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While the prognostic value of autophagy-related genes (ARGs) in OS patients remains scarcely known, increasing evidence is
indicating that autophagy is closely associated with the development and progression of osteosarcoma (OS). ,erefore, we
explored the prognostic value of ARGs in OS patients and illuminate associated mechanisms in this study. When the OS patients
in the training/validation cohort were stratified into high- and low-risk groups according to the risk model established using least
absolute shrinkage and selection operator (LASSO) regression analysis, we observed that patients in the low-risk group possessed
better prognosis (P< 0.0001). Univariate/Multivariate COX regression and subgroup analysis demonstrated that the ARGs-based
risk model was an independent survival indicator for OS patients. ,e nomogram incorporating the risk model and clinical
features exhibited excellent prognostic accuracy. GO, KEGG, and GSVA analyses collectively indicated that bone development-
associated pathway mediated the contribution of ARGs to the malignance of OS. Immune infiltration analysis suggested the
potential pivotal role of macrophage in OS. In summary, the risk model based on 12 ARGs possessed potent capacity in predicting
the prognosis of OS patients. Our work may assist clinicians to map out more reasonable treatment strategies and facilitate
individual-targeted therapy in osteosarcoma.

1. Introduction

Osteosarcoma (OS) is the most prevalent primary bone
malignant tumor in children and adolescents [1], charac-
terized by high rate of metastasis and poor prognosis [2, 3].
,e annual incidence of OS is approximately
0.0004–0.0005% [4], which has been increasing at an annual
rate of 1.4% in the past decade [5]. OS mostly occurs in the
metaphysis region of long bones, especially distal femur
(43%), followed by proximal tibia (23%) and humerus (10%)
[6]. OS is most likely to metastasize to the lung [7], and 15%
to 20% of patients have suffered from metastasis at the first
diagnosis of OS [8]. Despite that the treatment strategies for
OS, including neoadjuvant chemotherapy and multimodule
therapy strategy, have been advancing [9], the 5-year sur-
vival rate of OS patients barely showed any improvement
over the past three decades, ranging from 60% to 70%
[10, 11], which is far from satisfaction. What is worse, the 5-

year survival rate falls below 20% after metastasis [12]. Due
to the high level of malignance incidence and low survival
rate, OS has been considered as the second leading cause of
tumor-involved death in adolescents and children [13].

,e primary obstacle for treating OS is the significant
tumor heterogeneity caused by its high genetic instability
[14]. ,erefore, it is imperative to identify effective prog-
nostic gene biomarkers for the risk evaluation of OS patients,
to improve their prognosis and overall survival. Even though
several risk models and biomarkers evaluating the prognosis
of patients with OS have been proposed from different sights
currently [15–17], their clinical application is throttled by
overfitting or other inevitable shortcomings.

Autophagy is a katabolism process that triggers the
lysosomes to degrade intracellular components, which was
firstly introduced by Christian de Duve et al. [18] in 1963
and carried forward by Ohsumi et al. in 1990s [19].
Autophagy participates in multiple physiological and
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pathological processes and is considered as a “double-
edged sword” in cancerization. On the one hand, it could
eliminate intracellular damaged substances and inhibit
cellular cancerization under normal condition, which takes
an antitumor role. On the other hand, it may promote the
growth of tumor cells after the formation of tumors
[20, 21]. In recent years, studies demonstrated that auto-
phagy was correlated with various types of cancers, in-
cluding osteosarcoma, breast cancer, non-small-cell lung
cancer, and gastric cancer [19, 22–24], and targeting
autophagy has been regarded as a promising and feasible
therapeutic strategy for these tumors [21, 25, 26]. Promi-
nently, there is increasing evidence that autophagy was
closely related to the development and progression of OS
[6, 19, 27], revealing that autophagy may play a crucial role
in the development of OS and that ARGs are potential
prognostic markers for OS patients.

,erefore, it makes great sense to explore the prognostic
and risk-stratification value of ARGs in OS. Herein, we con-
structed a dependable prognostic risk model based on ARGs
and evaluated its clinical practicability inOS patients. Ourwork
aims to demonstrate the prognostic value of ARGs in OS and
clarify the associated signaling cascades, which could provide a
novel insight into the clinical therapy of OS patients.

2. Materials and Methods

2.1.DataAcquisition andProcessing. ,emRNA sequencing
file and corresponding clinical characteristics of OS patients
were acquired from the,erapeutically Applicable Research
to Generate Effective Treatments (TARGET) database
(https://ocg.cancer.gov/programs/target) and Gene Expres-
sion Omnibus (GEO) database (https://www.ncbi.nlm.nih.
gov/geo/) [28]. A total of 146 OS samples were included in
our study (Table 1), 93 of which acquired from TARGET
were assigned to be the training cohort, and 53 of which
acquired from GEO (GSE21257) were assigned to be the
validation cohort. Data of the TARGET dataset was level 3
RNA-seq file in the form of Transcripts Per Kilobase Million
(TPM), and that of GSE21257 dataset was in the form of
microarray format.

2.2. Construction and Validation of Prognostic Risk Model.
222 ARGs were curated based on previous studies [29–31].
Univariate cox regression analysis was conducted to extract
potential prognostic ARGs with a cutoff of P< 0.05 using the
“survival” R package. And then, we implemented the least
absolute shrinkage and selection operator (LASSO) analysis
to construct prognostic risk model in the training cohort
with “glmnet” package in R. Risk score endowed for each
patient was calculated through the following algorithm: risk
score� CoefARGs ×ExpARGs, in which ExpARGs indicates
the normalized expression level of prognostic genes and
CoefARGs represents the corresponding regression coeffi-
cient. ,e patients were distributed into two groups: the
high-risk group and the low-risk group, with the median
value of risk score as the cutoff value and “X-tile” software
was also applied.

2.3. Independence Evaluation and Subgroup Analysis. In
order to assess the independence and feasibility of the
prognostic model, we employed univariate and multivariate
cox regression analyses to assess if it could be an inde-
pendent indicator for the prognosis of OS patients. More-
over, the OS patients were regrouped basing on
clinicopathological features, then survival analysis was
implemented in each subgroup.

2.4. Construction and Calibration of Nomogram. A nomo-
gram incorporating risk score, age, gender, status of me-
tastasis, and primary lesion site was framed to estimate the 3-
and 5-year overall survival rate, and this operation was
completed with “rms” R package. In addition, we plotted the
calibration line to graphically assess the consistency between
the predicted and actually observed survival.

2.5. Detection of Differentially Expressed Genes (DEGs).
,e “limma” R package was employed to detect DEGs be-
tween the high- and low-risk groups with the thresholds of |
log2 fold change| >1 and P< 0.05.

2.6. Functional Analyses of DEGs. To identify the functional
roles of the DEGs screened above, Gene Ontology (GO) as

Table 1: Characteristics of patients in training and verification
cohorts.

Features Training cohort
(n� 93)

Verification cohort
(n� 53)

Age
<18 71 38
≥18 22 15
Gender
Male 54 34
Female 39 19
Metastasis
Yes 22 34
No 71 19
First Event
Death 4 NA
Relapse 44 NA
None 30 NA
Others 15 NA
Primary lesion site
Leg/Foot 82 45
Arm/Hand 7 8
Pelvis 4 0
Huvos grade
1 NA 13
2 NA 16
3 NA 13
4 NA 5
Unknown NA 6
Histological subtype
Osteoblastic NA 32
Others NA 21
NA: not available.
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well as Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses were performed with the
“clusterprofiler” R package. Statistical significance was de-
fined as a P< 0.05. In addition, we also performed gene set
variation analysis (GSVA) to estimate the variation of
pathways using “GSVA” R package, and “TBtools” software
was utilized to visualize the result [32]. A decision tree was
constructed using recursive partitioning analysis through
the R package “rpart”.

2.7. Infiltration Analysis of Immune Cells. Annotated gene
expression matrix was used to estimate the abundance of 22
immune cells according to the CIBERSORT algorithm [33].
Subsequently, the proportion of infiltrated immune cells was
calculated and visualized with R package.

2.8. Statistical Analysis. Statistical analyses were imple-
mented using R (version 3.6.1) and GraphPad Prism (ver-
sion 8.0.1). Kaplan–Meier (K-M) curve and log-rank analysis
were applied for survival analysis. Predictive capacity of the
established risk model was evaluated using time-dependent
receiver operating characteristic (ROC) analysis. “Spear-
man” method was used to calculate the pertinence of gene
expression. Student’s t-test was used to calculate the dif-
ference between the two groups, and one-way ANOVA
analysis was used correspondingly for three or more groups.
Two-sided value of P< 0.05 was considered as statistically
significant.

3. Results

3.1. Construction of ARGs-Based Risk Model. Based on 222
ARGs chosen from previous studies, we constructed a risk
model in the training cohort. A total of 14 potential
prognosis-associated ARGs were identified through uni-
variate Cox regression analysis. K–M curve demonstrated
that all of the 14 potential genes were independently asso-
ciated with the prognosis of OS patients (Figure 1). ,en 12
prognostic ARGs were screened out among the 14 potential
genes using LASSO Cox regression analysis (Figures 2(a)
and 2(b)). ,e features and functions of these ARGs are
summarized in Table 2. Among the 12 prognostic ARGs,
eight genes (VPS18, AMBRA1, CDK5, MAPKAP1, ARL8B,
TBC1D14, USP10, and AKT1S1) with a hazard ratio (HR) <1
were regarded as protective genes, whereas the other four
genes (BNIP3, SAFB2, PTPRS, and LGALS8) with a HR >1
were regarded as risk genes (Figure 2(c)).

We established the ARGs-risk model based on the fol-
lowing algorithm: risk score� BNIP3× 0.0075 +VPS18× −

0.0346 + SAFB2 × 0.0235 + PTPRS × 0.0019 +AMBRA1 × −

0.0685 +CDK5 × −0.0350 +MAPKAP1 × −0.0155 +ARL8B
× − 0.0019 + TBC1D14 × − 0.0203 + USP10 × − 0.0075 +
LGALS8× 0.0194 +AKT1S1× −0.0077. OS patients were
distributed into the high-risk and low-risk groups according
to the risk score (Figures 2(d) and 2(e)). Patients in the low-
risk group showed a liability to express protective genes,
whereas opposite results were observed in the high-risk
group (Figure 2(f)).,e overall survival of the patients in the

low-risk group was significantly better than that of the high-
risk group (P< 0.0001) (Figure 2(g)). Time-dependent ROC
analysis suggested that the risk model possessed favorable
predictive capacity (Figure 2(h)). ,e value of area under
curve (AUC) was 0.779 for 1-year survival, 0.814 for 3-year
survival, and 0.865 for 5-year survival, respectively. ,ese
results synergistically indicated that the constructed risk
model was a potent prognostic indicator for OS patients.

3.2. Risk Model Was an Independently Prognostic Marker in
the Training Cohort. ,en, we conducted univariate Cox
analysis, multivariate Cox analysis, and subgroup analysis to
evaluate the independence of the constructed model in the
training cohort.

Univariate analysis revealed that the metastasis
(P< 0.0001) and risk score (P< 0.0001) were closely asso-
ciated with the prognosis of OS patients (Figure 3(a)).
Multivariate analysis indicated that risk score remained
independent with clinicopathologic characteristics including
gender, age, metastasis, and primary lesion site in predicting
the prognosis of OS (P< 0.0001) (Figure 3(b)). We also
regrouped the OS patients by the clinicopathologic pa-
rameters to evaluate the prognostic value of the constructed
risk model. Results demonstrated that when regrouped to
subgroups by status of metastasis (metastasis, nonmeta-
stasis) (Figure 3(c)), gender (male, female) (Figure 3(d)), and
age (≥18 years old, <18 years old) (Figure 3(e)), the OS
patients in the low-risk group still enjoyed better overall
survival than the high-risk group. Furthermore, the asso-
ciation between clinicopathologic features and risk score was
assessed. Results indicated that OS patients suffering from
metastasis possessed an obviously higher risk score than
those who did not (P< 0.05) (Figure 3(f)). However, no
statically significant association was detected among gender
(Figure 3(g)), age (Figure 3(h)), primary lesion site
(Figure 3(i)), and risk score. In general, results above sug-
gested that our ARG-based risk model was an independent
prognostic marker for OS patients.

3.3. RiskModelWas Related to Osteosarcoma Prognosis in the
Validation Cohort. Additionally, we validated the risk
model in the verification cohort. OS patients in the
GSE21257 set were classified into high- and low-risk groups
according to the formula described previously (Figure 4(a)).
Similarly, patients in the low-risk group tended to express
protective genes, while patients in the high-risk group
tended to express risk genes (Figure 4(b)). K-M curves
revealed that OS patients in the high-risk group possessed a
significantly worse prognosis compared with those in the
low-risk group (P< 0.05) (Figure 4(c)). Moreover, the values
of AUC were 0.755, 0.688, and 0.618 for 1-year, 3-year, and
5-year survival, respectively (Figure 4(d)). In general, these
findings confirmed the prognostic practicability of the
constructed risk model in the verification cohort.

3.4. Nomogram Integrating Risk Model and Clinical Features
Predicted Osteosarcoma Prognosis Precisely. Following that,

Journal of Oncology 3



p = 0.028

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000 6000
Time

Su
rv

iv
al

 p
ro

ba
bi

lit
y

AKT1S1
High_expression
Low_expression

(a)

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

p = 0.0045

0 1000 2000 3000 4000 5000 6000
Time

AMBRA1
High_expression
Low_expression

(b)

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

p = 0.045

0 1000 2000 3000 4000 5000 6000
Time

ARL8B
High_expression
Low_expression

(c)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

p = 0.00018

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000 6000
Time

BNIP3
High_expression
Low_expression

(d)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.00

0.25

0.50

0.75

1.00

p = 0.018

0 1000 2000 3000 4000 5000 6000
Time

CDK5
High_expression
Low_expression

(e)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.00

0.25

0.50

0.75

1.00

p = 0.0031

0 1000 2000 3000 4000 5000 6000
Time

LGALS8
High_expression
Low_expression

(f )

Su
rv

iv
al

 p
ro

ba
bi

lit
y

p = 0.0056

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000 6000
Time

MAPKAP1
High_expression
Low_expression

(g)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.00

0.25

0.50

0.75

1.00

p = 0.024

0 1000 2000 3000 4000 5000 6000
Time

MON1A
High_expression
Low_expression

(h)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.00

0.25

0.50

0.75

1.00

p = 0.028

0 1000 2000 3000 4000 5000 6000
Time

PTPRS
High_expression
Low_expression

(i)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

p = 0.0033

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000 6000
Time

RAB5C
High_expression
Low_expression

(j)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.00

0.25

0.50

0.75

1.00

p = 0.03

0 1000 2000 3000 4000 5000 6000
Time

SAFB2
High_expression
Low_expression

(k)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.00

0.25

0.50

0.75

1.00

p = 0.045

0 1000 2000 3000 4000 5000 6000
Time

TBC1D14
High_expression
Low_expression

(l)

Figure 1: Continued.

4 Journal of Oncology



Su
rv

iv
al

 p
ro

ba
bi

lit
y

p = 0.015

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000 6000
Time

USP10
High_expression
Low_expression

(m)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0 1000 2000 3000 4000 5000 6000
Time

VPS18
High_expression
Low_expression

p = 0.0011

0.00

0.25

0.50

0.75

1.00

(n)

Figure 1: Survival analysis of autophagy-related genes identified by univariate analysis in osteosarcoma.
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to predict the survival of OS patients more accurately, we
integrated the ARG-based risk model and clinical features to
construct a quantitative nomogram (Figure 5(a)). ,e no-
mogram revealed that all the parameters were endowed with
a specific point according to their contribution to the
prognosis, and there was no doubt that risk score ranked the

most important among all the factors (Figure 5(a)). Addi-
tionally, we plotted the calibration line to explore if the
predicted survival was consistent with the actually observed
survival in the TARGET training cohort (Figure 5(b)) and
GSE21257 (Figure 5(c)) validation cohort. Regarding 3-years
and 5-years survival, the predicted and actually observed
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Figure 2: Construction of the prognostic risk model based on autophagy-related genes (ARGs) in the ,erapeutically Applicable Research
to Generate Effective Treatments (TARGET) training cohort using the least absolute shrinkage and selection operator (LASSO) regression
analysis. (a) LASSO model with optimal lambda value. (b) LASSO coefficient configuration of the 12 prognostic ARGs. (c) Hazard ratio of
the 12 ARGs used for risk model construction. (d), (e) Distribution of risk score and survival status of osteosarcoma patients in the training
cohort. (f ) Expression of included ARGs in the high- and low-risk groups. (g) Kaplan-Meier analysis of osteosarcoma patients classified by
risk score. (h) Receiver operating characteristic (ROC) analysis of risk model in forecasting prognosis.

Table 2: Characteristics of genes used for constructing risk model.

Genes Full name Category Gene card ID Function

ARL8B ADP Ribosylation Factor
Like GTPase 8B

Protein
Coding GC03P005122 Plays a role in lysosome motility

USP10 Ubiquitin Specific
Peptidase 10

Protein
Coding GC16P084734 A key regulator of autophagy, leading to stabilize the PIK3C3/

VPS34-containing complexes

AMBRA1 Autophagy and Beclin 1
Regulator 1

Protein
Coding GC11M061101 Regulates autophagy and development of the nervous system

LGALS8 Galectin 8 Protein
Coding GC01P236518

A sensor of membrane damage caused by infection and restricts
the proliferation of infecting pathogens by targeting them for

autophagy

AKT1S1 AKT1 Substrate 1 Protein
Coding GC19M049869 Regulates cell growth and survival in response to nutrient and

hormonal signals

BNIP3 BCL2 Interacting Protein 3 Protein
Coding GC10M131966 Participates in mitochondrial protein catabolic process leading to

the degradation of damaged proteins inside mitochondria

VPS18 Vacuolar Protein Sorting
Protein 18

Protein
Coding GC15P040894

Plays a role in vesicle-mediated protein trafficking to lysosomal
compartments including the endocytic membrane transport and

autophagic pathways.

SAFB2 Scaffold Attachment
Factor B2

Protein
Coding GC19M005587 Functions as an estrogen receptor corepressor and can also inhibit

cell proliferation

PTPRS
Protein Tyrosine

Phosphatase Receptor
Type S

Protein
Coding GC19M005157 Required for normal brain development

CDK5 Cyclin Dependent Kinase 5 Protein
Coding GC07M151053 Essential for neuronal cell cycle arrest and differentiation andmay

be involved in apoptotic cell death

MAPKAP1 MAPK Associated Protein
1

Protein
Coding GC09M125437 Regulates cell growth and survival

TBC1D14 TBC1 Domain Family
Member 14

Protein
Coding GC04P006910 Plays a role in the regulation of starvation-induced

autophagosome formation

6 Journal of Oncology
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Figure 3: Continued.
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results were well aligned, confirming the favorable practi-
cability for survival prediction of the constructed nomogram
in OS patients. In addition, three risk subtypes were iden-
tified in the decision tree, in which the risk score along with
metastasis status remained significative for OS patients
(Figure S1).

3.5. IdentificationofDEGsandFunctionalAnalyses. Next, we
explored the associated biological mechanisms mediating
the influence of the ARGs on the prognosis of OS patients.
Firstly, 63 DEGs were screened out between the high-risk
group and low-risk group, containing 38 upregulated and 25
downregulated genes (Figure 6(a)). GO analysis indicated
that these DEGs were mainly enriched in some critical bi-
ological processes (Figure 6(b)), including extracellular
matrix (ECM) organization, bone development, bone
morphogenesis, skeletal system morphogenesis, and ossifi-
cation. ,ree signaling pathways, including protein diges-
tion and absorption, Wnt signaling pathway, and
transcriptional misregulation in cancer were enriched by
KEGG analysis (Figure 6(c)). Furthermore, GSVA analysis
was performed to evaluate the expressional difference of
gene sets between the high- and low-risk groups. ,e results

revealed that a series of signaling pathways associated with
autophagy regulation, bone development, and bone growth
were significantly downregulated in the high-risk group
(Figure 6(d)). Overall, results above demonstrated that these
prognosis-associated ARGs may lead to the dysregulation of
molecular cascades related to autophagy and bone devel-
opment, influencing the prognosis of OS.

3.6. Infiltration Analysis of Immune Cells. Finally, we ex-
plored if there were differences with respect to immune cell
infiltration between the high- and low-risk group. ,e in-
filtrating level of 22 types of immune cells was calculated
using CIBERSORT algorithm (Figures 7(a) and 7(b)), and
quantitative analysis and visualization were shown in
Figure 7(c). Except that the infiltrating level of CD4+ naive
Tcell in the high-risk group was significantly higher than the
low-risk group (Figure 7(c)), no significant difference was
identified between the two groups. What is more, it is
noteworthy that no matter in high-risk group or low-risk
group, the infiltrating level of macrophage M0 and M2
advantaged over other immune cells. ,ese findings suggest
that macrophage may take a pivotal role in the progression
of OS.

p = 0.28182

0

–2

–4

–6

Ri
sk

 sc
or

e

≥1
8 

ye
ar

s

<1
8 

ye
ar

s

Age

(g)

p = 0.85622

0

–2

–4

–6

Ri
sk

 sc
or

e

Female Male

Gender

(h)

p = 0.54992

0

–2

–4

–6

Ri
sk

 sc
or

e

A
rm

/h
an

d

Le
g/

fo
ot

Pe
lv

is

Primary lesion site

(i)

Figure 3: Independence of the risk model based on autophagy-related genes (ARGs). (a), (b) Univariate and multivariate COX regression
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Generally speaking, all of these results demonstrated that
the risk model based on 12 ARGs possessed potent capacity
in predicting the prognosis of OS patients, which may be
mediated by autophagy and bone development related
pathways.

4. Discussion

As the most common malignancy of bone in children and
adolescents, OS is usually accompanied by high frequency of
metastasis and poor prognosis due to tumor heterogeneity
derived from genetic instability [1, 34]. And it is urgent to
develop accurate and reliable prognostic biomarkers to
stratify OS patients and guide the individual-based treat-
ment, improving the prognosis [5]. Emerging evidence

derived from clinical and laboratorial studies demonstrated
that autophagy played a pivotal role in the development and
progression of OS [6, 19]. In the present work, we con-
structed a prognostic risk model based on ARGs in OS
patients. To our best knowledge, this was the first report
establishing risk model from the sight of autophagy in OS.
Our outcome revealed that the prognostic model possessed
reliable practicability in risk stratification and prognosis
prediction of OS patients, which may facilitate individual-
based treatment and provide a novel insight for the thera-
peutic strategy of targeting autophagy.

In this work, we first screened out 14 independently
prognostic ARGs using univariate regression analysis and
then constructed a prognostic risk model based on 12 ARGs
utilizing LASSO regression analysis. Survival analysis and
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ROC analysis revealed that the risk model could accurately
predict the prognosis of OS. In addition to favorable ac-
curacy, an excellent risk model should have great inde-
pendence to be sufficient for clinical application. Both
univariate and multivariate regression analyses demon-
strated the risk model was an independently predictive el-
ement for OS patients. Subgroup analysis revealed that the

risk model remained of prognostic capacity when the OS
patients were regrouped by metastasis, gender, and age.
Furthermore, we verified the risk model in an independent
GEO cohort, and results confirmed the reliable prognostic
practicability. In order to predict the prognosis of OS pa-
tients more accurately, a nomogram integrating the risk
model and clinical features was constructed, and results
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showed that the predicted and actually observed survival
were well aligned in both training and verification cohorts.
To sum up, our prognostic risk model and nomogram
exhibited great potential in predicting the prognosis of OS
patients clinically.

,e independently prognostic ARGs used for estab-
lishing risk model comprised of 4 protective genes and 8 risk
genes, whose expression presented an obviously alterant
tendency, which was consistent with their functional role.
And all of these ARGs had been reported to play a pivotal
role in OS and some other malignancies previously. CDK5 is
a serine/threonine kinase involved in angiogenesis and
apoptosis, a previous study revealed that overexpression of
CDK5 is associated with poor survival of OS patients [35].
De Nigris et al. reported that CDK 5 mediates the neo-
angiogenesis induced by OS cells, suggesting that CDK5
could be a pharmacological target for antitumor therapy
[36]. AKT1S1, a substrate of protein kinase B (AKT1), en-
codes PRAS40 which was identified as a crucial downstream
target of Ewing sarcoma protein (EWS), and previous
studies revealed that PRAS40 is associated with the

development of Ewing sarcoma [37]. MAPKAP1 encodes
SIN1, a component of mammalian target of rapamycin
complex 2 (mTORC2), which was revealed to promote the
development and progression of OS [38]. Current researches
found that inhibiting SIN1 using nitidine chloride signifi-
cantly suppressed the growth, invasion, and migration of OS
cells [39]. BNIP3 was an apoptosis-inducing gene; it was
reported that BNIP3 expression induced by reactive oxygen
species mediates the autophagy of OS cells in vitro and in
vivo [40, 41]. Previous studies revealed that SAFB2 could be a
biomarker in breast and renal cell cancers [42, 43]. ARL8B is
a pivotal regulative gene of lysosomal location; a prior study
demonstrated that the expression of ARL8B is closely cor-
related with the prognosis of breast cancer patients [44].
Knockdown of VPS18 could repress the progression of
glioma through sponging miR-370 [45]. USP10 is a deu-
biquitinase gene. Wang et al. reported that the loss of USP10
promotes lung tumorigenesis and progression in mice;
meanwhile, reduced expression of USP10 is associated with
the poor prognosis of patient suffering from lung cancer
clinically [46]. AMBRA1 was identified as an independently
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Figure 7: Continued.
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prognostic biomarker for early-stage melanomas [47]. AL-
GALS8 was demonstrated to be a biomarker predicting the
prognosis of glioblastoma and ovarian cancer patients
[48, 49]. As for PTPRS, it has been proved that reduced
expression of PTPRS is significantly associated with the poor
prognosis of esophageal squamous cell carcinoma and
malignant peripheral nerve sheath tumor [50, 51]. Sum-
marily, all of the ARGs incorporated in our risk model was
closely correlated with tumors via autophagy-mediated
molecular cascades. ,us, it was well-founded to apply these
ARGs to construct a prognostic risk model, promoting the
risk stratification and improving therapeutic strategy for OS
patients.

Additionally, in order to further explore the related
biological mechanisms of these ARGs, we identified DEGs
between the high- and low-risk groups and performed
functional enrichment analyses. GO and GSVA analyses
consistently revealed that the signaling pathways related to
bone development and growth were impeded in the high-
risk group, which may account for the influence of the ARGs
on prognosis of OS patients. Bone development and growth
were complex biological processes involving a sequence of
synergetic and well-organized events, including osteogenesis
and longitudinal bone growth [52, 53]. Bone development
and growth were regulated by multiple signaling pathways
strictly and coordinately, including Hedgehog signaling,
Notch signaling, BMP signaling, and Wnt signaling path-
ways [53]. Among these pathways, the dysregulation of Wnt
signaling pathway was regarded as one of the most im-
portant oncogenic mechanisms of OS [54]. Coincidently,

Wnt signaling pathway was also enriched by KEGG analysis
in this study. Integrating these results, we concluded that
dysregulation ofWnt pathwaymaymediate the contrition of
prognostic AGRs to the prognosis of OS patient. Wnt
pathway was a crucial cascade involved in stemness and
development, and aberrant Wnt pathway was usually im-
plicated in tumorigenesis and progression [55, 56]. It has
been proved that there was a dual feedback regulation be-
tweenWnt pathway and autophagy [57], and GSVA analysis
revealed that the negative regulation of autophagy was also
hindered in the high-risk group in this study. ,us, we can
assume that the negative regulation of autophagy was de-
creased and autophagy was upregulated in the progression of
OS, which resulted in the dysregulation of Wnt signaling,
leading to the poor prognosis of OS patients.,is was also in
line with the “double-edged” role of autophagy mentioned
previously [21] which promoted the growth of tumor cells
after tumorigenesis. Additionally, previous studies have
revealed the close-knit relationship between autophagy and
Wnt pathway in OS and other cancers [55, 58–60]. Tao et al.
reported that activation of Wnt pathway represses the ex-
pression of Beclin 1, a pivotal element for autophagic flux
[61]. Meanwhile, the expression of frizzled-related protein b,
an antagonist of Wnt, is indispensable for the formation of
autophagic flux and autophagosome [58]. Treated with
antitumor drug, the autophagy of OS cells was induced and
accompanied with suppression of Wnt signaling [62].
Similarly, WIF-1 protein activates autophagy and suppresses
Wnt signaling in lung cancer at the same time [63]. It has
been demonstrated that initiation of autophagy is capable of
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Figure 7: Immune cells infiltration analysis in the training cohort. (a) Heatmap describing the difference of infiltrating level between the
high- and low-risk groups. (b) Distribution of infiltrating level of 22 kinds of immune cells. (c) Violin plot delineating the differentially
infiltrated level of immune cells between the high- and low-risk groups.
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activating Wnt signaling and further induces the expression
of monocarboxylate transporter 1 (MCT1), promoting
glycolysis and metastasis of tumor [59]. Collectively, we
outlined that the dysregulation of autophagy and Wnt
signaling pathway impedes the bone development-associ-
ated molecular cascades, leading to poor prognosis of OS
patients, which may provide a novel sight for the individ-
ualized treatment targeting autophagy. It is worthy of note
that the biological function of some prognostic ARGs in-
cluded in the risk model, as well as the autophagy-Wnt
crosstalk network, was rarely reported in the development
and progression of OS. All of which deserves further re-
search and will make great significance.

Since immune microenvironment is crucial for tumor
progression [64] and closely linked with autophagy, we
performed immune infiltration analysis. ,e results illus-
trate that macrophages infiltrate predominantly and there is
no significant difference between the high- and low-risk
groups, which is in line with what Niu et al. reported [34],
suggesting that macrophages may take a pivotal role in the
development of OS [64].

To date, high-throughput sequencing has been widely
used for fundamental researches into pathomechanism of
diseases. Several prognostic risk models from different views
have been constructed for predicting the prognosis of OS
[5, 65]. However, no research had focused on the ARGs-
associated model, and the present study was to fill the va-
cancy of ARGs-based risk model in predicting the prognosis
of OS. In addition, our study integrated the risk model with
clinical features to construct a nomogram, which had been
omitted in previous studies. Of course, we acknowledge that
there are some inevitable limitations in our work. Firstly, the
RNA-seq data and clinical information were acquired from
open accessed databases but not from cohort of ourselves.
Secondly, sample sizes of both the training and verification
cohort were relatively small due to the inherent property of
OS. Lastly, the association between the ARGs and identified
signaling pathways was not verified through experiments.

5. Conclusions

In conclusion, the present study identified 12 independently
prognostic ARGs to establish a reliable risk model, which
could predict the prognosis of the OS patients accurately and
possessed well-modified independence. Our work may fa-
cilitate the personalized treatment targeting autophagy and
assist clinicians to make more reasonable treatment strategy
for OS patients, shedding a novel light on the research on the
pathomechanisms of OS. Meanwhile, prospective clinical
studies with large sample size are required to validate the risk
model, and further studies deserve to be conducted to il-
luminate the potential signaling pathways.
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