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1. Introduction
Tuberous sclerosis complex (TSC) is a rare, multisystem, 
autosomal dominant syndrome characterized by 
tumorigenesis and is associated with neurologic and 
behavioral abnormalities. The pathogenesis is driven by 
hyperactivation in the mTOR pathway due to de novo or 
inherited mutations in the TSC1 or TSC2 genes. TSC was 
first identified by German pathologist Friedrich Daniel von 
Recklinghausen, in 1862, in a baby with cardiac myotomas 
and sclerotic brain lesions who died shortly after birth [1].

It was better defined in 1880 by French neurologist 
Désiré-Magloire Bourneville as “tuberous sclerosis 
of the cerebral convolutions”; hence, the disease was 
named “Bourneville’s disease” after him. His patient 
reportedly had seizures, intellectual disability, and renal 
angiomyolipomas (AMLs) in the form of “hard masses, 
one the size of a walnut” [2]. In 1908, another German 
neurologist, Heinrich Vogt, established the Vogt triad 
for TSC, comprising intellectual disability, intractable 

seizures, and facial angiofibromas [3]. The first use of the 
term tuberous sclerosis complex was by Sylvan Moolten in 
1942 [4]. In 1972, Spanish-American neurologist Manuel 
Rodriguez Gomez established the first diagnostic criteria 
for TSC, and he has since been viewed as the father of TSC 
in the USA [5]. 

Even though there are no pathognomonic signs 
for TSC, various clinical stigmata are commonly seen 
as part of the syndrome, which raise suspicion for the 
diagnosis. Common manifestations include cortical 
tubers, subependymal nodules, subependymal giant cell 
astrocytomas (Figure 1), seizures, cardiac rhabdomyomas, 
renal AMLs, retinal hamartomas, pulmonary 
lymphangioleiomyomatosis (LAM), facial angiofibromas 
(Figure 2), ash-leaf spots, shagreen patches, intellectual 
disability, and autism spectrum disorder [1,3]. Once the 
diagnosis is suspected, genetic testing can be performed to 
look for mutations in the TSC1 or TSC2 genes and guide 
genetic counseling. As a matter of fact, improvements in 
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the realm of genetics opened a new era for TSC in the 
1990s, when the TSC1 and TSC2 genes were identified, 
which led to the exploration of the molecular pathways 
involved [6].

TSC1 and TSC2 genes encode the proteins hamartin 
and tuberin, respectively. These proteins compose the TSC 
complex, which acts as a brake on the mTOR signaling 
cascade [7,8]. In agreement with this, mTOR inhibitors, 
such as rapamycin and its analogs (rapalogs), are 
commonly used in a clinical setting for various symptoms 
of this condition [9]. The current management of TSC 
is mostly symptomatic, with pharmacologic, surgical, 
or behavioral intervention options. Due to the vast 
phenotypic heterogeneity encountered, not all therapeutic 
approaches benefit the entirety of symptoms or patients to 
the same extent; hence, a personalized treatment strategy 
is critical [10]. 

2. Epidemiology
The incidence of TSC has been estimated as occurring 
in 1/6000–10,000 newborns annually, and therefore, it 

is categorized as a rare disease. It affects approximately 
2 million people globally [11]. The prevalence in Europe 
is approximately 11,500–25,000 [12]. There is no sex 
or ethnicity predilection [13]. However, differences in 
sex predominance have been observed in numerous 
symptoms (see the Clinical presentation section). In 2012, 
a conference was held in Washington, DC, USA, by the 
International Tuberous Sclerosis Complex Consensus 
group to revise the diagnostic criteria for TSC, providing a 
comprehensive list consisting of major and minor criteria 
for use by physicians in a clinical setting [14,15] (Table). 

3. Molecular genetics
TSC is caused by mutations in either of the TSC1 or TSC2 
genes, which were discovered through the use of Drosophila 
models in the 1990s [16]. TSC1 is found on chromosome 
9 (9q34) and TSC2 is found on chromosome 16 (16p13.3), 
encoding the proteins hamartin and tuberin, respectively 
[7,8]. TSC is also genetically linked to autosomal dominant 
polycystic kidney disease, as the PKD1 and TSC2 genes are 
closely located (48 base pairs apart) on chromosome 16. 
When both genes are affected due to a contiguous gene 
deletion, it may lead to a clinical picture called PKD-TSC 
(MIM #600273) with severe renal symptoms [17].

TSC can arise due to de novo or inherited mutations. 
De novo mutations constitute two-thirds of all TSC 
diagnoses. The remaining one-third is inherited in an 
autosomal dominant fashion [18]. The genetic pattern 
of TSC can be described by Knudson’s 2-hit hypothesis, 
where the acquisition of a somatic mutation in a previously 
functional allele of TSC1 or TSC2, in addition to the 
existing germline mutation in the other allele, leads to the 
disease state [19]. Most TSC2 cases are sporadic and have 
more severe manifestations, while the ratio of TSC1 to 

Figure 1. MRI of a SEGA1.
1 Image courtesy of Wikimedia Commons [online]. Website https://
commons.wikimedia.org/wiki/File:MRI_of_brain_with_sub-
ependymal_giant_cell_astrocytoma.jpg [accessed 05 January 2020].

Figure 2. Facial angiofibromas1.
1 Image courtesy of Wikimedia Commons [online]. Website https://
commons.wikimedia.org/wiki/File:Patient_with_facial_angiofibromas_
caused_by_tuberous_sclerosis.jpg [accessed 05 January 2020].
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TSC2 mutations in familial cases is close to one [20]. TSC 
shows almost complete penetrance with wide phenotypic 
variability. This means that any individual carrying a 
TSC mutation would be afflicted with the disease, but to 
varying degrees. The large number of possible mutations 
in the TSC genes also contributes to the heterogeneity 
within the patient population [21]. 

The TSC1 and TSC2 genes differ from each other in 
that TSC1 mutations are mostly nonsense or frameshift 
mutations, leading to protein truncation, whereas 
missense mutations, large deletions, or rearrangements are 
seen more with TSC2 [22]. Additionally, TSC1 mutations 
1 http://chromium.lovd.nl/LOVD2/TSC/home.php

have been identified in ~10–20% of patients clinically 
diagnosed with TSC, while TSC2 mutations have been 
identified in ~70–90% [23,24]. Several thousand small 
mutations have been shown to cause TSC, which can be 
found in the online Leiden Open Variation Database1. 
However, genetic testing may be negative in 10–25% of 
inherited cases due to reasons such as somatic mosaicism, 
or mutations in intron or promoter regions [25]. 

The protein products of the TSC genes, hamartin 
and tuber, work together within the same intracellular 
pathway, which explains why a mutation in either gene 
can give rise to the same disease. The downstream target 

Table. TSC diagnostic criteria.

Diagnostic criteria according to the 2012 International Tuberous Sclerosis Complex Consensus Conference 
 
Definite diagnosis: Two major features, or 1 major feature with greater than 2 minor features, or the presence of a TSC1 
or TSC2 mutation of confirmed pathogenicity 
Possible diagnosis: Either 1 major feature or greater than 2 minor features 
 
Major criteria: 
Skin/oral cavity 

• Hypomelanotic macules (n > 3, at least 5 mm in diameter) 
• Angiofibromas (n > 3) or fibrous cephalic plaque 
• Ungual fibromas (n > 2) 
• Shagreen patch 

Central nervous system 
• Cortical dysplasias (includes tubers and cerebral white matter radial migration lines) 
• Subependymal nodules 
• Subependymal giant cell astrocytoma 

Heart 
• Cardiac rhabdomyoma 

Lungs 
• Lymphangioleiomyomatosis 

Kidney 
• Angiomyolipoma (n > 2) 

Eyes 
• Multiple retinal hamartomas 

 
Minor criteria: 
Skin/oral cavity 

• Confetti skin lesions 
• Dental enamel pits (n > 3) 
• Intraoral fibromas (n > 2) 

Kidney 
• Multiple renal cysts 

Eyes 
• Retinal achromic patch 

Other organs 
• Nonrenal hamartomas 

 
Genetics: Identification of either a TSC1 or a TSC2 pathogenic mutation in DNA from normal tissue is su�icient to make 
a definite diagnosis 
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of these proteins is the mammalian target of rapamycin 
complex 1 (mTORC1), which is a protein serine/threonine 
kinase complex involved in many important anabolic and 
catabolic processes, such as translation, cellular growth, 
proliferation, stress response, and autophagy [9,26,27]. 

4. Pathophysiology
mTORC1 is a protein complex that contains mTOR, a 
rapamycin-associated protein of TOR (raptor), and mLST8 
[28] (Figure 3). The major driver of the cellular hyperplasia 
and tissue dysplasia seen in TSC is the overactivation of 
the mTORC1 signaling pathway. Hamartin and tuberin 
bind to a third protein, TBC1D7, to form the TSC protein 
complex as part of this cascade [29]. The heterotrimeric 
TSC complex acts as a GTPase-activating protein for 
RAS homologue enriched in brain (Rheb), which is 
the functional mediator between the TSC complex and 
mTORC1 [30]. Under normal circumstances, the TSC 
complex functions to keep it in an inactive GDP-bound 
state, thus rendering Rheb unable to stimulate mTORC1.

When second hit mutations affect either TSC1 or 
TSC2, the brake on Rheb by the TSC complex is released 
as the complex can no longer be formed [9]. Therefore, 
mTORC1 is constitutively activated by Rheb, regardless 
of the upstream signals. The mechanism by which Rheb 
regulates mTORC1 still needs exploration. Rheb-induced 
mTOR activation results in the stimulation of S6 kinase and 
inhibition of 4EBP1, the eukaryotic translation initiation 
factor 4E-binding protein 1, leading to unrestricted 
protein synthesis and proliferation [31].

The mTOR pathway can be pharmacologically 
manipulated by rapamycin (Sirolimus), which binds to 
FKPB12 and causes the mTORC1 complex component 
raptor to dissociate, rendering mTORC1 unable to stimulate 
the downstream targets of anabolism [32,33]. Rapamycin 
was discovered in the 1970s on Easter Island and was 
originally used as an antifungal compound [34]. Later, 
it drew further attention due to its immunosuppressant 
and antiproliferative properties, causing it to become an 
important agent in oncology. In the early 2000s, rapamycin 
was demonstrated to be effective for symptom control 
in TSC mouse models by several labs, and the bench-to-
bedside studies that followed [35,36]. 

The activity of mTORC1 is also influenced by the 
upstream components of several intersecting pathways. 
mTORC1 is negatively regulated by PRAS40, the proline-
rich Akt substrate of 40 kDa and DEPTOR, the DEP 
domain containing mTOR-interacting protein, which 
works as a component of the GATOR complex.  [37]. 
In addition to growth-inducing states in the presence of 
sufficient energy and nutrients, mTORC1 is also turned on 
by tyrosine kinase growth factor receptors, such as insulin, 
insulin-like growth factor 1, brain-derived neurotrophic 
factor, and epidermal growth factor receptor [38]. This 
results in the activation of the Ras/ERK and PI3K/Akt 
signaling pathways, which converge on the TSC complex 
and cause its activation favoring a progrowth state [39]. 

mTORC1 has been demonstrated to regulate both 
anabolic and catabolic processes. When activated, 
it stimulates protein synthesis, nucleotide synthesis, 

Figure 3. mTOR signaling pathway.
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gluconeogenesis, lipogenesis, and ATP production. When 
it is turned off, it inhibits cell growth through several 
mechanisms including autophagy [40,41]. mTORC2 
complex is less well understood, especially in terms of 
its role in the pathogenesis of TSC [42]. It is involved in 
the regulation of cytoskeletal dynamics. Additionally, it is 
not sensitive to the effects of acute rapamycin treatment 
because the core component, RICTOR, does not bind 
FKBP12 [43]. Further studies could help to characterize its 
functions and explore the possibility of interactions with 
the mTORC1 pathway. 

Both mTOR and Rheb are ubiquitous in the body, 
causing multisystem involvement in the presence of TSC 
mutations [43]. Thanks to the successful implementation 
of genetic and molecular discoveries into clinical settings, 
TSC serves as model for many other diseases involving 
similar pathways or cellular processes [44].

5. Clinical presentation
The clinical manifestations of TSC are protean in terms of 
severity and the range of tissues it can involve. Despite the 
potential of TSC to involve any organ system in the body, 
some organs are more affected than others. Neurologic 
manifestations, including seizures and cognitive 
impairment, are the primary source of patient and 
caretaker burden, followed by renal abnormalities [45,46]. 

Although there is no single symptom specific to 
TSC, a constellation of findings on physical examination 
and imaging raises the suspicion for diagnosis [47]. 
The revision of the diagnostic criteria for TSC by the 
International Tuberous Sclerosis Complex Consensus 
group incorporated genetic testing into the clinical 
framework of TSC [14]. Even before genetic testing is 
undertaken, the presence of a first-degree relative with 
TSC puts the patient at 50% risk for having the disease 
[48]. 

The 2012 diagnostic criteria list includes major and 
minor features, determining a TSC diagnosis to be 
categorized as definite or possible (Table). A definite 
diagnosis can be made when 2 major or 1 major and 2 
minor criteria are fulfilled. Patients with 1 major or 2 and 
more minor criteria meet the criteria for having a possible 
TSC diagnosis. A thorough clinical evaluation should be 
followed by genetic testing for confirmation of the disease 
and prognostication [45].
5.1. Neurologic manifestations
The neurologic issues of TSC comprise the most important 
cause of impairment in the majority of patients, owing to 
their prevalence and the severity of symptoms [46]. The 
array of manifestations include epilepsy, cortical tubers, 
subependymal nodules and giant cell astrocytomas, 
intellectual disability, autism spectrum disorder, and 
behavioral problems [49,50]. The foremost neurologic 

symptom in TSC is epilepsy, afflicting 90% of patients [51].
The onset of epilepsy is variable, but most patients 

present before the age of 1 year [52]. All seizure types can 
be seen with TSC. The most common seizure type in early 
life is infantile spasms, which affects nearly 40% of patients 
with TSC-associated epilepsy [53]. Although earlier 
studies supported the hypothesis of seizures originating 
from cortical tubers, the exact origin and mechanism of 
epileptogenesis are still debated [54]. Several studies have 
demonstrated a lack of correlation between tuber burden 
and epilepsy severity [55]. Up to 38–50% of seizure 
patients are refractory to the point of necessitating surgical 
intervention [56]. The age of onset and severity of seizures 
are most predictive of long-term cognitive and behavioral 
outcomes [57,58]. 

Cortical tubers (80–90%) are one type of brain 
malformation that present as part of TSC and give the 
disease its name. They are thought to be caused by a failure 
of cellular differentiation and neuronal migration during 
neurodevelopment [59]. Radial migration lines occur due 
to a similar process and can be observed with the tubers 
[45]. The cortical tubers contain giant dysplastic neurons 
and astrocytes, and they tend to stay stable in size [60]. 
Microtubers may also be found in normal appearing white 
matter [61]. 

Subependymal nodules (SENs) are formations that 
arise mostly along the lateral and third ventricle walls, 
and are seen in >80% of patients. Approximately 5–15% 
of these growths transform into subependymal giant 
cell astrocytomas (SEGAs) [47]. SEGAs are composed 
of ganglion-like giant cells expressing both neuronal 
and astrocytic markers [62]. SEN/SEGAs may remain 
asymptomatic [51]. However, if they are located at the 
foramen of Monro, they can potentially cause obstructive 
hydrocephalus and increased intracranial pressure. Both 
SENs and SEGAs can be detected prenatally or at birth, 
and it is rare for SEGAs to grow after the age of 20 [14]. 
Most of these lesions tend to progressively calcify [63]. 
5.2. Renal manifestations
Renal abnormalities can also lead to significant morbidity 
and mortality, as they are commonly encountered in TSC 
patients, and can lead to complications if left untreated 
[64]. The most common renal lesion is angiomyolipoma, 
a hamartoma composed of blood vessels, smooth muscle, 
and adipose tissue [65]. They are often bilateral and 
multiple. [66]. Although benign in nature, these lesions 
have a tendency to bleed, and therefore should be watched 
closely for timely intervention. In severe cases, renal AMLs 
may lead to renal failure [67]. 

The second most frequent lesion in the kidney is single 
or multiple simple cysts.  They are seen in 45% of patients 
and can result in hypertension or kidney failure [68]. The 
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combination of AMLs and cysts in the same patient is 
highly suspicious for a TSC diagnosis [69]. In early-onset 
severe cases, they may constitute stigmata of PKD-TSC 
syndrome (see also the Genetic background section). 
5.3. Dermatologic manifestations
The dermatologic lesions seen with TSC are of paramount 
value, as their presence heralds the diagnosis in a 
considerable number of cases [70]. Many of the major 
features listed in the 2012 diagnostic criteria for TSC 
included cutaneous manifestations. Among these, 
hypomelanotic macules or ash-leaf spots, which were 
named after the European Mountain Ash Tree, can be seen 
in up to 90% of patients [71]. They are detected at birth 
or during early infancy. They may be difficult to visualize 
especially in fair-skinned individuals or small babies; 
therefore, the use of ultraviolet light (Wood’s lamp) can be 
helpful [51]. 
Another important dermatologic finding is facial 
angiofibromas or adenoma sebaceum. These lesions are 
comprised of connective and adipose tissue and are found 
in 75% patients over 9 years of age [71,72]. They appear in 
the central face and increase in number with age, which 
is a common source of concern [73]. TSC patients can 
also present with fibrous plaques in the forehead (20%), 
shagreen patches in the lumbosacral region (20%), and 
ungual or gingival fibromas (20%) [74].
5.4. Cardiac manifestations
Intracardiac rhabdomyomas are seen in nearly 50% of 
patients [75]. They are one of the earliest TSC lesions to 
emerge as the cardiac rhabdomyomas can be detected on 
prenatal ultrasound as early as 22 weeks of gestation [11]. 
On average, the lesions tend to cluster as a few lesions, 
grow to a size of 3–25 mm, and are mostly found in the 
ventricles of the heart along the septum. They tend to 
regress within 3 years of life [76]. Although rare, some 
rhabdomyomas may lead to arrhythmia, valvular defects, 
or cardiac failure, so prenatal and postnatal surveillance 
are critical until regression [77].
5.5. Pulmonary manifestations
Pulmonary involvement is much less common than the 
previously mentioned manifestations of TSC. The most 
frequent pulmonary lesion is LAM, which is almost 
exclusively seen in adult females [78]. This suggests that 
the pathogenesis may be driven by estrogen, which has 
also been evidenced by animal models of LAM [79]. 
Infiltration of the lung tissue by smooth muscle cells is 
characteristic of LAM, leading to cystic lung changes 
and potential complications of pneumothorax, pleural 
effusion and hemoptysis [52]. Multifocal micronodular 
pneumocyte hyperplasia (MMPH) is another type of 
pulmonary lesion associated with TSC [80].

5.6. Ophthalmic manifestations
The eye is another organ that can be commonly affected in 
TSC, as they arise from ectoderm like the central nervous 
system. Retinal astrocytic hamartomas are seen in 35–50% 
of patients and are typically benign unless they compress 
the optic disc [81]. Additionally, areas of hypopigmentation 
around the retina called retinal achromic patch can be 
observed in 39% of TSC patients [82].
5.7. Other manifestations
TSC can involve the gastrointestinal system (liver AML, 
colon polyps, or hamartomas), thyroid, pituitary gland, 
pancreas, and gonads (AML, fibroadenoma) [83]. 
However, the number of cases reported in the literature is 
limited.
5.8. Tuberous sclerosis associated neuropsychiatric 
disorders (TAND)
The group of cognitive and behavioral problems 
associated with TSC causes a great burden, both for TSC 
patients and their caretakers. Most neuropsychiatric 
symptoms of TSC present a challenge for treatment 
and ironically do not receive as much attention as the 
physical stigmata of the disease [84]. The gap between 
burden and treatment exhibited for the tuberous sclerosis 
associated neuropsychiatric disorders (TAND) was 
found to be similar to those seen in the approach to HIV, 
where the major focus is also on the physical symptoms 
[85]. The umbrella term TAND was coined through the 
inspiration by HAND, which defines the HIV-associated 
neurocognitive disorders [86].

Among the neuropsychiatric manifestations of TSC, 
ASD has a special place, both in terms of clinical approach 
and research focus. Approximately 26–50% of TSC patients 
fulfill the criteria for autism spectrum disorder (ASD) 
[87]. ASD in TSC has many overlaps with idiopathic ASD, 
which is another factor that makes TSC an important 
genetic model to study this condition [88]. It has been 
observed that TSC patients with ASD tend to have a more 
severe epilepsy phenotype, in line with several studies 
demonstrating that poorly controlled seizures contribute 
to worse cognitive outcomes [89]. Overall in TSC, there 
is a wide range of severity for intellectual disability and 
patients are affected by the neurologic comorbidities at 
varying degrees [90]. The exact nature of the relationship 
between autism, intellectual disability, and epilepsy needs 
further investigation.

TAND is a broad category of symptoms encompassing 
multiple dimensions of cognitive, psychological, and 
social issues encountered within the context of TSC. 
The 2012 International Tuberous Sclerosis Complex 
Consensus group established the guidelines for evaluation 
of neuropsychiatric manifestations of TSC, by providing 
the practitioners with a TAND checklist. This proved to be 
a practical clinical tool for practitioners to address TAND, 
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which are often missed and therefore undertreated. 
Properly addressing TAND can dramatically improve the 
quality of life of TSC patients and their families [91].

The multiple levels covered in the TAND checklist 
included the following: behavioral level (mood swings, 
self-injury, obsessions, aggression, impulsivity, eating, and 
sleeping difficulties), psychiatric level (autism spectrum 
disorder, attention deficit hyperactivity disorder, anxiety, 
and depression), intellectual level (IQ assessments and 
adaptive behaviors; e.g., daily living skills), academic 
level (reading, writing, spelling, and mathematics) and 
psychosocial level (quality of life, self-esteem, parental 
stress, and relationship difficulties) [84]. The different 
levels provide a common ground between patients and 
physicians to have a conversation and come up with a 
personalized management plan. This is of great importance, 
as up to 90% of TSC patients are observed to have TAND 
features during at least one period of their life [92].

One should bear in mind that the TAND checklist was 
not designed to be used as a rating scale, but rather a tool to 
make an individual action plan based on the TAND profile 
[84]. Neuropsychiatric reevaluations are recommended by 
the 2012 TSC guidelines, as the profile of the individual 
may change over time. Sudden changes in behavior should 
prompt evaluation for underlying medical causes, such as 
new brain lesions or seizures [93].

6. Treatment options
As a consequence of the multisystem involvement in TSC, 
each symptom demands evaluation and management 
within the relevant clinical context. mTOR inhibitors have 
been groundbreaking in the TSC world due to their ability 
to target the molecular defect in the disorder. However, 
animal models and clinical studies have shown that not 
all TSC-related symptoms benefit from mTOR inhibitors 
to the same extent [94]. Research is still ongoing for the 
optimization of mTOR inhibition for each symptom 
and what other pharmacologic and nonpharmacologic 
approaches could be employed for tackling the challenges 
in TSC. In particular, the timing of treatment may be crucial 
for the neurocognitive symptoms, and treatment during 
early critical windows may be necessary [95]. Regardless 
of the choice of intervention, genetic counseling should be 
included in the discussion with families.
6.1. Neurologic management
Once a diagnosis of TSC is reached, a baseline MRI is 
recommended to look for the presence of any cortical 
malformations as tubers, SENs, or SEGAs [68]. Surgery 
and mTOR inhibitors are the current treatment options 
for asymptomatic SEGAs; however, surgical intervention 
is recommended in acute cases [91]. After the success of 
the EXIST-1 clinical trial, the FDA approved the use of 
everolimus for individuals with tuberous sclerosis who 

present with SEGAs that are not amenable to surgery [96].
As mentioned previously, epilepsy remains one of 

the primary sources of morbidity for TSC patients. Early 
intervention is key for both better control of seizures 
and improved neurocognitive outcomes. For infantile 
spasms, vigabatrin is the best choice of medication, and 
ACTH is an alternative in cases with insufficient response 
[97]. Vigabatrin is an irreversible inhibitor of GABA 
transaminase. It helps to increase the GABA concentration 
and potentially reset the imbalance between GABA 
and glutamate neurotransmitters, which is a proposed 
mechanism of epileptogenesis [98]. Patients should be 
counseled about the possible side effects of retinal toxicity 
and evaluated for vision changes. 

Most antiseizure medications can be used for epilepsy 
in TSC. Alternative or complementary therapeutic options 
include surgery, ketogenic low glycemic index diet, and 
vagal nerve stimulation. Despite the presence of these 
modalities, refractory epilepsy is still a big concern, with 
seizures persisting in more than 60% of patients [53]. The 
EXIST-3 trial demonstrated the benefit of everolimus in 
patients with treatment-resistant focal seizures [99]. 

Neuropsychiatric conditions associated with TSC 
should be managed with a multidisciplinary team, 
focusing on the individual’s level of psychosocial and 
neurocognitive functioning. Despite contributing greatly 
to the burden of care, TAND has received little clinical 
attention, with less than 20% of cognitive and behavioral 
symptoms being treated [84]. During clinical visits, the 
TAND checklist is a useful diagnostic tool to determine 
which neuropsychiatric symptoms require special 
attention. An individualized educational plan should be 
established for school-aged patients [14].

Animal studies have shown correlations between 
seizure frequency and the extent of social deficits, which are 
improved by the early treatment of epilepsy [100]. Several 
clinical trials have aimed to investigate the relationship 
between mTOR inhibition and neurocognition. In a 
6-month clinical trial of an mTOR inhibitor (everolimus) 
in children and adolescents with TSC (6–21 years of age), 
no improvement was detected in the active drug group 
when compared to those taking a placebo [101]. Another 
trial in Europe with a similar age group also failed to show 
an effect on cognitive abilities or neuropsychological 
functioning [102]. 

While there are several possible explanations for these 
results, one important aspect may be the age of treatment. 
It should be kept in mind that infancy is a critical course of 
the disease, where pharmacologic interventions may also 
lead to long-lasting unfavorable changes [103]. Therefore, 
determining the optimum therapeutic window is crucial 
[88]. A randomized clinical trial of early intervention 
with vigabatrin to prevent seizure development in TSC 
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(EPISTOP) recently concluded in Europe, and an National 
Institutes of Health-funded trial to prevent epilepsy and 
improve neurocognitive outcomes in infants with TSC 
(PREVeNT) is currently ongoing in the USA.
6.2. Nonneurologic management
The EXIST-2 trial demonstrated the benefit of mTOR 
inhibitors for renal AMLs, and everolimus was approved 
by the FDA for asymptomatic and growing renal AMLs 
larger than 3 cm [104]. Second-line treatment options 
in cases with unsatisfactory response or a lack of access 
to everolimus include selective arterial embolization or 
radiofrequency ablation, especially for hemorrhaging or 
compressive lesions [105]. Sirolimus was approved by the 
FDA for use in patients with LAM in 2015, after obtaining 
successful results in the MILES trial [106]. Pulmonary 
function and capacity need to be regularly monitored for 
signs of clinical improvement. Last, but not least, topical 
rapamycin may be used for facial angiofibromas in cases 
of significant disfigurement or psychological stress [107].

For most TSC-related hamartomas, lifelong treatment 
will continue to be necessary, as many lesions tend to 
regrow and seizures may recur upon the discontinuation 
of medication [15,108]. Reported side effects of mTOR 
inhibitors include stomatitis, menstrual irregularities, 
acne, hyperlipidemia, infections, and poor wound healing, 
which are related to suppression of the immune system 
and changes in cellular metabolism [109–111]. 

In TSC, an interdisciplinary approach with 
consultations from neurologists, cardiologists, 
nephrologists, pulmonologists, psychiatrists, psychologists, 
social workers, educational specialists, genetic counselors 
and additional practitioners, based on the needs of the 
specific individual, is essential. To achieve this goal, TSC 
clinics have been established in numerous hospitals across 
the USA. TSC has been one of the great examples in 
medicine where the bench research has been successfully 
translated to improve the diagnostic and therapeutic yield 
in a clinical setting.

More recent studies have started to focus on developing 
alternative strategies for the treatment of TSC. One 

notable approach is the elimination of TSC-deficient cells 
through the induction of autophagy or oxidative stress by 
exploiting the inadaptability of the overactivated mTOR 
pathway [112–115]. Such research questions will continue 
to be explored and can be promising for the development 
of preemptive therapy for TSC. 

7. Conclusion
TSC is a rare genetic disorder characterized by hamartoma 
formation in multiple organs. The pathogenesis is 
driven by uncontrolled mTOR activation, which is the 
target of rapamycin and rapalogs to control the disease 
symptomatology with varying success. TSC serves as a 
model for epilepsy, autism, and tumorigenesis and many 
other diseases involving the mTOR pathway. 

Despite the morbidity and mortality that TSC 
symptoms are associated with, the medical world is 
fortunate for the discoveries into the genetic and molecular 
aspects of this disease. Owing to the immense endeavors 
of TSC researchers, new therapeutic options targeting 
vulnerabilities in the TSC-related pathways will continue 
to be developed that maximize efficacy and minimize 
toxicity. Biomarkers to demonstrate disease progression 
and treatment efficacy need to be identified for maximizing 
the benefit for all patient profiles. An individually tailored 
multidisciplinary approach, with special attention to 
cognitive and psychosocial comorbidities, is the key to 
success in the management of this disease. 
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