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Abstract: Lymphatic delivery of a vaccine can be achieved using a dendritic cell (DC)-targeted
delivery system that can cause DC to migrate to lymph nodes upon activation by an adjuvant.
Here, we designed a mannose-modified cationic lipid nanoparticle (M-NP) to deliver the nucleic
acid adjuvant, polyinosinic:polycytidylic acid (PIC). PIC-loaded M-NP (PIC/M-NP) showed stable
lipoplexes regardless of the ligand ratio and negligible cytotoxicity in bone marrow-derived DC.
DC uptake of PIC/M-NP was demonstrated, and an increased mannose ligand ratio improved DC
uptake efficiency. PIC/M-NP significantly promoted the maturation of bone marrow-derived DC,
and local injection of PIC/M-NP to mice facilitated lymphatic delivery and activation (upon NP
uptake) of DC. Our results support the potential of PIC/M-NP in delivering a nucleic acid adjuvant
for the vaccination of antigens.

Keywords: nucleic acid adjuvant; lipid nanoparticle; lymphatic delivery; dendritic cell-targeted delivery

1. Introduction

A vaccine adjuvant, which is an immunostimulatory component of a vaccine formula-
tion, is often very important for the successful vaccination of an antigen [1–3]. Most recently
developed vaccines do not apply the entire pathogen but rather use certain components
(e.g., major proteins) as antigens [4]. However, a subunit vaccine alone often fails to induce
a strong immune response [5]. Aluminum-containing adjuvants have the longest history
of use [6,7], but they have a limited ability to induce cellular immunity and thus are not
suitable for intracellular antigen applications [8]. In addition, aluminum adjuvants can
have some side effects, raising safety issues [6,9]. Since preventive vaccines are used in
people of various ages, safety is a top priority in vaccine development.

Adjuvants composed of nucleic acids have great advantages in terms of biocompati-
bility and safety [8]. The Toll-like receptor 9-agonizing nucleic acid, CpG 1018, is included
as an adjuvant in the hepatitis B vaccine, HEPLISAV-B®, which was recently approved
by the U.S. FDA [10]. Although this supported the efficacy of nucleic acid adjuvants, the
pharmaceutical application of nucleic acids has faced some limitations. For example, many
nucleic acid adjuvants target intracellular molecules in immune-stimulating pathways
and thus must be introduced into dendritic cells (DC) [8]. In addition, nucleic acids have
weak stability due to the action of in vivo nucleases [11]. To compensate for these limi-
tations, nucleic acid adjuvants may need to be applied using an appropriately designed
delivery system.

Lipid nanoparticles (LNP), which represent such a drug delivery system, have recently
attracted attention as an antigen delivery strategy [1,12,13]. LNP hold great promise in
customized medicine because their manufacturing process is relatively simple and desirable
properties (charge, size, surface modification, etc.) can be easily imparted by altering the
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composition of lipids [14,15]. It may also be possible to impart a synergistic effect by
simultaneously loading an antigen and adjuvant to the LNP. In the BioNTech/Pfizer and
Moderna mRNA vaccines recently approved for the prevention of coronavirus infectious
disease-19 (COVID-19), LNP comprises a major component and are thought to play roles
both in mRNA delivery and as an adjuvant [1].

Here, we set out to design an LNP capable of targeting DC for lymphatic delivery
of nucleic acid adjuvants. We selected polyinosinic:polycytidylic acid (poly I:C, PIC) as a
model nucleic acid adjuvant. The LNP was designed to carry a cationic charge to enable
the delivery of the negatively charged nucleic acid adjuvant, and mannose-modified lipid
was inserted to induce DC-specific delivery. The effects of PIC-complexed mannose LNP
(PIC/M-NP) on DC-specific cellular uptake and DC maturation were evaluated in vitro
and in vivo (Figure 1).
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Figure 1. Dendritic cell (DC)-mediated lymph node targeting by polyinosinic:polycytidylic acid (PIC)/mannose-modified
cationic lipid nanoparticle (M-NP). (A) PIC was complexed with M-NP via electrostatic interaction to form PIC/M-NP.
(B) Mechanisms of DC activation and lymph node targeting by PIC/M-NP.

2. Materials and Methods
2.1. Preparation of PIC-Loaded M-NP

M-NP were prepared using a thin-film hydration method [16]. Briefly, 0.292 µmol of
1,2-diphytanoyl-sn-glycero-3-phosphoethanolamine (DPhPE, Avanti Polar Lipids, Alabaster,
AL, USA), 0.464 µmol of 3β-[N-(N’,N’-dimethylaminoethane)-carbamoyl]cholesterol (DC-
Chol, Avanti Polar Lipids), 1.24 µmol of 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine
(EDOPC, Avanti Polar Lipids), and various moles of 1,2-dipalmitoyl-sn-glycero-3-phospho-
((ethyl-1’,2’,3’-triazole)triethyleneglycolmannose) (PA-PEG3-man-nose, PEG m.w., 148.1,
Avanti Polar Lipids) were dissolved in chloroform. For flow cytometry and fluores-
cence microscopy, 0.03 µmol fluorescent dye cyanine 5-labeled 1,2-dioleoyl-sn-glycero-
3-phosphoethanolamine-N (Cy5-PE, Avanti Polar Lipids) was added to the lipid mixture.
The chloroform was removed, and the remaining liquid was dehydrated to a thin lipid film
using a vacuum rotary evaporator. The lipid film was rehydrated with 1 mL of 20 mM
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer (HEPES, pH 7.0), followed by
sonication for 30 min and centrifugation at 13,500× g for 3 min. The supernatant was
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collected as M-NP. Various PA-PEG-mannose (0.04, 0.1, 0.2, or 0.4 µmol) were used to make
M-NPs containing 2, 5, 10, 20 mol% mannose and described as M-NP 2, 5, 10, and 20,
respectively. For the preparation of poly I:C-loaded M-NP (PIC/M-NP), 5 µg of poly I:C
(average size of 0.6 kb, InvivoGen, San Diego, CA, USA) in HEPES buffer was added into
20 µL of M-NP, vortex mixing was used to form PIC/M-NP complexes via electrostatic
interaction, and incubation was performed for 10 min at room temperature.

2.2. Characterization and Complexation Study of Nanoparticles

Nanoparticles were characterized by morphology, size, and net surface charge. The
morphology of nanoparticles was measured by transmission electron microscopy (TEM)
using a JEM-2100 F (JEOL, Tokyo, Japan). The size distribution and zeta potential were
evaluated using an ELSZ-1000 instrument (Otsuka Electronics Co., Osaka, Japan), based on
the dynamic light scattering method and laser Doppler microelectrophoresis, respectively.
For size measurement, various M-NP and PIC/M-NP samples stored at 4 ◦C were diluted
20 mM HEPES buffer. The particle size was obtained by cumulant intensity distribution,
and size was measured 3 times for each group. The particle size was measured over
1 week. The complexation of PIC and M-NP was analyzed by gel retardation assay [8].
PIC/M-NP were prepared by mixing PIC with M-NP at various weight ratios, followed by
1% agarose gel electrophoresis and analysis using a Gel Doc XR+ Imaging System (Bio-Rad,
Hercules, CA, USA).

2.3. Animals

Five-week-old Balb/c mice were purchased from Raon Bio Korea (Yongin, Korea)
and maintained under standard pathogen-free conditions. All animal experiments were
performed under the Guidelines for the Care and Use of Laboratory Animals of the
Institute of Laboratory Animal Resources, Seoul National University (approval number,
SNU-190417-15(E)).

2.4. Isolation of Bone Marrow-Derived Dendritic Cells (BMDC)

BMDC were isolated as previously described [17]. Briefly, femurs and tibias were
extracted from 5-week-old Balb/c mice and sterilized by immersion in 70% ethanol for
5 min. The bones were washed thrice with phosphate-buffered saline (PBS; pH 7.4), bone
marrow was flushed with complete RPMI medium (Welgene, Gyeongsan, Korea), and red
blood cells were lysed. The collected monocytes were resuspended in Iscove’s modified
Dulbecco’s medium (Welgene) supplemented with 10% fetal bovine serum (GenDEPOT,
Barker, TX, USA), 100 mg/mL streptomycin, 100 units/mL penicillin (Gibco, Carlsbad, CA,
USA), 20 ng/mL recombinant mouse granulocyte-macrophage colony-stimulation factor
(GenScript, Piscataway, NJ, USA), 20 ng/mL recombinant mouse interlukin-4 (GenScript)
and 50 µm β-mercaptoethanol (Sigma-Aldrich, St. Louis, MO, USA). Fresh medium was
added on day 3 and BMDC were ready to use on day 7.

2.5. In Vitro Cytotoxicity Assay

The cell viability of nanoparticle-treated BMDC was evaluated by MTT (3-(4,5-dimethy-
lthizol-2-yl)-2,5-diphenyltetrazolium bromide) assay (Sigma-Aldrich) and live cell stain-
ing [18]. BMDC were seeded to 24-well plates (1 × 105 cells/well) and incubated for 24 h.
BMDC was treated with various nanoparticle formulations at a PIC dose of 5 µg for 4 h.
The medium was changed with fresh RPMI medium, and cells were incubated for 24 or
48 h and then treated with MTT (250 µg/mL) for 1 h at 37 ◦C. The formazan crystals in the
cells were solubilized with dimethyl sulfoxide (Sigma-Aldrich), and the absorbance of the
colored solution was measured using a Multi-Reader (Molecular Devices, San Jose, CA,
USA) at 570 nm. The cell viability of BMDC was calculated by normalizing the absorbance
of the untreated BMDC group to 100%. For live cell staining, BMDC were stained with
2 µM calcein AM (Molecular Probes, Eugene, OR, USA) for 15 min, and live BMDC was
observed by a fluorescence microscope (DM IL; Leica, Buffalo Grove, IL, USA).
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2.6. In Vitro Study of DC Targeting

The DC-targeted delivery efficiency of nanoparticles was evaluated by flow cytometry
and fluorescence microscopy. For flow cytometry, BMDC were seeded in 24-well plates
(1 × 105 cells/well), incubated for 24 h, and treated with Cy5-labeled nanoparticles at a
PIC dose of 5 µg for 4 h. The cells were harvested, washed thrice with PBS, and analyzed
by flow cytometry (FACSCalibur; BD Bioscience, San Jose, CA, USA). For fluorescence
microscopy, BMDC were treated with Cy5-labeled nanoparticles for 4 h, washed with PBS,
and fixed with 4% formaldehyde in PBS for 10 min. The cells were then washed with PBS,
stained with FITC-anti-mouse CD11c antibody (BioLegend, San Diego, CA, USA) for 1 h,
and then stained with 4′,6-diamidino-2-phenylindole (DAPI, Sigma-Aldrich, St. Louis, MO,
USA) for 10 min. DC-targeting images were visualized using a confocal laser-scanning
microscope (LSM 5 Exciter; Carl Zeiss, Inc., Jena, Germany).

2.7. In Vitro Study of DC Maturation

DC maturation was evaluated by analyzing the expression level of CD86 on the cell
surface [19]. BMDC were seeded in 24-well plates (1 × 105 cells/well), incubated for
24 h, and treated with various nanoparticle formulations at a PIC dose of 5 µg for 24 h.
The cells were harvested and stained with FITC-anti-mouse CD11c and APC-anti-mouse
CD86 (BioLegend) antibodies for 1 h. For CD11c analysis, the excitation and emission
wavelengths used for flow cytometry of FITC were 495 and 519 nm, respectively. For
CD86 analysis, the excitation and emission wavelengths used for flow cytometry of APC
were 650 and 660 nm, respectively. The expression of CD86 was analyzed using a BD
FACSCalibur flow cytometer (BD Bioscience). The expression of surface markers on DC
was determined by gating the CD11c+ population.

2.8. In Vivo Lymph Node Targeting of Nanoparticles

The in vivo lymph node targeting ability of nanoparticles was evaluated by flow cy-
tometry and molecular imaging. Five-week-old Balb/c mice were injected subcutaneously
with PIC/Cy5-labeled M-NP at a PIC dose of 0.25 mg/kg. For lymph node imaging,
mice were sacrificed after 24 h and inguinal lymph nodes were extracted. The fluores-
cence of lymph nodes was monitored using an IVIS Spectrum in Vivo Imaging System
(PerkinElmer, Waltham, MA, USA). For flow cytometry, single cells were prepared by
grinding lymph nodes through 70 µM cell strainers (SPL Life Science, Pocheon, Korea)
and stained with FITC-anti-mouse CD11c for 1 h. The population of DC that took up
nanoparticles (CD11c+Cy5+) in the lymph nodes was measured by flow cytometry.

2.9. DC Maturation Study in Lymph Node

DC maturation in lymph nodes was analyzed by measuring the expression level
of CD86 on DC isolated from Balb/c mice. Five-week-old Balb/c mice were injected
subcutaneously in the back with various PIC-loaded nanoparticle formulations at a PIC
dose of 0.25 mg/kg (5 µg PIC/mouse). After 48 h, mice were sacrificed and inguinal lymph
nodes were isolated. Single-cell suspensions were stained with FITC-anti-mouse CD11c
and APC-anti-mouse CD86 for 1 h. The population of activated DC (CD11c+CD86+) was
analyzed by flow cytometry.

2.10. In Vivo Toxicity Study

Five-week-old Balb/c were injected subcutaneously in the back with various PIC-
loaded nanoparticle formulations. Seven days after injection, whole blood and serum were
collected for analysis of biochemical markers of organ functions. As a biomarker of liver
function, alanine aminotransferase (ALT) level in the blood was measured. As a biomarker
of kidney function, blood urea nitrogen (BUN) level in the blood was measured.
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2.11. Statistics

Data were shown as mean± standard error of the mean (SEM). The sample size (n) for
each statistical analysis was indicated in the figure legends. A one-way analysis of variance
(ANOVA) with the Student−Newman−Keuls post-hoc test was used to analyze statistical
differences. The SigmaStat software (version 12.0; Systat Software, Richmond, CA, USA)
was used for all statistical analysis. Significant differences are indicated as *** p < 0.001,
** p < 0.01, and * p < 0.05.

3. Results
3.1. Characterization of PIC/M-NP

We found that M-NP loaded sufficient PIC as a cargo regardless of the molar ratio of
the targeting ligand. The physicochemical features of poly IC/M-NP were characterized
with respect to morphology, size, zeta potential, and poly IC loading capacity. TEM image
revealed homogenous and round morphology of PIC/M-NP 10 (Figure 2A). In size, the
M-NP measured around 150 nm in diameter regardless of the mannose-PEG lipid content
(Figure 2B). No significant size change was observed after lipoplex formation with PIC. The
particle size of PIC/M-NP 10 was 157.7 ± 14.4 nm. The sizes of lipoplex (PIC/M-NP 10)
did not significantly change over 7 days of storage at 4 ◦C (Figure S1). Due to the cationic
lipid component, the M-NP showed a strong cationic surface charge higher than 60 mV
(Figure 2C). When the cationic M-NP complexed with negatively charged poly I:C, the zeta
potential decreased significantly; the zeta potential of PIC/M-NP 10 was 18.1 ± 4.2 mV.
The loading capacity of poly I:C on M-NP was confirmed by gel retardation. When poly
IC was complexed with M-NP at various w/w ratios, complete loading was observed at a
w/w ratio of 10 (Figure 2D).
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Figure 2. Characterization of PIC/M-NP. (A) Morphology of polyIC/M-NP 10 was observed by TEM. (B) Mean particle
sizes of nanoparticles in a naked form or PIC-complexed form were measured by dynamic light scattering (n = 3, one-way
ANOVA and Student-Newman-Keuls test). (C) Zeta potential was measured by laser Doppler microelectrophoresis (n = 3,
one-way ANOVA and Student-Newman-Keuls test). (D) Complexation between poly IC and M-NP was determined by gel
retardation. (*** p < 0.001, n.s.: Not significantly different).

3.2. Cytotoxicity of PIC/M-NP

The poly IC/M-NP did not induce significant toxicity to BMDC. When various
mannose-PEG lipid contents of PIC/M-NP were applied and cells were incubated for
24 and 48 h, no notable change was observed in live cell density (Figure 3A). Consistently,
the cell viability calculated by MTT assay did not significantly differ between BMDC
treated with or without PIC/M-NP for 24 or 48 h (Figure 3B).
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Figure 3. PIC/M-NP cytotoxicity on bone marrow-derived dendritic cells (BMDC). BMDC were treated with nanoparticles
in a naked form or PIC-complexed form. After 24 h and 48 h, the viability of BMDC was visualized by live cell staining (A)
and quantified by MTT assay (B) (n = 5, one-way ANOVA and Student-Newman-Keuls test). Scale bar: 50 µm. (n.s.: Not
significantly different).

3.3. Cellular Uptake of PIC/M-NP

The finely controlled nanoformulation significantly improved the cellular uptake
of PIC/M-NP in BMDC. As the content of mannose-PEG-lipid increased, thus did the
cellular uptake of PIC/M-NP (Figure 4A). In particular, the use of 10% mannose-PEG-lipid
significantly enhanced the cellular uptake, with this group showing 1.90-fold and 1.20-fold
higher mean fluorescence intensity compared to those of the PIC/M-NP 0- and PIC/M-NP
5-treated groups. However, when the content of mannose-PEG-lipid was further increased
to 20%, the cellular uptake was 9.35-fold lower than that obtained with PIC/M-NP 10.
Consistently, confocal microscopic images revealed distinct endosomal localization of M-
NP fluorescence in BMDC treated with PIC/M-NP 10, whereas this was not seen for the
untreated group or those treated with PIC/M-NP of other ratios (Figure 4B).
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Figure 4. Intracellular uptake of PIC/M-NP by BMDC. BMDC were treated with PIC/M-NP with mannose densities (0 to
10%) for 4 h. (A) Intracellular uptake of PIC/M-NP was measured by flow cytometry (A). (n = 5, one-way ANOVA and
Student-Newman-Keuls test). (B) Intracellular locations were visualized by confocal microscopy. Scale bar: 20 µm. (*** p < 0.001).
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3.4. In Vitro BMDC Maturation Effect of PIC/M-NP

Poly IC-loaded M-NP 10 remarkably enhanced BMDC maturation. When BMDC were
treated with M-NP lacking PIC, there was no significant expression of the DC maturation
marker, CD86 (Figure 5A). Similarly, free PIC treatment did not show significant increase in
the maturation of BMDC. However, PIC/M-NP 10-treated BMDC showed a CD86-positive
DC population of 40.7 ± 1.2%; this was significantly higher than the 13.9 ± 1.9% seen in
the untreated group, indicating that PIC/M-NP 10 significantly promoted DC maturation
(Figure 5B). BMDC treated with PIC/M-NP 0, which lacked the mannose-PEG-lipid, had a
26.1 ± 1.9% CD86-positive DC population, indicating that this formulation triggered DC
maturation but did so less efficiently than PIC/M-NP 10.
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Figure 5. In vitro activation of BMDC by PIC/M-NP. BMDC was treated with various PIC-loaded nanoparticles. After 48 h,
the expression of CD86 on BMDC was quantified by flow cytometry. (A) Populations of CD11c+CD86+ cells are shown for
each group (n = 5, one-way ANOVA and Student-Newman-Keuls test). (B) A representative cell density plot is shown for
each group. (*** p < 0.001). Blue boxes indicate the gated areas for CD11c+CD86+ cells.

3.5. In Vivo Lymph Node Targeting of PIC/M-NP

Administered PIC/M-NP exhibited greater accumulation in lymph nodes compared
to the untreated group. One day after subcutaneous injection of the nanoparticle to the
backs of mice, whole-body imaging revealed that mice treated with PIC/M-NP 0, poly
IC/M-NP 5, or PIC/M-NP 20 showed low-intensity fluorescence signals in their inguinal
lymph nodes (Figure 6A). On the other hand, higher fluorescence signal fluorescence
was detected in the lymph nodes of mice treated with PIC/M-NP 10. Ex vivo images of
extracted inguinal lymph nodes also showed increased PIC/M-NP 10-derived fluorescence
localized in the lymph nodes (Figure 6B). The radiant efficiency calculated for the lymph
nodes of the PIC/M-NP 10-treated group was 2.40-fold and 2.03-fold higher than those
of the PIC/M-NP 0- and PIC/M-NP 5-treated groups, respectively (Figure 6C). Cellular
uptake of PIC/M-NP was observed in the DC population of lymph nodes. The PIC/M-NP
10-treated group showed the highest DC population compared to other groups (Figure 6D),
and its fluorescence positive DC population was 5.7 ± 1.0%, which was 25.7-fold higher
than that seen in the PIC/M-NP 0-treated group (Figure 6E).



Pharmaceutics 2021, 13, 490 8 of 12

Pharmaceutics 2021, 13, x 8 of 12 
 

 

Newman-Keuls test). (B) A representative cell density plot is shown for each group. (*** p <0.001). 

Blue boxes indicate the gated areas for CD11c+CD86+ cells. 

3.5. In Vivo Lymph Node Targeting of PIC/M-NP 

Administered PIC/M-NP exhibited greater accumulation in lymph nodes compared 

to the untreated group. One day after subcutaneous injection of the nanoparticle to the 

backs of mice, whole-body imaging revealed that mice treated with PIC/M-NP 0, poly 

IC/M-NP 5, or PIC/M-NP 20 showed low-intensity fluorescence signals in their inguinal 

lymph nodes (Figure 6A). On the other hand, higher fluorescence signal fluorescence was 

detected in the lymph nodes of mice treated with PIC/M-NP 10. Ex vivo images of ex-

tracted inguinal lymph nodes also showed increased PIC/M-NP 10-derived fluorescence 

localized in the lymph nodes (Figure 6B). The radiant efficiency calculated for the lymph 

nodes of the PIC/M-NP 10-treated group was 2.40-fold and 2.03-fold higher than those of 

the PIC/M-NP 0- and PIC/M-NP 5-treated groups, respectively (Figure 6C). Cellular up-

take of PIC/M-NP was observed in the DC population of lymph nodes. The PIC/M-NP 10-

treated group showed the highest DC population compared to other groups (Figure 6D), 

and its fluorescence positive DC population was 5.7 ± 1.0%, which was 25.7-fold higher 

than that seen in the PIC/M-NP 0-treated group (Figure 6E). 

 

Figure 6. In vivo lymph node-targeting ability of PIC/M-NP. Mice were injected subcutaneously 

with Cy5-labeled nanoparticles. After 24 h, fluorescence at inguinal lymph node sites (A) and ex 

vivo images of inguinal lymph nodes (B) were visualized. (C) Radiant efficiency of inguinal lymph 

nodes was quantified for each group (n = 5, one-way ANOVA and Student-Newman-Keuls test). 

(D) The uptake of nanoparticles in lymph node-resident DC was measured by flow cytometry. 

Populations of CD11c+Cy5+ cells (E) are shown (n = 5, one-way ANOVA and Student-Newman-

Keuls test, *** p <0.001). 

3.6. In Vivo DC Maturation Effect and Safety of PIC/M-NP 

Consistent with the enhanced cellular uptake of PIC/M-NP 10 into DC of the lymph 

nodes, injection of PIC/M-NP 10 into mice induced significant DC maturation, as deter-

mined by the expression of CD86. Two days after subcutaneous injection of PIC/M-NP, 

the CD86-positive DC population in the inguinal lymph node was analyzed. CD86-posi-

tive populations of mice were 26.7 ± 3.4% for PIC/M-NP 0-treated group, and 21.7 ± 2.6% 

for M-NP 10-treated group (Figure 7A). There were no significant differences in CD86-

positive populations of mice between untreated (Figure 7B) and M-NP 10-treated groups. 

Figure 6. In vivo lymph node-targeting ability of PIC/M-NP. Mice were injected subcutaneously with Cy5-labeled nanopar-
ticles. After 24 h, fluorescence at inguinal lymph node sites (A) and ex vivo images of inguinal lymph nodes (B) were
visualized. (C) Radiant efficiency of inguinal lymph nodes was quantified for each group (n = 5, one-way ANOVA and
Student-Newman-Keuls test). (D) The uptake of nanoparticles in lymph node-resident DC was measured by flow cytometry.
Populations of CD11c+Cy5+ cells (E) are shown (n = 5, one-way ANOVA and Student-Newman-Keuls test, *** p < 0.001).

3.6. In Vivo DC Maturation Effect and Safety of PIC/M-NP

Consistent with the enhanced cellular uptake of PIC/M-NP 10 into DC of the lymph
nodes, injection of PIC/M-NP 10 into mice induced significant DC maturation, as deter-
mined by the expression of CD86. Two days after subcutaneous injection of PIC/M-NP, the
CD86-positive DC population in the inguinal lymph node was analyzed. CD86-positive
populations of mice were 26.7 ± 3.4% for PIC/M-NP 0-treated group, and 21.7 ± 2.6%
for M-NP 10-treated group (Figure 7A). There were no significant differences in CD86-
positive populations of mice between untreated (Figure 7B) and M-NP 10-treated groups.
In contrast, PIC/M-NP 10 treatment efficiently induced DC maturation, yielding a positive
population of 42.8 ± 3.5%, which was 1.58-fold and 1.60-fold higher than those seen in the
untreated and poly IC/M-NP 0-treated groups, respectively.

Subcutaneous administration of PIC/M-NP did not reveal significant toxicity. In
the groups treated with PIC/M-NP 0 or PIC/M-NP 0, the levels of ALT (Figure 8A) and
BUN (Figure 8B) did not significantly differ from those of the untreated group. Moreover,
regardless of treatments, ALT and BUN levels were observed within normal ranges.
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Figure 7. In vivo DC maturation in inguinal lymph nodes. Mice were injected subcutaneously with nanoparticles in a naked
form or PIC-complexed form at a poly IC dose of 0.25 mg/kg. (A) After 48 h, inguinal lymph nodes were isolated, and the
expression level of CD86 was measured by flow cytometry. The blue box indicates the gated area for CD11c+CD86+ cells.
(B) Population of CD11c+CD86+ cells was quantified for each group (n = 5, one-way ANOVA and Student-Newman-Keuls
test, *** p < 0.001).
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Figure 8. Biochemical markers of liver and kidney functions. Mice were injected subcutaneously with PIC/M-NP at a poly
IC dose of 0.25 mg/kg. After 7 days, ALT (A) and BUN (B) levels in the blood were measured for liver and kidney functions,
respectively. (n = 5, one-way ANOVA, n.s., not significant).

4. Discussion

In this study, we show that the developed PIC-loaded mannose conjugated nanoparti-
cles, called PIC/M-NP, could efficiently target lymph nodes and induce immune system
activation. PIC/M-NP 10, which contains an optimized 10% molar ratio of mannose-PEG-
lipid in the nanoparticle, demonstrated the most efficient lymph node targeting and cellular
uptake into DC, which in turn led to DC maturation by PIC.

M-NP 10 served as a suitable delivery system for introducing PIC to DC. As a synthetic
analog of double-stranded RNA, poly IC is a potent immune adjuvant that can activate
the innate immune system [20]. Since its receptor, Toll-like receptor 3, is mainly localized
to the endosomal compartment, the PIC needs to enter the cellular endosomal pathway
to be recognized [21]. However, the high molecular weight and highly negative charge of
PIC hinder its penetration of the plasma membrane. Previously, PIC has been delivered
using various cationic materials such as polysaccharide [22], polymer [23], and lipid [24]
nanoparticles. In these studies, cationic net charges per se have not shown to induce the
non-specific uptake of PIC to the lymph nodes, indicating the need for specific ligands
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in the design of delivery systems. In this study, the modification with mannose moieties
suggested the potential of improved targeting to the lymph nodes.

In this regard, targeting mannose receptors with M-NP 10 can be an efficient strategy
for delivering PIC to DC. The mannose receptor, also called CD206, is known to be over-
expressed on immature DC and induce endocytosis [25]. As the major role of mannose
receptors in DC is to induce internalization of pathogens by recognizing their glycans or
mannosylated antigens, targeting of mannose receptors is an efficient way to deliver thera-
peutic agents to immune cells. [26,27]. M-NP 10 is less than 200 nm in size and thus should
be suitable for receptor-mediated endocytosis (Figure 2A) [28]. The ability to load poly IC
on the surface of M-NP 10 through charge-charge interaction further supports the promise
of M-NP 10 as a potent delivery system for activating the immune system (Figure 2C).

It has been reported that excessive PEGylated lipids in liposomes can provide steric
hindrance and reduce the efficiency of surface targeting moieties to bind to the target
cells [29]. Such phenomenon was termed as ‘PEG dilemma’. To avoid the PEG dilemma,
the optimization of pegylated lipid density in lipid nanoparticles would be essential. In
this study, we used triethyleneglycol mannose derivative of lipid. In a previous study, di-,
tetra, or hexaethylenglycol have been used to formulate mannosylated lipid nanoparticles.
In the study, tetraethyleneglycol was observed to provide higher uptake by Raw 264.7 cells
than diethyleneglycol or hexaethyleneglycol-based nanoparticles [30]. This study suggests
the importance of PEG molecular weights in the design of nanoparticles.

The significant accumulation of signal in inguinal lymph nodes of mice subcutaneously
injected with PIC/M-NP 10 indicates that the PIC/M-NP 10-internalizing DC migrated to
the lymph node, where a systemic adaptive immune response can be initiated (Figure 6).
Cationic nanoparticles have been reported to be taken up by macrophages in the lung, liver,
and spleen [31]. A previous study reported that subcutaneous injection of nanoparticles
could reduce the distribution to the liver or spleen and increase lymph node delivery
compared to intravenous injection [32]. Although we observed fluorescence signals in the
liver and spleen after subcutaneous injection of PIC/M-NP, biochemical markers related
to liver and spleen functions remain in normal ranges (Figure 8). The uptake of PIC to
DC supported their maturation and efficient migration and achieved cell-mediated lymph
node targeting. As a result, significantly more activated DC were found in the lymph
nodes of PIC/M-NP 10-treated mice compared to control mice and those treated with the
other formulations.

The capability of PIC/M-NP 10 to efficiently target and move antigen-presenting cells
to the lymph node suggest that this formulation could be a promising vaccine delivery
system. As DC critically links the innate and adaptive immune systems and the lymph node
is an immune-specialized organ where T and B lymphocytes are concentrated, PIC/M-NP
10 has the potential to induce profound adaptive immune responses against infectious
disease or cancers.
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.3390/pharmaceutics13040490/s1, Figure S1: Stability of PIC/M-NP 10.
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