating factor for gastric ulcer healing that
acts through TLR4- and RAGE-dependent pathways. To our
knowledge, this is the first report to clarify the role of HMGB1 in
wound healing within the gastrointestinal tract.
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Figure 1. Ulcer index and cytokine expression following ulceration. A, B: Hematoxylin-eosin staining of gastric ulcer (day 6).
The arrow indicates the ulcer site. B: Higher magnification of Figure 1A. C: Time course of the ulcer index following ulceration. The
size of the macroscopically visible ulcer was expressed as an ulcer index, the product of maximum length and minimum length. D:
Myeloperoxidase (MPO) activity of gastric tissue. One unit of MPO activity was defined as the amount of enzyme that degrades 1
pmol peroxide/min at 25°C. The results are expressed as units per gram of gastric tissue. E-H: The mRNA expression of tumor
necrosis factor a (TNFa) (E), interleukin-1B (IL1-B) (F), and vascular endothelial growth factor (VEGF) (G) were determined by
quantitative reverse transcription-polymerase chain reaction (RT-PCR). mRNA levels are expressed as ratios, relative to the mean
value for normal gastric tissue. Each column represents the mean + standard error of the mean £+ SEM. N = 6-9. **P < 0.01, *P <
0.05 vs. untreated controls. **P < 0.01, *P < 0.05 vs. day 4 group.

doi: 10.1371/journal.pone.0080130.g001
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control group. C, D: Immunohistochemistry of HMGB1 in ulcerated gastric tissue (day 6). HMGB1 localized to the cytoplasm in
injured epithelial cells as well as to the nuclei of epithelial cells and interstitial cells. D: Higher magnification of Figure 2C. E:
Immunohistochemistry of HMGB1 in untreated gastric tissue. HMGB1 localization was limited to the inside of nuclei of epithelial
cells in intact gastric mucosa.
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Figure 3. Effect of exogenous HMGB1 on the healing of gastric ulcers. Mice received intraperitoneal injections of human
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quantitative RT-PCR. Each column represents the mean + SEM. N = 5-8. **P < 0.01, *P < 0.05 vs. vehicle-treated control group.

doi: 10.1371/journal.pone.0080130.g003

A few studies addressed the role of HMGB1 in wound
healing in organs other than the gastrointestinal tract, but the
results of these studies are controversial [37-40]. Consistent
with our results, some studies demonstrated that HMGB1 has
an inhibitory effect on wound healing [37,38]. Zhang et al.
demonstrated that HMGB1 impairs incision wound healing by
reducing reparative collagen deposition via RAGE [37]. Goova
et al. demonstrated that blocking RAGE ligands such as AGE
and HMGB1 by using a soluble form of receptor for AGE
(sRAGE), accelerates ulcer healing and suppresses the levels
of inflammatory cytokines [38]. Previous studies demonstrated
that excessive inflammation impaired wound healing. For
example, our previous study demonstrated that TNFa over-
expression and excessive neutrophil infiltration are
complicating factors in the formation and healing of gastric
ulcer [41]. Furthermore, in another model of tissue repair,
Goren et al. demonstrated that excessive neutrophil and
macrophage infiltration with TNFa over-expression inhibits the
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healing of mouse skin injuries [42]. Thus, it is possible that
HMGB1 delays gastric ulcer healing through TNFao-triggered
inflammatory responses.

In contrast, some in vitro studies suggested that HMGB1 and
its receptors are essential for wound healing [39,40]. Staraino
et al. demonstrated that HMGB1 accelerates the wound
healing process and regeneration by enhancing the migration
of skin fibroblasts and keratinocytes [39]. HMGB1 also
promotes the wound healing of 3T3 fibroblasts by inducing cell
proliferation and migration through the activation of the RAGE/
extracellular signal-regulated kinase pathway [40]. Because
these in vitro studies were performed in the absence of
inflammatory cells, the differences in experimental methods
may result in inconsistent conclusions on the role of HMGB1 in
wound healing.

VEGF, a potent angiogenic growth factor, plays an important
role in gastric ulcer healing [43,44]. Previous reports
demonstrated that HMGB1 could induce the expression of
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doi: 10.1371/journal.pone.0080130.g004

VEGEF in several tissues and animal models [45-47]. However, Serum HMGB1 levels increased following the induction of
in this study, neither rHMGB1 nor anti-HMGB1 antibodies gastric ulcer but declined at the late phase of healing, although
affected VEGF expression in ulcerous tissue. The reason for ~ the expression of HMGB1 and TNFa remained high. These
the disparity between our findings and those of earlier ~ data raise the possibility of a systemic HMGB1 trapping
investigators is not clear, but it may be associated with the use system. To this end, the existence of an HMGB1 binding
of different organs and experimental models. protein has been reported. Thrombomodulin, a cell-surface

There are 2 possible sources of extracellular HMGB1:  9lyeoprotein, is one example of an HMGB1 binding protein.
passive release from necrotic cells [48] and active secretion .Recomblr'lant human SOIUb_Ie thrombomodulln |nh|b|t.ed .the
f infl t I 5 | thi tud HMGB1 increase in plasma HMGB1 induced by lipopolysaccharide in a
.rom n amlmla ory Ct? s [d]'. hn ISI stuay, I h rat model [49] and bound to HMGB1 through its lectin domain
|mmunoreact|V|ty.was observe .|nt e cytoplasm as well as the [50] to prevent HMGB1 from interacting with other receptors
nucleus, suggesting that necrotic cells are a source of HMGB1.

[51]. In clinical applications, thrombomodulin is also useful in
Gastric HMGB1 mRNA levels increased during ulcer healing, HMGB1-related diseases and conditions such as sepsis

suggesting that inflammatory cells produce and release  pecause of its anti-HMGB1 properties [52]. SRAGE, found in
HMGBH1. Collectively, the elevation of serum HMGB1 resulted the circulation, is another example of an HMGB1 binding
was due to passive release from injured cells at the gastric protein. SRAGE is the soluble form of RAGE; it acts as a decoy
ulcer and active secretion from inflammatory cells. to prevent interaction between cell surface RAGE and its
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Figure 5. Role of TLR2, TLR4, and RAGE in gastric ulcer healing. Gastric ulcers were induced in TLR2 KO, TLR4 KO, and
RAGE KO mice. The ulcer index (A) and TNFa mRNA levels (B) were measured in gastric tissue. C—F: Effect of recombinant
HMGB1 on gastric ulcer healing in TLR4 KO and RAGE KO mice. Gastric ulcers were induced in TLR4 KO (C, D) and RAGE KO
(E, F) mice with or without intraperitoneal injections of 1000 ug/kg rHMGB1. The ulcer index (A, C, E) and TNFa mRNA levels (B, D,
F) were measured in gastric tissues. The mRNA levels assessed by RT-PCR are expressed as ratios, relative to the mean value for
normal gastric tissue. Each column represents the mean + SEM. N = 4-6. **P < 0.01, *P < 0.05 vs. wild-type mice.

doi: 10.1371/journal.pone.0080130.g005

ligands, such HMGB1 [53]. In the present study, such trapping
systems might also play a protective role in preventing the
spread of inflammation, thereby promoting ulcer healing.

It is known that many peptic ulcer patients are infected with
Helicobacter pylori. Although in the present study we did not
investigate the role of HMGB1 in gastric ulcer healing in mice
infected with H. pylori, clinical and experimental studies
suggest that the deleterious effect of HMGB1 on gastric ulcer
healing would be more pronounced in patients with an H. pylori
infection than in those without it. We previously showed that H.
pylori infection increases neutrophil infiltration into ulcerated
tissues in Mongolian gerbils [54]. Shimizu et al. also
demonstrated that neutrophils and macrophages infiltrate ulcer
margins to a higher degree in patients with H. pylori infection
than in those without the infection [55]. A large amount of
HMGB1 is, therefore, likely present in the ulcerated tissue
infected with H. pylori, since it would be secreted by those
inflammatory cells. Furthermore, Radin et al. reported that

PLOS ONE | www.plosone.org

VacA, a major virulence factor of this organism, causes
programmed necrosis of gastric epithelial cells and subsequent
release of HMGB1 [56]. Thus, we expect that the deleterious of
HMGB1 on ulcer healing would be more prominent in H. pylori-
infected patients.

TLR2, TLR4, and RAGE, which mediate proinflammatory
responses, are commonly known HMGB1 receptors. Our
results clearly showed that TLR4 and RAGE play crucial roles
in gastric ulcer healing. This result is consistent with previous
findings on the inflammatory responses induced by HMGB1.
One of the most established models involving the interaction
between HMGB1 and these receptors is I-R injury. In hepatic I-
R injury, TLR4-deficient mice exhibited less liver I-R damage;
the damage in TLR4-deficient mice was not affected by
rHMGB1 or anti-HMGB1 antibody [26]. Moreover, blocking
RAGE protected against hepatocellular death and necrosis in
the hepatic I-R injury model [57]. In a model of cardiac I-R
injury, Andrassy et al. showed that RAGE-deficient mice
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doi: 10.1371/journal.pone.0080130.g006
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displayed only slight inflammation resulting from cardiac I-R
injury; the inflammation was not affected by the induction of
rHMGB1 [27]. These findings suggest that the TLR4-HMGB1
and RAGE-HMGB1 interactions play a crucial role in I-R injury,
although it is necessary to consider the differences in each
organ. The other established model is systemic inflammation,
such as sepsis [5,8,58]. In an experimental model of intra-
abdominal sepsis, Susa et al. demonstrated that the HMGB1-
RAGE interaction was closely associated with sepsis-induced
diaphragmatic dysfunction [58]. In an in vivo systemic
inflammation model generated by injection of exogenous
HMGBH1, Zoelen et al. demonstrated that HMGB1 induces the
release of cytokines, activation of coagulation, and neutrophil
recruitment through TLR4 and RAGE [8]. Thus, TLR4 and
RAGE play critical roles in pathogenesis mediated by the
HMGB1-associated pathway, including the pathway in our ulcer
healing model.

Our results indicate that TLR2 has no relationship to gastric
ulcer healing: ulcer healing in TLR2 KO mice resembled that in
wild-type mice. Although in vitro studies using macrophage cell
lines indicated that the TLR2-HMGB1 pathway induces
inflammatory responses [6,9], in vivo effects of TLR2 in
HMGB1-mediated pathologies have not been reported. Thus,
based on previous findings [8] and our results, the HMGB1-
TLR2 pathway may play a minor role in the repair and
pathogenesis of tissue injuries and inflammation.
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In conclusion, we have shown that HMGB1 is a complicating
factor in the healing process of gastric ulcer as well as in other
pathological conditions. Moreover, we have shown that
HMGB1 inhibits ulcer healing through a mechanism that
involves TLR4, RAGE, and excessive inflammatory responses.
Although proton pomp inhibitors are commonly prescribed for
gastric ulcers, intractable ulcers still pose a clinical problem.
Our present study supports a new concept for the treatment of
intractable gastric ulcers, besides proton pomp inhibitors
therapy.
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