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ABSTRACT Antibiotics revolutionized the treatment of infectious diseases; however,
it is now clear that broad-spectrum antibiotics alter the composition and function of
the host’s microbiome. The microbiome plays a key role in human health, and its
perturbation is increasingly recognized as contributing to many human diseases.
Widespread broad-spectrum antibiotic use has also resulted in the emergence of
multidrug-resistant pathogens, spurring the development of pathogen-specific strat-
egies such as monoclonal antibodies (MAbs) to combat bacterial infection. Not only
are pathogen-specific approaches not expected to induce resistance in nontargeted
bacteria, but they are hypothesized to have minimal impact on the gut microbiome.
Here, we compare the effects of antibiotics, pathogen-specific MAbs, and their con-
trols (saline or control IgG [c-IgG]) on the gut microbiome of 7-week-old, female,
C57BL/6 mice. The magnitude of change in taxonomic abundance, bacterial diver-
sity, and bacterial metabolites, including short-chain fatty acids (SCFA) and bile acids
in the fecal pellets from mice treated with pathogen-specific MAbs, was no different
from that with animals treated with saline or an IgG control. Conversely, dramatic
changes were observed in the relative abundance, as well as alpha and beta diver-
sity, of the fecal microbiome and bacterial metabolites in the feces of all antibiotic-
treated mice. Taken together, these results indicate that pathogen-specific MAbs do
not alter the fecal microbiome like broad-spectrum antibiotics and may represent a
safer, more-targeted approach to antibacterial therapy.
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Until recently, microbiology research has focused primarily on the bacterial patho-
gens responsible for infection or chronic disease, ignoring the 100 trillion microbes

making up the microbiome that occupies our skin and mucosal surfaces (1). In the last
decade, the microbiome has become increasingly recognized as an integral part of
human health, immunity, and the response to certain therapeutics. In particular, the
gastrointestinal tract microbiome has been reported to play a key role in maintaining
health and homeostasis. In fact, disruption of the microbiome, or dysbiosis, has been
linked to diseases such as diabetes, obesity, and asthma (2, 3). Although many factors
such as diet, travel, and where we live can affect the bacterial composition of our
microbiota, it is unlikely that anything directly impacts its composition as much as
broad-spectrum antibiotic therapy does (4).

Antibiotics have saved countless lives and have enabled modern medical treat-
ments, including organ transplants, joint replacement surgeries, and immunosuppres-
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sive cancer therapies (5). However, broad-spectrum antibiotic use has expanded be-
yond treating serious bacterial infections into agriculture to promote livestock growth
and are often prescribed to treat colds and upper respiratory tract infections that are
likely caused by a virus (6, 7). Such widespread antibiotic use has fueled the current
resistance epidemic, which some fear will lead us back into a preantibiotic era (8).
Additionally, recent studies have demonstrated both an acute and sustained impact of
broad-spectrum antibiotics on the composition and function of the human microbiome
which can adversely affect human health (9). For example, patients exposed to broad-
spectrum antibiotics are at increased risk of Salmonella enterica serovar Typhimurium-
induced colitis or recurrent Clostridioides difficile infections (10, 11). Also, children
administered antibiotics during the first year of life were found to exhibit an increased
risk for developing asthma and childhood obesity (12, 13). Antibiotic use by patients
suffering from intestinal diseases such as inflammatory bowel disease (IBD) has been
correlated with decreased bacterial diversity in the gut and increased intestinal inflam-
mation (14, 15), highlighting a need for alternatives to broad-spectrum antibiotics.

Antibiotic-mediated dysbiosis not only alters the bacterial population resulting in
reduced bacterial diversity in the gut, but it can also alter levels of key metabolites, such
as short-chain fatty acids (SCFAs), or the conversion of primary bile acids into secondary
bile acids (16, 17). SCFAs are produced by fermenting gut bacteria and play an integral
role regulating the intestinal epithelial barrier through tight junction proteins (TJP),
influence immunity by driving regulatory T cell (Treg) differentiation, and affect satiety
and insulin production (18–21). Constituents of a healthy microbiome also convert
primary bile acids produced by the liver into secondary bile acids, which impact host
inflammation, immunity, and lipid and glucose metabolism (22, 23). Dysbiosis of the gut
microbiome following antibiotic exposure has been shown to impact bile acid metab-
olism and, consequently, affect immune tone (24, 25). It is therefore clear that altera-
tions in gut bacterial populations can lead to changes in key metabolic pathways that
impact human health and well being.

This greater understanding of the impact antibiotic-mediated dysbiosis has on
human health along with the ongoing antibiotic resistance epidemic has led to the
exploration of new methods to prevent or treat bacterial infections. Monoclonal
antibodies (MAbs) are an attractive option due to their target specificity, long half-life,
and ability to synergize with the host’s immune response (26–28). Here, we studied the
gut microbiome of specific-pathogen-free (SPF) mice following treatment with anti-
bacterial MAbs or broad-spectrum antibiotics to determine if pathogen-specific MAbs
alter the host microbiome or its metabolic products.

RESULTS
Antibacterial MAbs do not change the bacterial density in feces. We hypothe-

sized that unlike antibiotics (Abx), pathogen-specific MAbs would not alter the number
or composition of bacteria in the intestinal microbiome. Specific-pathogen-free (SPF)
mice were treated with a single dose of antibacterial MAb on day 0 or with a
human-equivalent dose of broad-spectrum antibiotics for 5 days. A single dose of MAb
was given because the half-life of human IgG in mice is 7 to 10 days, and MAbs such
as MEDI4893 and MEDI3902 are administered as a single dose in human clinical trials
(29, 30). Fecal samples were collected on days 0, 7, and 14 from mice treated with
a clinical candidate MAb targeting Staphylococcus aureus (MEDI4893*) or human-
equivalent doses of antibiotics used to treat S. aureus infections (vancomycin [VAN],
levofloxacin [LVX], and linezolid [LZD]). Relative concentrations of bacteria, as measured
by 16S rRNA gene quantitative PCR (qPCR), in fecal samples from mice treated with
control IgG (c-IgG), MEDI4893*, or vancomycin were unchanged relative to the con-
centrations in saline controls at all time points. Conversely, the number of fecal bacteria
was significantly reduced on day 7 in mice treated with levofloxacin or linezolid
(P � 0.0083 and 0.0126, respectively) compared with saline-treated controls but was
not significantly different than saline-treated controls on day 14 (Fig. 1A). Sections of
colon containing a fecal pellet were removed, and fluorescent in situ hybridization
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(FISH) with a 16S rRNA gene probe was used to image bacteria within the colon.
Bacterial density along the colonic epithelium was similar in mice treated with c-IgG,
MED4893*, and saline. Antibiotic treatments noticeably affected the bacteria in the
colon at day 7 posttreatment, with levofloxacin and linezolid reducing the bacterial
burden and vancomycin eliminating all rod-shaped bacteria (Fig. 1B to G). Treatment of
mice with anti-Pseudomonas aeruginosa MAb MEDI3902 or anti-Klebsiella pneumoniae
MAb KPE33 also did not alter the overall bacterial content, while the antibiotic
meropenem significantly (P � 0.0003) reduced bacterial load (see Fig. S1A and B in the
supplemental material). These data demonstrate that unlike most of the antibiotics
tested, the pathogen-specific MAbs have a negligible effect on the overall size of the
bacterial population present in murine feces.

Antibacterial MAbs do not change the bacterial composition of feces. The 16S
rRNA gene V4 region was sequenced to determine the effect the different antibacterial
therapies had on the overall microbial community structure and the abundances of
individual taxa.

Correspondence analysis (CA) plots of the Bray-Curtis dissimilarity between the
geometric medians of the taxonomic profiles of different treatment groups (Fig. 2A and
S2A and B) revealed dramatic changes in the overall taxonomic composition on day 7
in antibiotic-treated groups. That was followed by a shift closer to the original state on
day 14 in the levofloxacin and linezolid groups, while the vancomycin group remained
in a more perturbed state. In contrast, treatment with pathogen-specific MAbs
MEDI4893*, MEDI3902, or KPE33 resulted in much smaller compositional shifts during
the course of treatment, comparable to those of the saline or c-IgG controls.

In the richness and alpha-diversity analyses, we observed that the administration of
the broad-spectrum antibiotics levofloxacin, linezolid, vancomycin, ciprofloxacin, or
meropenem dramatically reduced the Hill numbers in the treated samples on day 7,
whereas the Hill numbers from the antibacterial MAb-treated samples remained similar
to those of the controls (Fig. 2B and S2C and D).

Prior to treatment, the fecal microbiota of naive mice was mostly composed of
bacteria from the Bacteroidetes and Firmicutes phyla (Fig. 3A). Porphyromonadaceae
(�25%) and Lachnospiraceae (�25%) had the highest abundances at the family level
(Fig. 3B). Similar taxonomic composition was observed in day 7 and 14 fecal samples

FIG 1 Antibacterial MAbs do not change the microbial concentration in feces. (A) The relative concentrations of bacteria, as measured
by 16S qPCR, in fecal samples of mice at day 0 (prior to treatment) and at 7 and 14 days posttreatment with saline, c-IgG, MEDI4893*,
levofloxacin, linezolid, or vancomycin. (B to G) Segments of mouse colon with fecal pellet at 7 days posttreatment fixed in Carnoy’s
solution and stained with red 16S probe for bacteria in the feces and lumen; blue indicates DAPI staining the nuclei of the epithelium.
Inset shows bacteria at increased magnification. All data are representative of at least two independent experiments, n � 5/group.
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from mice treated with MEDI4893*, c-IgG, or saline. Levofloxacin most strongly affected
Lachnospiraceae on day 7, but that treatment group returned to the taxonomic
distribution observed in the saline-treated controls by day 14. Linezolid resulted in a
taxonomic profile dominated by Clostridium sensu stricto on day 7 and remained
perturbed on day 14. Vancomycin reduced the relative abundance of the Gram-positive
Firmicutes phylum on day 7, corresponding to a reduction in Porphyromonadaceae and
Lachnospiraceae families and an increase in the relative abundance of members of the
Akkermansia genus. The taxonomic profile of that treatment group remained perturbed
on day 14. FISH was used to probe for specific taxa that were observed to be high in
abundance within the fecal microbiota. Relatively high abundances of Akkermansia and
Bacteroides spp. were observed in the colon sections collected from the mice treated
with levofloxacin and vancomycin, respectively. These relative abundance proportions
were not observed in the mice treated with saline, c-IgG, or MEDI4893* (Fig. 3C to E).
Similar outcomes were observed with MAbs MEDI3902 and KPE33, which behaved like
the saline controls, whereas additional antibiotics, ciprofloxacin and meropenem, were
disrupted in the microbiota, particularly on day 7 (Fig. S3A to D).

Antibacterial MAbs do not affect the levels of SCFAs or bile acids. SCFAs, notably,
acetate, propionate, or butyrate, can be produced or influence several bacteria within
the Firmicutes phylum (Lachnospiraceae and Lactobacillus) and the Bacteroidetes phy-
lum (Porphyromonadaceae and Alistipes spp.) (31–34). Decreases in the relative abun-
dances of acetate, propionate, and butyrate were observed in fecal samples from the
mice treated with vancomycin, linezolid, or levofloxacin on day 7 in comparison to the
controls. Consistent with pathogen-specific MAbs not affecting the fecal microbiome,
the SCFA levels in the MEDI4893*-treated samples remained similar to those of the
saline control (Fig. 4A to C).

Recent studies acknowledged the role of bile acids in health and disease (35).
Changes were observed in the conversion of primary bile acids (BAs) into secondary

FIG 2 Antibacterial MAbs do not change the overall microbial composition of feces. (A) Correspondence analysis (CA) plot of microbiota in fecal samples treated
with saline, c-IgG, MEDI4893*, levofloxacin (LVX), linezolid (LZD), or vancomycin (VAN). Each point represents the geometric median of the genus taxonomic
profiles within each treatment group at days 0 (prior to treatment), 7, and 14. The time point legend indicates the period of collection, with the blue line
extending from time points 0 to 7 and the purple line extending from time points 7 to 14. adj., adjusted. (B) Plots of the abundance-based diversity indices
(Hill numbers), also known as the effective numbers of species. The vertical axis corresponds to different values of the order parameter q that defines the Hill
index Nq (66). The horizontal axis shows the respective index values. Taxonomic profiles of individual observations were aggregated into geometric medians
for each combination of treatment and time of sample collection. Each such aggregated community is represented by one Hill index series shown as a line.
One community is more diverse than the other if the values in the entire Hill series are higher for the first community (i.e., the lines for the two communities
do not cross). All data are representative of at least two independent experiments, n � 5/group.
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BAs in mice treated with vancomycin, linezolid, or levofloxacin. Antibiotic-treated
samples exhibited reduced the conversion of taurochenodeoxycholic acid (TCDCA) into
the secondary BAs lithocholic acid (LA) or taurine-conjugated lithocholic acid (TLCA)
and taurocholic acid (TCA) into deoxycholic acid (DCA) or taurodeoxycholic acid (TDCA)
in comparison to the controls. In contrast, conversion of the primary BAs into secondary
BAs in the MAb-treated samples remained similar to that of the controls (Fig. 5A to F).

DISCUSSION

Antibiotics save countless lives; however, recent evidence demonstrates that anti-
biotics can have major off-target effects on the gut microbiome. The human gut
microbiome is an “external organ” that is integral to human health and should be
considered as part of the risk assessment process for new drugs. Antibiotic perturbation
of a healthy microbiome coupled with the emergence and expansion of antibiotic-
resistant bacterial pathogens have necessitated the development of novel antibacterial
strategies that limit some of these adverse effects. Pathogen-specific MAbs have
emerged as one such strategy due to their precision targeting and low risk for off-target
effects. Antibodies have unique properties which enable them to promote pathogen
clearance through multiple mechanisms, including virulence factor neutralization, in-
hibition of bacterial clumping and biofilm formation, and engagement of the immune
system through Fc-dependent interactions (36). MAbs targeting the major human
pathogens S. aureus, P. aeruginosa, and K. pneumoniae have a minimal effect on the gut
microbiome compared with standard-of-care antibiotics.

Alterations to the microbiome have been linked to numerous diseases, as dysbiosis
can influence key functions of the microbiome (3). Bacteria in the gut act not just as a
physical barrier against colonization by pathogenic organisms but also by metabolizing
small molecules which then circulate throughout the host, influencing numerous host
processes. Our data demonstrate that pathogen-specific MAbs do not reduce the

FIG 3 Antibacterial MAbs do not change bacterial taxonomic abundances in feces. (A) Relative abundances of major bacterial phyla of mice treated with saline,
c-IgG, MEDI4893*, levofloxacin (LVX), linezolid (LZD), or vancomycin (VAN) at day 0 (prior to treatment) and days 7 and 14. (B) The relative abundance of major
bacterial genera of treated mice at days 0 (prior to treatment), 7, and 14. (C to E) Segments of mouse colon with fecal pellet 7 days posttreatment stained with
red 16S probe for bacteria, green for Akkermansia spp., and cyan for Clostridium sensu stricto; blue indicates DAPI staining. All data are representative of at least
two independent experiments, n � 5/group.
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absolute abundance, diversity, or taxonomic composition of the gut microbiome
compared to those with the effects of antibiotic treatment. Such effects observed in the
antibiotic treatment groups are indicative of a reduced bacterial burden in the gut and
diminished capacity to prevent infection by opportunistic pathogens (37–40).

Additionally, metabolic functions of the microbiome were not altered in the pres-
ence of MAbs as they were with antibiotics. The host relies on bacterial metabolism not
only to process food but also to break down metabolites such as SCFAs and bile acids
(41, 42). Altered processing of either SCFAs or bile acids due to restructuring of the
microbiome has been linked to metabolic diseases such as diabetes and nonalcoholic
fatty liver disease (NAFLD) (42–46). Functional consequences of microbiome disruption
are not limited to metabolic disease. Autoimmune disease, graft-versus-host disease,
allergies, and inflammatory bowel syndrome have all been linked to microbiome
dysbiosis (47–50). Furthermore, both the development of different types of cancer and
the response rates to current immune-targeted cancer therapies have been linked to
the structure and function of the microbiome (51–54). Many of these microbiome-
related diseases are associated with bacterial infection, and we postulate that antibiotic
treatment of concurrent infections could exacerbate the underlying disease by modi-
fying the microbiome. Due to their minimal impact on the microbiome, pathogen-
specific MAbs would avoid such a complication.

The symbiotic relationship between our immune system and the bacteria which
colonize us is increasingly recognized as having influence over a wide array of biolog-
ical processes. This occurs through microbe-dependent production of SCFAs, bile acids,
and other metabolites. We demonstrate that unlike standard-of-care antibiotics,
pathogen-specific approaches for the treatment of infectious diseases do not alter the
composition or function of the gut microbiome. MAb-based approaches have the
potential to work synergistically with the host, reducing the duration and/or amount of
overall antibiotic use, resulting in reduced impacts on human health.

MATERIALS AND METHODS
Reagents. MAbs were diluted and prepared fresh daily from refrigerated or frozen stocks into sterile

phosphate buffer saline (PBS; pH 7.2). The anti-S. aureus alpha toxin MAb MEDI4893*, anti-P. aeruginosa

FIG 4 Antibacterial MAbs do not affect the levels of SCFAs. (A to C) Relative abundances of acetate (A), propionate (B), and butyrate
(C) in fecal samples of mice treated with saline, MEDI4893*, levofloxacin, linezolid, or vancomycin at day 0 and days 7 and 14
posttreatment. All data are representative of at least two independent experiments, n � 5/group. SEM, standard error of the mean.

Jones-Nelson et al. Antimicrobial Agents and Chemotherapy

May 2020 Volume 64 Issue 5 e02347-19 aac.asm.org 6

https://aac.asm.org


MAb MEDI3902, and anti-K. pneumoniae MAbs KPE33 and KPN42 were previously described (26, 55, 56).
Isotype control human IgG1 (c-IgG) was included as a control. Analytical-grade vancomycin, linezolid,
levofloxacin, ciprofloxacin, and meropenem were corrected for potency and prepared fresh daily.

Mice. All animal studies were approved by the AstraZeneca Institutional Animal Care and Use
Committee and were conducted in an Association for Accreditation and Assessment Laboratory Animal
Care (AAALAC)-accredited facility in compliance with U.S. regulations governing the housing and use of
animals. Specific-pathogen-free 7- to 8-week-old female C57BL/6J mice (The Jackson Laboratory) were
ear tagged, randomized, and housed in sterile cages with autoclaved mouse chow (LabDiet 5K52) and
water. At least 5 mice per group were used in each experiment.

Study design. Animals were injected intraperitoneally (i.p.) with either a single 0.5-ml MAb dose
(15 mg/kg of body weight) or administered human-equivalent doses of vancomycin (100 mg/kg twice a
day [BID]), linezolid (60 mg/kg BID), ciprofloxacin (10 mg/kg BID), meropenem (66.7 mg/kg BID), or
levofloxacin (235 mg/kg once a day [QID]) in 0.2 ml via subcutaneous (s.c.) injection for 5 consecutive
days. Animals treated with PBS vehicle (BID) were included in each study as a control. Two fecal pellets
(�40 mg total) were collected from each animal on days 0 (prior to treatment), 7 (after a 36-h washout
period), and 14 and immediately processed for DNA extraction (see below). A single fecal pellet was
collected from the same animals and immediately stored at – 80°C for SCFA and bile acid analyses. In
select experiments, an additional cohort of mice from each group was euthanized by CO2 asphyxiation
on day 7 for intestinal fluorescent in situ hybridization (FISH) staining.

DNA extraction and quantification. DNA was extracted from mouse feces using the PowerSoil DNA
isolation kit (Mo Bio, West Carlsbad CA, USA), according to the manufacturer’s protocol, and DNA
concentrations were determined using a NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific).
Purified DNA was stored at �80°C until use. The universal qPCR 16S rRNA primers U16SRT-F (5=-ACTC
CTACGGGAGGCAGCGT-3=) and U16SRT-R (5=-TATTACCGCGGCTGCTGCTGGC-3=) were used to quantify
total bacterial 16S rRNA genes from the purified fecal DNA (19). qPCRs were performed using 2 �l of
template DNA from 2 fecal pellets per mouse, 2 pmol each primer, 3 �l of deionized water, and 5 �l of
Sybr green master mix (Promega). The cycling conditions were as follows: 50°C for 2 min, 95°C for 2 min,
95°C for 15 s, and 60°C for 1 min, followed by a dissociation stage for 40 cycles. Differences in threshold
cycle (CT) values were compared following normalization of DNA input in each qPCR.

Library preparation and sequencing. 16S rRNA gene PCR was carried out as described previously
(57). Briefly, V4 16S rRNA gene libraries were constructed using AccuPrime Taq high-fidelity DNA
polymerase (Invitrogen). Library cleanup and normalization were performed using the SequalPrep
normalization plate (96-well) kit (Invitrogen). Libraries were then pooled, and the final concentration of

FIG 5 Antibacterial MAbs do not affect bile acid metabolism. (A to H) Relative abundances of taurochenodeoxycholic acid (A), lithocholic acid (B),
taurine-conjugated lithocholic acid (C), deoxycholic acid (D), taurodeoxycholic acid (E), cholic acid (F), tauroursodeoxycholic acid (G), and ursodeoxycholic acid
(H) in fecal samples of mice treated with saline, MEDI4893*, levofloxacin, linezolid, or vancomycin at day 0 and days 7 and 14 posttreatment. All data are
representative of at least two independent experiments, n � 5/group.
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the library was determined using a Qubit fluorometer (Thermo Fisher Scientific). Libraries were mixed
with PhiX control v3 (Illumina) and denatured using fresh 0.04 N NaOH. Pooled libraries were sequenced
on an Illumina MiSeq instrument using a 2 � 250-bp MiSeq reagent kit v2.

Sequence analysis. Sequences were trimmed from adaptors using BBTools (58) and processed into
amplicon sequence variants (ASVs) using the R package Dada2 (59), with taxonomy assigned from the
RDP (60) training set v.14, as maintained by the Dada2 repository.

Fluorescence in situ hybridization of colonic microbiome. To visualize the colonic microbiome,
colon sections containing a fecal pellet were processed as previously described (61). Briefly, the tissue
was fixed in Carnoy’s solution for 2 weeks and paraffin embedded. Slides were made from 5-�m slices,
which were deparaffinized in xylene (20 min at room temperature), followed by a 5-min incubation in
99.5% ethanol. The tissue was then incubated overnight at 50°C in hybridization solution (20 mM
Tris-HCl, 0.9 M NaCl, 0.1% SDS, 25% formamide) containing the following FISH probes: 16S rRNA,
GCTGCCTCCCGTAGGAGT; Akkermansia spp., GGTTCCCCTCCATTAC; Clostridium sensu stricto, GCCGTGGC
TTCCTCCTY; Porphyromonas spp., CTCGTTATGGCACTTAAGCCGA; and Bacteroides spp., CGCAATCGGAGT
TCTTCGTGATATC (62). Nuclei were stained with 4=,6-diamidino-2-phenylindole (DAPI), and the slides
were washed 3� with PBS and coverslipped with ProLong Gold mountant (Invitrogen). Images were
collected using a Zeiss LSM 880 Airyscan or Leica SP8 microscope. Following acquisition, images were
deconvolved using Airyscan processing or Leica Lightning deconvolution software.

Metabolite extraction from fecal samples. Fecal samples were stored at – 80°C prior to metabolite
extraction. Metabolite extraction was performed with 50:50 acetonitrile-water. The amount of extraction
solvent added to each sample was normalized to sample mass at a ratio of 10 �l extraction solvent to
1 mg sample. After the addition of extraction solvent, samples were manually homogenized and mixed
at 2,000 rpm for 15 min at room temperature. Samples were centrifuged for 10 min at 18,000 � g and
4°C. One hundred microliters of supernatant was transferred to new tubes and centrifuged for 10 min at
18,000 � g and 4°C. Twenty microliters of supernatant was transferred to new tubes for derivatization of
SCFAs as described below. Ten microliters of unlabeled metabolite extract was combined with 90 �l bile
acid internal standard composed of a mixture of 15 bile acids at 1 �M in 50:50 MeOH-H2O. The bile acid
internal standard mixture contains the following deuterated bile acids: lithocholic acid-d4, chenodeoxy-
cholic acid-d4, deoxycholic acid-d4, ursodeoxycholic acid-d4, cholic acid-d4, glycolithocholic acid-d4,
glycochenodeoxycholic acid-d4, glycodeoxycholic acid-d4, glycoursodeoxycholic acid-d4, glycocholic
acid-d4, taurolithocholic acid-d4, taurochenodeoxycholic acid-d4, taurodeoxycholic acid-d4, tauroursode-
oxycholic acid-d4, and taurocholic acid-d4.

Short-chain fatty acid derivatization. SCFAs were derivatized with 3-nitrophenylhydrazine (3-
NPH) based on a method previously described by Borchers and coworkers (63). Fecal extracts (20 �l)
were sequentially mixed with 10 �l of 200 mM 3-NPH–HCl in 50:50 acetonitrile-water (ACN-H2O)
solution and 10 �l of 120 mM N-(3-dimethylaminopropyl)-N=-ethylcarbodiimide–HCl (EDC) in 50:44:6
ACN-H2O-pyridine solution. Mixtures were reacted at 40°C with 800 rpm mixing for 30 min.
3-NPH-derivatized samples were diluted with 960 �l of 50:50 ACN-H2O. One hundred microliters of
3-NPH-derivatized samples was mixed with 100 �l 13C6-3-NPH-derivatized SCFA internal standard
containing derivatized acetic acid, propionic acid, isobutyric acid, butyric acid, 2-methyl butyric acid,
isovaleric acid, and valeric acid.

Liquid chromatography-mass spectrometry. Relative quantitation of SCFAs and bile acids was
performed by liquid chromatography-mass spectrometry (LC-MS) on an Agilent 1290 Infinity II LC
coupled to a 6560 quadrupole time of flight (Q-TOF) instrument equipped with an Agilent Jet Stream
(AJS) source operated in negative-ion mode. Chromatographic separation was performed using a Waters
Acquity ultraperformance liquid chromatography (UPLC) BEH C18 column (1.7 �m, 2.1 by 100 mm).
Mobile phases A and B were 0.01% formic acid in H2O and 0.01% formic acid in acetonitrile, respectively.
SCFA analysis was performed with a flow rate of 0.3 ml·min�1, and the column temperature was
maintained at 50°C. The initial solvent composition of 15% B was maintained for 2 min before increasing
to 55% B at 11 min. The column was washed with 100% B for 3 min and equilibrated at initial solvent
composition between injections for 5 min. MS spectra were recorded from m/z 50 to 1,000 at a rate of
1.5 spectra·s�1. Bile acid analysis was performed with a flow rate of 0.3 ml·min�1, and the column
temperature was maintained at 50°C. The initial solvent composition of 5% B was maintained for 2.4 min
before increasing to 30% B over 1 min and 70% B over 12 min. The column was washed with 100% B
for 2.5 min and equilibrated at the initial solvent composition between injections for 4 min. MS spectra
were recorded from m/z 50 to 1,200 at a rate of 1.5 spectra·s�1. The mass spectra for both methods were
recalibrated to reference masses of m/z 112.9856 and 966.0007.

LC-MS data analysis and metabolite quantitation. The Agilent Profinder software was used for
retention time alignment and feature extraction by batch recursive feature extraction method. Com-
pound groups were annotated by their m/z and LC retention times compared to isotopically labeled
internal standards, saved as Profinder Archive files, and exported with the integrated intensities from
each sample. Relative quantitation was based on the integrated ion intensities of the features and
internal standards. To test for the significance of the changes in the metabolite abundances, the ion
intensities from each compound were log transformed and subtracted from the corresponding internal
controls. The results (logR) were fitted to a mixed-effect model considering the interactions among the
compounds, treatments, and time points. The between-subject effects and the dilution factors for each
sample were modeled as “random” factors, while the mean-subtracted background level (logMedian.BK2) for
each sample estimated from the median (logMedian.BK) of the unassigned features was incorporated as
a covariate. The data are available at MetaboLights (study number MTBLS1257; https://www.ebi.ac.uk/
metabolights/).
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Statistical analysis. Microbiome analysis was performed in R. The majority of the analyses were done
using the open-source package MGSAT, which wraps several R packages in order to perform -omics
analyses (https://github.com/andreyto/mgsat). The scripts which generated the results presented in this
paper are located in a directory, examples/16S/projects/mab_abx, versioned with Git tag mab_abx.
Figures were generated with the R package ggplot2 (64). Richness and alpha- and beta-diversity metrics
were calculated with the R package vegan (65) at the ASV level; all ASVs were included, regardless of
abundance. To control for differences in sequencing depth per sample, samples were randomly rarefied
to the minimum sample read count, and then each richness, alpha-diversity, or beta-diversity index was
calculated. For each index, this process was repeated 400 times, and the results were averaged. Beta
diversity was assessed using the Bray-Curtis dissimilarity index.

To estimate the statistical significance of the differences in compositional shifts caused by different
treatments, we computed for each mouse the Bray-Curtis dissimilarity between day 7 and day 0 and used
this within-mouse compositional shift in the t test for the difference in means between the pairs of
treatment groups.

Richness and other abundance-based measures of alpha diversity in each sample were assessed using a
series of Hill numbers (66), Nq, where q was the order parameter ranging from zero to infinity. Hill numbers
are a unified family of diversity indices (differing among themselves only by an exponent, q) that incorporate
other measures of diversity and richness, expressing them on a uniform scale of the effective number of
species (67). In particular, N0 is equivalent to richness, and N1 and N2 are equivalent to the exponentials of the
Shannon index and the inverted Simpson index, respectively. Following the diversity analysis, sequence
counts were normalized into simple proportions of taxa per sample to obtain the relative abundance profiles.
For the genus-level analysis, genera from the lower quartiles of the mean relative abundance and mean
incidence over all samples were discarded. The dynamic of the overall abundance profiles was plotted in the
coordinates obtained from a correspondence analysis of a Bray-Curtis dissimilarity index computed between
the geometric medians of samples in each treatment group at each time point.

Data availability. Data are available through the European Nucleotide Archive under accession
number PRJEB34462.
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