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Purpose. To identify the potential key genes and molecular pathways associated with keratoconus and allergic disease. Methods.
The pubmed2ensembl database was used to identify the text mining genes (TMGs) collectively involved in keratoconus and
allergic disease. The GeneCodis program was used to perform the Gene Ontology (GO) biological process and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of TMGs. The protein-protein interaction (PPI)
network of the TMGs was established by STRING; the significant gene modules and hub genes of PPI were further performed
using the Cytoscape software. The DAVID database was used to perform the GO and KEGG analyses of the significant
module. Results. In total, 98 TMGs collectively involved in keratoconus and allergic disease were identified. 19 enriched
biological processes including 71 genes and 25 enriched KEGG pathways including 59 genes were obtained. A TMG PPI
network was constructed, and 51 genes/nodes were identified with 110 edges; 3 most significant modules and 12 hub genes
were chosen from the PPIs. GO enrichment analysis showed that the TMGs were primarily associated with collagen catabolic
process, extracellular matrix organization and disassembly, cell adhesion and migration, collagen-containing extracellular
matrix, extracellular matrix, and structure organization. KEGG pathway analysis showed that these DEGs were mainly
involved in the IL-17 signaling pathway, inflammatory bowel disease, rheumatoid arthritis, allograft rejection, T cell receptor
signaling pathway, cytokine-cytokine receptor interaction, and TNF signaling pathway. Conclusions. The results revealed that
IL10, IL6, MMP9, MMPI1, HGF, VEGFA, MMP3, MMP2, TGFBI, IL4, IL2, and IFNG were potential key genes involved in
keratoconus. IL-17 signaling pathway was the potential pathways accounting for pathogenesis and development of keratoconus.

1. Introduction

Keratoconus (KC) is a corneal ectasia disease characterized
by thinning and steepening, which would cause irregular
astigmatism and progressive myopia, leading to further loss
of vision [1]. KC is considered to be a relatively rare disease
in the past. However, with advances in diagnostic devices
technology, an increasing number of patients with KC are

being diagnosed [2]. The global prevalence of KC was 138
per 100000, and it has become one of the most common
degenerative corneal diseases [3]. KC typically has its onset
in the adolescent and progresses until the third or fourth
decade of life [4, 5]. Therefore, KC has now become one of
the most common causes leading to visual impairment in
adolescent population, resulting heavy economic burden to
individuals and society.
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1.Text mining
(pubmed2ensembl)

2.Gene set enrichment
(GeneCodis)

3.Protein-protein interaction analysis
(STRING and Cytoscape)

4.Module and hub gene identification

(MCODE and Cytohubb)

5.Functional enrichment analysis
(DAVID and ClueGO)
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FIGURE 1: Overall strategy used for the identification of potential key genes and molecular pathways associated with keratoconus and

allergic disease.

At present, various treatments for KC exist, including
spectacles, contact lenses, corneal collagen cross-linking
(CXL), and corneal surgery. However, these treatments pres-
ent several limitations. In its early stages, spectacles or rigid
contact lenses only improve the visual impairment but can-
not delay or prevent the degeneration of KC [6]. CXL can
increase the stiffness of the cornea and slow the progression
of moderate KC, but it is still accompanied by complications
including epithelial damage, keratitis, and endothelial dam-
age [7-9]. For advanced KC, keratoplasty is the preferred
therapeutic strategy; however, the shortage of donor organs,
immune rejection after transplantation, and graft infection
limit its application [10]. Clearly, a more effective therapy
for the treatment and prevention of KC is urgently needed.

KC is a multifactorial disease that involves several genes
and environmental factors [11]. Allergic disease is one of the
major risk factors for KC. A relationship between KC and
allergic disease was reported by Hilgartner et al. as early as
in the 1937 [12]. Subsequent studies established that there
is a positive association between allergic disease and KC,
with a prevalence reaching 11% to 30% [13-15]. In a recent
meta-analysis of 29 studies from 15 countries with 7 million
participants, the odds ratio (OR) of developing KC was 1.42
times higher in subjects with allergic disease versus healthy
subjects [3]. A 2021 nationwide study in the Netherlands
found a statistically significant positive association between
KC and allergic diseases, which include allergic rash
(OR=3.00), asthma and bronchial hyperresponsiveness
(OR=2.51), and allergic rhinitis (OR =2.20) [16]. Addi-
tionally, allergic eye disease is also considered to be closely

associated with KC. KC patients with vernal keratoconjunc-
tivitis or allergic conjunctivitis tend to have significantly
thinner and steeper corneas [17, 18].

Corneal stroma, which consists of keratocytes and extra-
cellular matrix (ECM), is the main structural fraction of the
cornea accounting for 90% of corneal thickness [19]. And
the progressive thinning of corneal stroma is the primary
structural changes in KC [20]. The remodeling of ECM
would influence the biomechanical properties of corneal
stroma and consequently involved in the development and
progression of KC [21-25]. Previous studies have demon-
strated that risk factor of KC including eye rubbing and con-
tact lens wearing can trigger the remodeling of ECM
through upregulation of matrix metalloproteinases (MMPs),
which are the primary regulators of ECM remodeling [26],
while the upregulation of MMP expression has been also
observed in patients with allergic diseases, indicating that
allergic diseases may contribute to KC by promoting ECM
remodeling [27]. Therefore, allergic diseases might be a
potential target for the prevention and treatment of KC.

Text mining, an effective method to quickly extract crit-
ical information from a large amount of the biomedical liter-
ature, has been widely used to explore novel associations
between genes and pathologies [28]. In recent years, bio-
markers are widely applied to accurate diagnosis and per-
sonalized treatment of diseases. Information technology
can speed up screening process of biomarkers. The in-
depth study on the omics cascade of KC laid the foundation
for bioinformatic analysis. The aim of the present study was
to explore the key genes and molecular pathways associated
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TaBLE 1: Top nineteen GO biological processes of TMGs.

Genes in Total Corrected
Process query  genes in  hypergeometric Genes
set genome P value
Positive regulation of VIM, EN1, BMP2, MMP8, OCLN, CTNNBI1, CEBPB, EDA, KIT,
N ) 8 ion 24 516 6.21E-13 TGFB1, EGF, NGF, NOS3, SP1, CD34, GSN, IFNG, TNF,
gene expressio VEGFA, IL1A, IL6, TNC, ATM, IL4
Positive regulation of
LT . CAT, SELP, HGF, EN1, KIT, EGF, LEP, TNF,
pho.sphauflyhn.osnol 11 81 5.39E-10 VEGEA, TGFB2, MYOC
3-kinase signaling
. CAT, BMP2, LEP, MMP2, TNF, VEGFA, TGFB2,
Response to hypoxia 13 159 1.98E-09 LTA, IL1A, VCAMI, PLAU, ATM, NOS2
Positive regulation of 13 172 4.05E-09 HGF, BMP2, MMPS8, CTNNBI, KIT, EGF, LEP, ALK,
MAPK cascade ’ ITGA1, TNF, VEGFA, IL6, SOD1
. MMPI1, MMP8, MMP13, MMP10, MMP9,
Collagen catabolic process 8 38 8.58E-09 CTSB, MMP2, MMP3
Immune respon 18 477 2 18E-08 IL10, HLA-B, MS4A2, CD40LG, IL1RN, CEBPB, EDA, FASLG,
une response : IL2, IFNG, IL16, HLA-A, TNF, LTA, IL1A, IL6, B2M, IL4
SELP, ITGB2, BMP2, ITCH, LYZ, MS4A2, CD40LG, ILIRN,
Inflammatory response 17 413 2.18E-08 CEBPB, KIT, TGFBI, TNF, IL1A, IL6, ITGAL, CD44, NOS2
Extracellular matrix 8 48 396E-08  MMPI, MMP8, MMP13, MMP10, MMP9, GSN, MMP2, MMP3
disassembly
Response to 1 161 230E-07 SELP, IL10, CEBPB, FASLG, NOS3, TNF, LTA, BCR,
lipopolysaccharide ' IL1A, VCAM1, NOS2
Cellular response to UV-A 5 11 3.38E-07 MMP1, MMP9, MMP2, MMP3, TIMP1
Positive regulation of tyrosine
phosphorylation of STAT 8 68 5.16E-07 KIT, LEP, IL2, IFNG, TNF, VEGFA, IL6, I1L4
protein
Negative regulation of 17 529 517E-07 CAT, FLNA, HGF, 1L10, ITCH, CTNNBI1, CD40LG, LEP,
apoptotic process ’ MMP9, IL2, TNF, VEGFA, IL6, CD44, SOD1, 114, TIMP1
. . ITGB2, FN1, CTNNBI, EDA, ITGA1, CD34,
Cell-matrix adhesion 9 103 6.37E-07 VCAMLI, ITGAL, CD44
Leukocyte cell-cell adhesion 6 30 1.48E-06 SELP, ITGB2, CD40LG, ICAM1, VCAM]1, ITGAL
Positive regulation of cell 12 259 L92E-06 HGF, BMP2, KIT, TGFB1, EGF, MMP9, MMP2,
migration : VEGFA, PLAU, ATM, MYOC, IL4
Extracellular matrix 10 171 3 41E-06 MMP1, ITGB2, MMPS8, MMP13, MMP10, MMP9,
organization ’ MMP2, TNF, MMP3, ITGAL
Positive regulation of cell 16 548 423E-06 RPS4X, FN1, CTNNBI, KIT, TGFB1, FASLG, EGF, LEP, IL2,
population proliferation ’ IFNG, VEGFA, TGFB2, IL6, TNC, 1L4, TIMP1
Cellular response to VIM, IL10, CD68, CEBPB, TNF, BCR, IL1A,
lipopolysaccharide 10 182 >47E-06 IL6, NOS2, B2M
Positive regulation of 8 99 6.03E-06 MMPS8, LEP, IENG, IL16, TNF, IL1A, IL6, NOS2

interleukin-6 production

with KC and allergic disease, by integrating text mining and
bioinformatics analysis.

2. Methods

2.1. Data Collection. The pubmed2ensembl website (http://
pubmed2ensembl.ls.manchester.ac.uk/) [28] is an online
database resource that links over 2,000,000 articles in
PubMed to approximately 150,000 genes in Ensembl from
50 species. In order to identify the common genes involved
in keratoconus and allergic disease, we perform the text min-
ing using pubmed2ensembl. In detail, we determined the

two queries with the terms “keratoconus” and “allergic dis-
ease,” in the species dataset of “Homo sapiens (GRCh37).”
The queries returned two lists of genes; the unduplicated
genes were extracted and the intersection of which was then
used as the text mining genes (TMGs).

2.2. Functional Enrichment Analysis of TMGs. The GeneCo-
dis [29] was used to perform functional enrichment analysis
of TMGs related to keratoconus and allergic disease. The
Gene Ontology (GO) biological process annotations of the
TMGs were analyzed, and genes with significantly enriched
biological processes were selected and used for further
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TaBLE 2: Top twenty-four KEGG pathways of TMGs.

. Corrected
Genes in  Total genes .
Process . hypergeometric Genes
query set In genome P value
. SELP, HGF, ITGB2, IL10, CD40LG, TGFBI, IFNG,
Malaria 13 >0 6.57E-15 TNE, ICAMI, TGEFB2, IL6, VCAMI, ITGAL
Allograft rejection 9 37 3.17E-10 IL10, HLA-B, CD40LG, FASLG, IL2, IFNG, HLA-A, TNF, I1L4
. " MMP1, ITGB2, TGFBI, IFNG, TNF, ICAM1,
Rheumatoid arthritis 12 91 3.17E-10 VEGFA, MMP3, TGFB2, IL1A, IL6, ITGAL
Cytokine-cytokine 18 193 3.17E-10 IL10, BMP2, CD40LG, IL1RN, EDA, TGFBI1, FASLG, NGF,
receptor interaction ' LEP, IL2, IENG, IL16, TNF, TGFB2, LTA, IL1A, IL6, IL4
MMP1, HGF, FN1, BMP2, CTNNBI, KIT, TGFB1, FASLG,
Pathways in cancer 21 531 8.07E-09 EGF, MMP9, ALK, SP1, IL2, IFNG, MMP2, VEGFA,
TGFB2, BCR, IL6, NOS2, I1L4
AS}I;:WI:AS]E dsi;gbr;ling I 100 8. 07E-09 FN1, TGFB1, NOS3, MMP2, TNF, ICAM1, VEGFA,
pathway 1 : TGFB2, IL1A, IL6, VCAMI
complications
Graft-versus-host disease 42 2.39E-08 HLA-B, FASLG, IL2, IFNG, HLA-A, TNF, IL1A, IL6
Type I diabetes mellitus 43 2.55E-08 HLA-B, FASLG, IL2, IFNG, HLA-A, TNF, LTA, IL1A
Inflammatory bowel disease 65 3.05E-08 IL10, TGFBI, IL2, IFNG, TNF, TGFB2, IL1A, IL6, IL4
. FLNA, HGF, FN1, CTNNBI1, TGFB1, FASLG, MMP9, MMP2,
Proteoglycans in cancer 13 205 9.11E-08 TNE, VEGFA, TGFB2, PLAU, CD44
Leishmaniasis 9 76 1.04E-07 ITGB2, IL10, TGFB1, IFNG, TNF, TGFB2, IL1A, NOS2, IL4
African trypanosomiasis 7 36 1.44E-07 IL10, FASLG, IFNG, TNF, ICAM1, IL6, VCAM1
Human T cell leukemia 13 222 1 84E-07 ITGB2, HLA-B, TGFB1, IL2, HLA-A, TNF, ICAM1,
virus 1 infection ’ ) TGFB2, LTA, IL6, ITGAL, ATM, B2M
. R MMP1, MMP13, CEBPB, MMP9, IFNG,
IL-17 signaling pathway 9 94 5.45E-07 TNE, MMP3, 116, IL4
Amoebiasis 101 8.96E-07 ITGB2, IL10, FN1, TGFBI1, IFNG, TNF, TGFB2, IL6, NOS2
Chagas disease 101 8.96E-07 IL10, TGFB1, FASLG, IL2, IFNG, TNF, TGFB2, IL6, NOS2
Fluid shear stress and 10 139 L17E-06 CTNNBI1, NOS3, MMP9, IFNG, MMP2, TNF,
atherosclerosis ’ ICAMI1, VEGFA, IL1A, VCAM1
Autoimmune thyroid disease 7 52 1.39E-06 IL10, HLA-B, CD40LG, FASLG, IL2, HLA-A, 1L4
. . ITCH, CEBPB, MMP9, TNF, ICAMI,
TNF signaling pathway 9 112 1.80E-06 MMP3, LTA, IL6, VCAMI
. SELP, ITGB2, HLA-B, OCLN, CD40LG, CD34,
Cell adhesion molecules 10 148 1.80E-06 HLA-A, ICAMI, VCAMI, ITGAL
.. . MMP1, SELP, CD40LG, FASLG, NOS3, MMP9,
Lipid and atherosclerosis 11 214 6.35E-06 TNF, ICAM1, MMP3, IL6, VCAM1
Hematopoietic cell lineage 8 98 7.16E-06 KIT, ITGA1, CD34, TNF, IL1A, IL6, CD44, IL4
NF-kappa B signaling CDA40LG, EDA, TNF, ICAM1, LTA,
pathway 8 102 8.92E-06 VCAMI, PLAU, ATM
Tuberculosis 10 179 8.92E-06 ITGB2, IL10, CEBPB, TGFBI, IFNG, TNF,

TGFB2, IL1A, IL6, NOS2

analysis of enriched Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway annotations. Genes in the signif-
icant enriched KEGG pathways were selected for further
analysis. A corrected P value cut-off (P =0.00001) was set.

2.3. Protein-Protein Interaction (PPI) Network. In order to
assess functional associations among the products of the
selected TMGs, the STRING (version 11.5, https://string-
db.org/), a database includes 3 billion interactions associated
with 24.6 million proteins referred to 5090 organs [30], was

used to construct the PPI network. “Homo sapiens” was
selected as the species dataset, and the highest confidence
score (0.900) was set as the minimum required interaction
score.

2.4. Module Analysis and Hub Gene Identification. The
Cytoscape software (version 3.9.1) was used to visualize the
PPI network [31]. Then, the significant gene modules in
the PPI networks were identified using the Molecular Com-
plex Detection (MCODE) plugin of Cytoscape [32]. The
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FIGURE 2: The protein—protein interaction network of the 59 target TMGs.

standard settings of MCODE rest were as follows: degree
cutoff =2, node score cutoff =0.2, k-core =2, and maxi-
mum depth = 100.

Moreover, to select hub genes from the PPI network,
the cytoHubba plugin of Cytoscape was used, which was
computed by four ranking methods: EPC (edge percolated
component), MCC (maximal clique centrality), MNC
(maximal neighborhood component), and DMNC (density
of maximum neighborhood component) [33]. The top 15
genes within the four methods were screened and over-
lapped, and the overlapping genes were considered to be
hub genes.

2.5. Functional Enrichment Analyses of Module and Hub
Gene. To clarify the functions of the significant genes mod-
ule, the DAVID database (https://david.ncifcrf.gov/) was

used to perform GO enrichment analysis and KEGG path-
way enrichment analysis. The GO enrichment analysis
includes biological process (BP), cellular component (CC),
and molecular function (MF) [29]. The functional enrich-
ment analyses of the hub genes were performed and visual-
ized using the Cytoscape plugins ClueGO (version 2.5.7)
and CluePedia (version 1.5.7) [31]. P < 0.05 was considered
statistically significant.

3. Results

3.1. Identification of TMGs. Based on the data mining strat-
egy that is described in Figure 1, 946 unique genes related to
allergic disease and 214 unique genes related to keratoconus
were acquired through text mining searches. There were 98
genes common to the 2 gene lists (Supplementary Table 1).
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FIGURE 3: (a) The protein—protein interaction (PPI) network of the target TMGs was visualized using Cytoscape. (b-d) The three modules
were obtained from PPI network using MCODE: (b) module 1; (c) module 2; (d) module 3.

3.2. Functional Enrichment Analysis of TMGs. The 98 TMGs
were analyzed for GO biological processes (BP) using Gene-
Codis to identify the most enriched terms closely related to
the pathology of keratoconus. As shown in Table 1, 19
significantly enriched GO annotations of 71 unique genes
were identified. The top 10 BPs are associated with positive
regulation of gene expression, positive regulation of phos-

phatidylinositol 3-kinase signaling, response to hypoxia,
positive regulation of MAPK cascade, collagen catabolic pro-
cess, immune response, inflammatory response, extracellular
matrix disassembly, response to lipopolysaccharide, and cel-
lular response to ultraviolet-A (UV-A).

Next, the 71 TMGs were further analyzed for KEGG
pathways using GeneCodis. The KEGG pathway enrichment
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Rheumatoid arthritis 7.69%

Extracellular matrix disassembly 7.69%

IL-17 signaling pathway 15.38%
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Inflammatory bowl disease (IBD) 69.23%

% terms per group

F1GURE 4: (a) Overlapping TMGs among the four topological cytoHubba methods including MCC, MNC, DMNC, and EPC. (b) Functions
and pathways of the hub genes were visualized using ClueGO. (c) Enriched GO terms and KEGG pathways. (d) Distribution of the functions
and pathways among the hub genes. Only the most significant term in the group was labeled. Representative enriched pathway (P < 0.05)

interactions among the hub genes.

analysis identified 25 significant pathways that involved 59
TMGs. The top 10 KEGG pathway contained malaria, allo-
graft rejection, rheumatoid arthritis, cytokine-cytokine
receptor interaction, pathways in cancer, AGE-RAGE sig-
naling pathway in diabetic complications, graft-versus-host
disease, type I diabetes mellitus, and inflammatory bowel
disease (Table 2).

3.3. PPI Network Construction, Modular Analysis, and Hub
Gene Identification. The PPI network of the 59 selected TMGs
was constructed using the STRING database, which had a total
of 51 nodes with 110 edges (Figure 2). Furthermore, a subnet-
work clustering analysis was performed using the MCODE
plugin in Cytoscape, and three modules were selected as the
significant modules in the PPI network (Figure 3(a)). Module
A included 12 genes/nodes and 41 edges, module B included 3
genes/nodes and 3 edges, and module C included 3 genes/
nodes and 3 edges (Figures 3(b)-3(d)).

The top 15 ranking hub genes were identified by the
DMNC, MNC, MCC, and EPC methods using the cyto-
Hubba plugin, and the 12 overlapping genes, including
IL10, IL6, MMP9, MMPI1, HGF, VEGFA, MMP3, MMP2,
TGFBI, IL4, IL2, and IFNG, were considered to be hub genes
(Figure 4(a)).

3.4. Functional Enrichment Analyses of Module and Hub
Gene. The GO and KEGG pathway enrichment analyses of
significant modules were performed by DAVID database.
As shown in Figure 5, the GO enrichment analysis showed
that the genes in module 1 were mainly enriched in the bio-
logical processes associated with ECM remodeling (collagen
catabolic process, extracellular matrix organization, and
disassembly), immune inflammatory response (negative reg-
ulation of inflammatory response, positive regulation of
immunoglobulin production, humoral immune response,
type 2 immune response, negative regulation of cytokine pro-
duction involved in immune response, etc.), and response to

stimuli (response to hypoxia, UV-A, beta-amyloid, glucocor-
ticoid, and xenobiotic stimulus). Module 2 was enriched in
the biological processes associated with extracellular matrix
organization, cell adhesion and migration, and immune and
inflammatory response (Figure 6(a)). Module 3 was enriched
in immune inflammatory response (Figure 7(a)).

KEGG pathway analysis revealed that the module 1 was
mainly enriched during IL-17 signaling pathway, inflam-
matory bowel disease, rheumatoid arthritis, allograft rejec-
tion, T cell receptor signaling pathway, cytokine-cytokine
receptor interaction, intestinal immune network for IgA
production, JAK-STAT signaling pathway, TNF signaling
pathway, etc. (Figure 8). Module 2 was mainly enriched
in leukocyte transendothelial migration, cell adhesion mol-
ecules, rheumatoid arthritis, natural killer cell-mediated
cytotoxicity, etc. (Figure 6(b)). Module 3 was mainly
enriched in virus infection, autoimmune thyroid disease,
allograft rejection, and antigen processing and presentation
(Figure 7(b)).

The functional enrichment analysis of 12 hub genes was
performed using the ClueGO and CluePedia in Cytoscape.
As shown in Figure 4(b), these hub genes were mainly
enriched in terms of rheumatoid arthritis, extracellular
matrix disassembly, inflammatory bowel disease, IL-17 sig-
naling pathway, and regulation of immunoglobulin produc-
tion (Figures 4(c) and 4(d)).

4. Discussion

Keratoconus is a multifactorial corneal disorder character-
ized by progressive thinning of the corneal tissue, which
can lead to severe visual impairment. Although many etiol-
ogy studies have been conducted, the exact pathogenesis of
KC is still poorly understood [1]. Allergic diseases are the
risk factor for the development and progression of KC. In
this study, our purposes were to explore the key genes and
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FIGURE 5: Top 40 significantly enriched GO terms in module 1.

molecular pathways of KC through determining the genes
and molecular pathways associated with keratoconus and
allergic disease. Firstly, 214 unique genes related to keratoco-
nus and 1, 946 genes related to allergic disease were acquired
via text mining, and 98 TMGs collectively involved in kera-
toconus and allergic disease were identified. Furthermore,
we investigated the biological functions of these TMGs, 19
significantly enriched GO-BP annotations including 71
genes were identified via GO analysis, and 25 enriched
KEGG pathways including 59 genes were identified via
KEGG pathway analysis. Additionally, a TMG PPI network
was constructed, and 51 genes/nodes were identified with
110 edges, and 3 most significant modules were chosen from
the PPIs. Finally, 12 hub genes, IL10, IL6, MMP9, MMP]I,
HGF, VEGFA, MMP3, MMP2, TGFBI, IL4, IL2, and IFNG,
were identified.

Keratoconus is known to be closely associated with aller-
gic diseases, and the reported prevalence ranges from 11 to
30% [34]. Woodward et al. evaluated 16053 keratoconus
patients in America and found a significant association
between KC with allergic disease [35]. The same conclusion
was also obtained in another study of 807 KC patients com-
pared to 600,000 controls in Israel [36]. A recent meta-

analysis reviewed 29 articles and included over 7158241 peo-
ple from 15 countries, indicating that people with allergy
were more likely to having keratoconus, with odds ratios of
1.42 (95% CI: 1.06-1.79) [3]. Merdler et al. found a signifi-
cant association between KC and allergic conjunctivitis,
chronic blepharitis, vernal keratoconjunctivitis, asthma,
and allergic rhinitis [37]. However, the exact relationship
between KC and allergic diseases has remained elusive. In
the present study, GO enrichment analysis showed that the
TMGs were significantly enriched in immune inflammatory
response-related terms including regulation of MHC class II
biosynthetic process, immune response, immunoglobulin
production and T cell-mediated cytotoxicity, antigen pro-
cessing and presentation, and regulation of inflammatory
response. Immune inflammatory response is one of the key
links of allergic diseases [38]. These findings suggest that
allergic diseases may participate in the development of KC
through the immune inflammatory mechanisms.

In the present study, the enriched GO biological process
analyses showed that the TMGs were associated mainly with
collagen catabolic process, extracellular matrix organization
and disassembly, cell adhesion, and migration which play
crucial role in corneal ECM remodeling. The cornea is
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FIGURE 6: (a) The significantly enriched GO terms in module 2. (b) The significantly enriched KEGG pathways in module 2.

composed of five layers, with the corneal stroma being the
main structural fraction, accounting for 90% of corneal
thickness [19]. Extracellular matrix (ECM), which is made
up of collagen, laminins, and fibronectins, is the predomi-
nant component of the cornea stroma [39]. The alterations
in the composition or structure of corneal ECM are recog-
nized as critical in the pathogenesis and progression of KC
[22]. An updated proteomic study has also confirmed that
the structural collagen expression decreased broadly in
patients with KC [24], which is consistent with our study.
Results of the present study suggested that allergic disease
may be involved in the initiation and development of KC
by regulating the ECM remodeling of corneal stroma. Matrix
metalloproteinase (MMP) family is a zinc-dependent endo-
peptidase family that can degrade the components of ECM
[40, 41]. And MMP is expressed at a high level in tears
and corneal tissues of patients compared with allergic dis-
eases [42-44]. Thus, it is assumed that allergic diseases
may contribute to KC by promoting ECM remodeling.

In the present study, the enriched KEGG pathway anal-
ysis revealed that TMGs were associated mainly with IL-17
signaling pathway. Interleukin-17 (IL-17) family, which is
composed of IL-17A-F, plays a crucial role in acute and
chronic inflammatory reactions [45]. IL-17 has been shown
to promote IL-6 and IL-8 release which can lead to an acute
phase response such as a fever and the accumulation of neu-
trophils. In addition, IL-17 activates the function and pro-
duction of MMPs during chronic inflammation [46]. IL-17
family signals bind and signal via the IL-17 receptor, activat-

ing multiple downstream pathways such as NF«B, MAPKs,
and C/EBPs [47]. Gomes et al. reported that the IL-17 poly-
morphism was related with KC ([48]. Karolak et al.
sequenced an Ecuadorian family with KC and confirmed
that the ¢.527G4A in IL-17B is variant in KC [49]. The pro-
teomic analysis of tears revealed the upregulation of IL-17 in
KC patients, which may play an important role in the occur-
rence of KC by inducing the expression of IL-6 and IL-8 and
activating the production of MMPs [50]. Therefore, IL-17
signaling pathway may be a potential key pathway involved
in KC.

Interleukin-10 (IL-10) is an anti-inflammatory cytokine
with important roles in preventing T helper type 1 cells
from producing cytokine. Several studies have shown that
there was no obvious change in IL-10 in tears of keratoco-
nus and control subjects [51-53], while a few studies have
suggested that there was reduced IL-10 in epithelium of
KC patients [54]. Interleukin-6 (IL-6) is a multifunctional
proinflammatory cytokine which plays an important role
in numerous immune-mediated diseases. Previous studies
demonstrated that tear level of IL-6 was significantly
higher in patients with KC, and there was a significant
positive correlation between the IL-6 level and the KC
severity [55]. IL-6 can promote MMP production, leading
to ECM of corneal stroma degradation [44]. The
interleukin-2 and interleukin-7 (IL-2, IL-7) are important
factors in regulating lymphoid development. IL-2 is a pro-
inflammatory factor, which can promote the generation of
antigen-specific immune reactions [56]. IL-4 is an anti-
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inflammatory cytokine which can promote Th2 differenti-
ation [57, 58]. IL-2 and IL-4 are more highly expressed in
patients with KC rather than in normal people [59]. The
changes of IL-10, IL-6, IL-2, and IL-4 expressions indi-
cated a modification of inflammatory environment in the
pathogenesis of KC. MMP-1, MMP-2, MMP-3, and
MMP-9 all are members of the MMP family which impli-
cated in inflammation and degradation of the ECM com-
ponents [40, 41]. Plenty of evidence suggest that MMP
expressions are significantly increased in tears and corneal
tissues in patients with KC, indicating that proteolytic dys-
regulation participates in the process of KC [26, 60, 61].
The MMP-1 expression levels were elevated in the corneal
epithelium, stromal, and tears in patients with KC. MMP-
1 can degrade Col I and III in cornea, resulting in stroma
thinning in the onset and progression of KC [44, 62].
MMP-2 is a major secreted protease in the normal cornea
tissue and plays an important role in degradation and
remodeling of the corneal ECM, but with more conflicting
results [63]. Smith and Easty previously reported high
levels of MMP-2 in keratocytes in keratoconic [43]. How-
ever, other studies on corneal tissue and in tears detected

no increase of MMP-2 level in KC [44, 64]. Among rela-
tionship between MMPs and KC, MMP-9 is the most
studied one. Multiple studies have shown that MMP-9 is
increased in tears, cells from the cone apex, and blood of
KC patients [42, 54, 65, 66]. Several studies have revealed
that MMP-9 in tears is an early diagnostic marker of KC
[42, 65, 67, 68]. The MMP-3 expression was also found
to increase in tears of KC patients [44]. Interestingly, in
cultures of keratoconic in vitro, the expression of MMP-
1, MMP-2, MMP-3, and MMP-9 is decreased after CXL
treatment [69, 70]. Hepatocyte growth factor (HGF) is a
multifunctional growth factor, which was defined as the
growth factor of fibroblast-derived cell [71]. Recent case-
control studies suggested that variant of HGF is a candi-
date risk factor of KC [72, 73]. TGF-f includes three iso-
forms in mammals, TGF-f1, TGF-f2, and TGF-$3, and is
a key mediator of fibrogenesis [74]. A recent study dem-
onstrated increased TGF-f markers in severe keratoconus
patients [75]. It was reported that TGFf contributes to
upregulate the expression of MMP2 by modulating Smad2
[76]. Interferon gamma (IFNG) is a critical proinflamma-
tory cytokine which can regulate immune system [77]. It
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was proved that IFNG can negatively regulate the expres-
sion of TGF-fS. These genes are the potential key genes
that may be involved in KC.

Strengths of our study include the fact that it is one of the
first to use text mining and bioinformatics analysis to identify
the potential crucial genes and key pathways of KC based on
the common genes involved in KC and allergic disease. Lim-
itations of this study must also be acknowledged. Firstly, this
study explored the molecular mechanism of keratoconus in
the gene level using bioinformatics analysis; further experi-
mental studies are required to verify the results. Secondly,
adolescents’ population is a high-risk group for KC, but we
did not include the age factor in this research; future investi-
gations taking the age into consideration may provide more
accurate and comprehensive conclusions.

In conclusion, we identified 12 hub genes, IL10, IL6,
MMP9, MMP1, HGF, VEGFA, MMP3, MMP2, TGFBI, IL4,
IL2, and IFNG, that may be involved in the keratoconus as well
as in allergic diseases. These genes were enriched in the HIF-1
signaling pathway, T cell receptor signaling pathway, and TNF
signaling pathway. Extracellular matrix remodeling and
immune inflammatory response may be the key alterations
in KC. The absence of experimental validation is a limitation
of this study, and further studies are needed.
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