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Abstract: Ochratoxin-A (OTA) is a carcinogenic and nephrotoxic mycotoxin, which may cause health
problems in humans and animals, and it is a contaminant in foods and feeds. The purpose of
the present study is to evaluate the effect of oral OTA exposure on the antioxidant defense and
lipid peroxidation in the kidney. In vivo administration of OTA in CD1, male mice (1 or 10 mg/kg
body weight in a single oral dose for 24 h and repeated daily oral dose for 72 h or repeated daily
oral dose of 0.5 mg/kg bodyweight for 21 days) resulted in a significant elevation of OTA levels in
blood plasma. Some histopathological alterations, transcriptional changes in the glutathione system,
and oxidative stress response-related genes were also found. In the renal cortex, the activity
of the glutathione-system-related enzymes and certain metabolites of the lipid peroxidation
(conjugated dienes, trienes, and thiobarbituric reactive substances) also changed.

Keywords: ochratoxin-A; glutathione; oxidative stress; kidney; gene expression

Key Contribution: Ochratoxin A initiated free radical formation and increased the N2 mRNA in
the kidney, depending on the dose and duration of exposure. However; the NRF2 Ser40-P protein
level did not increase; therefore; antioxidant genes did not activate, which resulted in improper
antioxidant defense and, consequently, cell damage.

1. Introduction

Mycotoxins are harmful or toxic to animals and humans. Ochratoxin-A (OTA) is a secondary
metabolite of certain Aspergillus and Penicillium strains [1]. OTA exposure caused nephropathy in
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porcine [2,3] and humans [4-7]. OTA-induced nephropathy is characterized by cell degeneration
of renal proximal tubular and glomerular epithelial cells in the renal cortex area. It can also cause
interstitial fibrosis, polyuria, and alterations in hematological and clinical biochemical parameters [8].
The chemical structure of OTA is similar to phenylalanine; thus, it impairs protein synthesis [9,10].
As a carcinogen, OTA has been demonstrated in renal adenocarcinoma and liver tumors [11,12].
OTA affects the expression of genes related to cell damage, apoptosis, cellular stress, and antioxidant
defense [13]. OTA toxicity mechanism includes the formation of oxygen free radicals and lipid
peroxidation [14]. There is evidence that antioxidants, such as vitamins E and C, decrease lipid
peroxide formation, therefore, the oxidative stress-inducing effect of OTA [15]. However, renal tubular
cell damage can be found without the induction of lipid peroxidation but a higher expression of
genes encoding the antioxidant enzymes [16]. The molecular mechanisms that respond to oxidative
stress are highly conserved in mammals. The transcription factor nuclear factor erythroid 2-related
factor 2 (NRF2) is the master regulator of the oxidative stress response [17]. OTA-induced oxidative
stress affects the antioxidant defense systems [18] and also modulates NRF2 expression and, therefore,
activation of the antioxidant response element [19]. In response to elevated ROS levels, NRF2 induces
the expression of certain antioxidant enzymes such as Heme Oxygenase (HO1), NAD(P)H quinine
dehydrogenase (NQOL1), and glutathione synthetase (GSS) [20].

These factors belong to the phase II detoxifying enzymes in xenobiotic transformation [21].
The activity of the NRF2 is regulated by redox balance in the cells. In physiological conditions,
NREF2 is bound to Ketch-like ECH-associated protein 1 (KEAP1) as an oxidative stress sensor and
promote ubiquitination and enzymatic degradation of NRF2 in proteasomes [22], keeping the low
basal NRF2 activity. However, when oxidative stress increases, the KEAP1 cysteine side chains
are oxidized. Consequently, the interaction between NRF2 and KEAP1 destabilizes, allowing the
nuclear translocation of NRF2 to transcribe its specific target genes [23]. The principal element of
the antioxidant system is the superoxide dismutase (SOD) enzyme family. SOD1 is the intracellular
and nuclear form of SOD, accounting for 80% of total SOD protein [24]. SOD2 is localized in the
mitochondria [24], and SOD3 is the secreted form that is associated with the extracellular matrix [25].
The SOD enzymes are scavenged reactive oxygen species, mainly superoxide anion generated in the
cell by NADPH oxidase (NOX), xanthine oxidase, cytochrome P450, and mitochondrial respiration [26].
The SOD1 is a copper/zinc-dependent enzyme, and zinc supplementation could decrease OTA-induced
oxidative damage in HepG2 cells [27]. The in vivo effect of acute and chronic OTA exposition on the
kidney SOD enzymes is poorly understood. A recently identified component of the antioxidant defense
is the HACE1-HECT E3 ligase. HACEI1 is a tumor suppressor that ubiquitylates and proteasomal
degradation of RAC1 protein (GTP-bound form of the Rho family GTPase). This event inhibits the de
novo ROS generation by RAC1-dependent NADPH oxidases. It will thereby confer the cellular defense
from oxidative DNA damage and hyper-proliferation [28]. Inactivation of RAC1 reduced NADPH
oxidase I-dependent ROS production [29]. The roles of HACE1 and RAC1 in the OTA toxicities have
not been investigated previously.

The effects of OTA on molecular redox mechanisms have been reported; however, the sequence
of induction remains unsolved. Further, in vivo is essential to understand the toxic efficiency mode
of action of OTA on the renal cortical area, which is the most OTA-affected tissue organ in animals
and humans. The present study aimed to investigate the toxic effect of OTA-related oxidative stress
and lipid peroxidation in the renal cortex in mice. The use of a rodent based in vivo toxicological
study is the most suitable approach. The following markers were analyzed: alterations in the kidney
and spleen weight, changes in the expression of OTA-affected genes, and activities of their products
in the kidney [13]. In addition, lipid peroxidation parameters, activities of antioxidant enzymes,
and immunochemical techniques (Western blot and ELISA) were also included in this study.
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2. Results

2.1. Water and Food Consumption and Body Weight Change in Mice

Consumption of food and water did not change as an effect of the single oral dose (24 h),
repeated daily oral dose (72 h), or repeated daily oral dose (21 days) OTA treatment. The bodyweight of
the treated animals in repeated daily oral dose (72 h) and repeated daily oral dose (21 days) experiment
also did not alter significantly (data not shown).

2.2. Blood Plasma OTA Content in a Single Oral Dose (24 h), Repeated Daily Oral Dose (72 h), and Repeated
Daily Oral Dose (21 Days) Treatments

Low levels of OTA were found in the blood plasma of vehicle or methyl-methanesulfonate
(MMS)-treated control animals. Single oral dose (24 h) mycotoxin administration significantly
increased the OTA concentration in the blood plasma in 1 mg/kg bw and 10 mg/kg bw dose groups
(Table 1, Figure S1A in Supplementary Materials). Similarly, repeated daily oral dose (72 h) mycotoxin
treatment with the dose levels of 1 or 10 mg/kg bw also significantly increased the OTA concentration
in the blood plasma (Table 1, Figure S1B in Supplementary Materials). In the case of the repeated daily
oral dose (21 days; (0.5 mg/kg bw), OTA treatment resulted in a significantly higher OTA level in the
blood plasma (Table 1, Figure S1C in Supplementary Materials).

Table 1. Blood plasma ochratoxin-A (OTA) content in a single oral dose (24 h), repeated daily oral dose
(72 h), and repeated daily oral dose (21 days) experiments.

Time 24h 24h 72h 72h 21 Days
Dose single single repeated repeated repeated
1 mg/kg bw 10 mg/kg bw 1 mg/kg bw 10 mg/kg bw 0.5 mg/kg bw

OTA level (ng/mL)  843.02 + 285.16 2717.88 + 391.52 269.73 + 60.6 1969.28 + 654.6 ~ 231.35 + 50.23

2.3. Effect of OTA on the Weight of Spleen and Kidney

Spleen and kidney weight are both indicators of OTA toxicity, but their absolute weight depends
on body weight; therefore, organ weights were normalized to the body weight of animals. The single
oral OTA treatment (24 h) significantly elevated the normalized wet weight of the kidney in both
OTA doses, but the normalized wet weights of the spleen were significantly higher only in the higher
OTA-dose-treated group (10 mg/kg bw) (Figure S2A,B in Supplementary Materials). The repeated
daily oral dose (72 h) OTA toxicity did not alter the normalized wet weight of the kidney, but the
normalized wet weights of the spleen were significantly lower in both MMS and OTA-treated groups,
as compared to the control (Figure S3A,B in Supplementary Materials). On the other hand, the repeated
daily oral dose (21 days) OTA treatment with the daily dose of 0.5 mg/kg bw decreased the normalized
wet weight of the kidney significantly only in the OTA-treated group, as compared to MMS and control
groups (Figure S4A in Supplementary Materials). The normalized wet weight of the spleen did not differ
significantly between the MMS- and OTA-treated groups (Figure S4B in Supplementary Materials).

2.4. Histopathological Analysis of the Renal Cortex

The single oral dose (24 h) OTA expositions did not induce degenerative changes at the
histopathological level (data not shown). Repeated daily oral dose (72 h) OTA treatment (1 mg/kg bw or
10 mg/kg bw) showed degenerative lesions predominantly in the inner part of the cortex. Sporadic cell
necrosis of the tubular epithelium and cell detachment to the lumen of the tubule were also found.
Multifocal necrosis in the tubular cells also occurred. Cell size reduction dispersed apoptotic bodies,
and condensed chromatin in the nucleus was observed in the groups treated with high OTA dose and
repeated daily oral doses (21 days). However, tubular cell regeneration has also been found in the
repeated daily oral dose (21 days) OTA-treated group (Figure S5 in Supplementary Materials).
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2.5. Changes of Some Parameters of the Glutathione Redox System and Lipid Peroxidation

No differences in glutathione peroxidase (GPx) activity were found on day 1, while in the case of
the highest dose of OTA (10 mg/kg bw), significantly (p < 0.05) lower GPx activity was found at day 3
in the repeated daily oral dose (72 h) experiment (Figure 1A,B). At the end of the repeated daily oral
dose (21 days) OTA treatment, no significant changes were found in GPx activity of kidney samples
(Figure 1C).
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Figure 1. Effect of OTA expositions on GPx activity in the kidney cortex. (A) GPx activity of kidney
samples in case of single oral dose (24 h) OTA treatment. The applied OTA doses did not change
significantly the GPx activity. (B) GPx activity of kidney samples in case of repeated daily oral
dose (72 h) OTA treatment. The highest applied OTA dose decreased significantly (p < 0.05) the
GPx activity. (C) GPx activity of kidney samples in case of repeated daily oral dose (21 days) OTA
treatment. The applied OTA dose did not change the GPx activity significantly. Abbreviations: MMS:
methyl-methanesulfonate-treated group; OTA 1 and OTA 10: treatment with 1 and 10 mg/kg bw
ochratoxin A in the single oral dose (24 h) and repeated daily oral dose (72 h); OTA 0.5: 0.5 mg/kg bw
ochratoxin A treatment in the repeated daily oral dose (21 days) experiment. Mean + S.D. Data were
analyzed by one-way ANOVA and Tukey’s post hoc test.* p < 0.05 vs. vehicle.

Glutathione reductase (GR) activity did not change in the case of a single oral dose (24 h) and
repeated daily oral dose (72 h) treatments (Figure 2A,B). In the case of repeated daily oral dose
(21 days) treatment, the GR activity also remained unchanged (Figure 2 C).
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Figure 2. Effect of OTA expositions on the glutathione reductase (GR) activity in the kidney cortex.
(A) GR activity of kidney samples in case of single oral dose (24 h) OTA treatment. The applied
OTA doses did not change significantly the GR activity. (B) GR activity of kidney samples in case of
repeated daily oral dose (72 h) OTA treatment. The applied OTA doses did not change significantly
the GR activity. (C) GR activity of kidney samples in case of repeated daily oral dose (21 days)
OTA treatment. The applied OTA dose did not change the GR activity significantly. Abbreviations:
MMS: methyl-methanesulfonate-treatment group; OTA 1 and OTA 10: 1 and 10 mg/kg bw ochratoxin
A treatment in the single oral dose (24 h) and repeated daily oral dose (72 h) groups; OTA 0.5: 0.5 mg/kg
bw ochratoxin A treatment in the repeated daily oral dose (21 days) group. Mean + S.D. Data were
analyzed by one-way ANOVA and Tukey’s post hoc test.



Toxins 2020, 12, 732 5of 25

In the case of single oral dose (24 h) OTA treatment, neither the initial phase markers of lipid
peroxidation (CD and CT) nor the meta-stable end products (thiobarbituric reactive substances,
malondialdehyde (MDA)) showed significant changes (Figure 3A-C).
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Figure 3. Effect of single oral dose (24 h) OTA exposure on lipid peroxidation parameters and reduced
and oxidized glutathione concentration in the kidney cortex. (A) Levels of conjugated dienes (CD) in
kidney samples in case of single oral dose (24 h) OTA treatment. The applied OTA doses did not cause
significant alterations. (B) Levels of conjugated trienes (CT) in kidney samples in case of single oral dose
(24 h) OTA treatment. The applied OTA doses did not cause significant alteration. (C) Malondialdehyde
(MDA) concentration in kidney samples in case of single oral dose (24 h) OTA treatment. The applied
OTA doses did not cause significant changes. (D) Reduced glutathione (GSH) concentration in
kidney samples in case of single oral dose (24 h) OTA treatment. Both applied OTA doses decreased
significantly (p < 0.01) the GSH concentration. (E) Oxidized glutathione (GSSG) concentration in
kidney samples in case of single oral dose (24 h) OTA treatment. Both applied OTA doses decreased
(p < 0.01 and p < 0.05, respectively) the GSSG concentration significantly. Abbreviations: MMS:
methyl-methanesulfonate-treatment. OTA 1 and OTA 10: 1 and 10 mg/kg bw ochratoxin A-treated
groups. Mean + S.D. Data were analyzed by one-way ANOVA and Tukey’s post hoc test. * p < 0.05,
**p <0.01 vs. vehicle.

In case of repeated daily oral dose (72 h) treatment, markers of the early phase of lipid peroxidation
increased as a result of high OTA intake (10 mg/kg bw), which was proven by the significant increase
in the level of conjugated dienes (CD) at day 3 (p < 0.01, Figure 4A). However, the level of conjugated
trienes (CT) did not show significant alterations during repeated daily oral dose (72 h) treatment
(Figure 4B). On the contrary, lipid peroxidation did not reach the terminal phase in repeated daily oral
dose (72 h) treatment, as the thiobarbituric reactive substances were measured by the meta-stable end
products (MDA) of this process (Figure 4C).
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Figure 4. The effect of repeated daily oral dose (72 h) OTA exposition on some lipid peroxidation
parameters and reduced and oxidized glutathione concentration in the kidney cortex. A: Levels of
conjugated dienes (CD) in kidney samples in case of repeated daily oral dose (72 h) OTA treatment.
The highest OTA dose increased significantly (p < 0.01) the level of conjugated dienes in the kidney.
B: Levels of conjugated trienes (CT) in kidney samples in case of repeated daily oral dose (72 h)
OTA treatment. The applied OTA doses did not cause significant alterations. C: Malondialdehyde
(MDA) concentration in kidney samples in case of repeated daily oral dose (72 h) OTA treatment.
The applied OTA doses did not cause significant changes. D: Reduced glutathione (GSH) concentration
in kidney samples in case of repeated daily oral dose (72 h) OTA treatment. The applied OTA
doses did not cause significant alterations. E: Oxidized glutathione (GSSG) concentration in kidney
samples in case of repeated daily oral dose (72 h) OTA treatment. The applied OTA doses did not
significantly alter, while the MMS treatment increased the GSSG concentration significantly (p < 0.01).
Abbreviations: MMS: methyl-methanesulfonate-treated group; OTA 1 and OTA 10: 1 and 10 mg/kg bw
ochratoxin-A-treated groups. Mean + S.D. Data were analyzed by one-way ANOVA and Tukey’s post
hoc test. ** p < 0.01 vs. vehicle.

At the end of the repeated daily oral dose (21 days) treatment, no significant changes were
measured in the level of CDs and CTs (Figure 5A,B), but the concentration of thiobarbituric acid
reactive substances (MDA) was significantly (p < 0.001, Figure 5C) higher in the kidney of OTA-treated
animals than the controls.

The non-enzymatic components of the glutathione redox system, GSH, and its oxidized form
glutathione disulfide (GSSG) concentrations were significantly changed as the effect of both single oral
dose (24 h) and repeated daily oral dose (21 days) exposures. GSH concentration in the kidney was
lower at day 1 of single oral dose (24 h) OTA exposure in both (1 and 10 mg/kg bw) treated groups
(Figure 3D, p < 0.01), while at day 3, no significant differences were found (Figure 4D). Repeated daily
oral dose (21 days) OTA exposure for 21 days resulted in significantly lower GSH concentration than
control (Figure 5D, p < 0.05). GSSG concentrations in the kidney were also significantly lower on day 1
(Figure 5E, p < 0.01 and p < 0.05), but not on day 3 of repeated daily oral dose (72 h) OTA exposure at
both doses (Figure 4E). On the contrary, it was significantly higher at the end of the repeated daily oral
dose (21 days) OTA exposure (day 21) (Figure 5E, p < 0.05). However, on day 3 of the repeated daily oral
dose (72 h) experiment, and also at the end (day 21) of the repeated daily oral dose (21 days) treatment,
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the concentration of GSSG was significantly higher in the MMS group than control (Figures 4E and 5E,
p <0.01 and p < 0.001, respectively).
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Figure 5. Effect of repeated daily oral dose (21 days) OTA exposition on lipid peroxidation parameters
and reduced and oxidized glutathione concentration in the kidney cortex. A: Levels of conjugated
dienes (CD) in kidney samples in case of repeated daily oral dose (21 days) OTA treatment. The applied
OTA dose did not cause significant alteration. B: Levels of conjugated trienes (CT) in kidney
samples in case of repeated daily oral dose (21 days) OTA treatment. The applied OTA dose
did not cause significant alteration. C: Malondialdehyde (MDA) concentration in kidney samples
in case of repeated daily oral dose (21 days) (21 days) OTA treatment. The applied OTA dose
increased the MDA concentration in the kidney significantly (*** p < 0.001). D: Reduced glutathione
(GSH) concentration in kidney samples in case of repeated daily oral dose (21 days) OTA treatment.
The applied OTA dose decreased significantly (* p < 0.05), the GSH concentration in the kidney.
E: Oxidized glutathione (GSSG) concentration in the case of kidney samples in repeated daily oral
dose (21 days) OTA treatment. The MMS treatment and the applied OTA dose increased significantly
(*** p < 0.001 and * p < 0.05, respectively) the GSSG concentration in the kidney. Abbreviations:
MMS: methyl-methanesulfonate-treated group; OTA 0.5: 0.5 mg/kg bw ochratoxin-A-treated group.
Mean + S.D. Data were analyzed by one-way ANOVA and Tukey’s post hoc test. * p < 0.05, *** p < 0.001

vs. vehicle.
2.6. Gene Expression of Some Parameters of the Glutathione Redox System

In the case of the single oral dose (24 h) and repeated daily oral dose (72 h) treatments, the applied
higher dose of OTA decreased the expression of glutathione S- transferase (Gsta) on day 1 and also
at day 3 of the experiment significantly (Figure 6A,B, p < 0.01), and the lower dose of OTA resulted
in significantly lower expression of Gsta at day 3 of the experiment (p < 0.01) (Figure 6B). In the
case of the single oral dose (24 h) OTA treatment, the Gsta expression was significantly lower than
control (Figure 6A p < 0.01). However, repeated daily oral dose (21 days) OTA treatment did not cause
significant alteration in Gsta expression (Figure 6C). In the case of MMS treatment, at day 3 of the
repeated daily oral dose (72 h) experiment, significantly (p < 0.01) elevated Gsta expression was found
than in the control group (vehicle) (Figure 6B).
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Figure 6. Effect of OTA expositions on the Gsta gene expression in the kidney cortex. A: Gsta gene
expression alterations of the single oral dose (24 h) OTA-treated kidney samples. The highest OTA dose
decreased the Gsta mRNA level (p < 0.01). B: Gsta gene expression alterations of the repeated daily oral
dose (72 h) OTA-treated kidney samples. Both applied OTA doses decreased the Gsta mRNA levels
(p < 0.01). C: Gsta gene expression alterations of the repeated daily oral dose (21 days) OTA-treated
kidney samples. OTA treatment did not influence the Gsta mRNA level. Abbreviations: MMS:
methyl-methanesulfonate-treated group; OTA 1 and OTA 10: 1 and 10 mg/kg bw ochratoxin-A-treated
groups in the single oral dose (24 h) and repeated daily oral dose (72 h) experiment; OTA 0.5: 0.5 mg/kg
bw ochratoxin-A-treated group in the repeated daily oral dose (21 days) experiment. Mean + S.D. Data
were analyzed by one-way ANOVA and Tukey’s post hoc test. * p < 0.05, ** p < 0.01, *** p < 0.001
vs. vehicle.

Glutathione peroxidase 1 (Gpx1) expression in case of single oral dose (24 h) treatment did not
change at day 1, but at day 3, both applied doses caused significantly lower expression (p < 0.0001)
than the control (vehicle) (Figure 7A,B), and at day 21 (p < 0.01) of the repeated oral dose (Figure 7C).
As regards glutathione peroxidase 2 (Gpx2) expression, significant (p < 0.05) elevation was found in
both treated groups on day 1, while a significant (p < 0.0001) decrease was observed thereafter, at day 3,
of OTA treatment (Figure 7D,E).

2.7. Expression Alteration at mRNA and Protein Level of Nrf2 and Keap1

Single oral dose (24 h) OTA treatment significantly increased the Nrf2 expression at mRNA level
at both OTA doses (Figure 8A, p < 0.01 and p < 0.001, respectively). However, the NRF2 protein level
was robustly decreased at both OTA doses introduced (p < 0.05 in the OTA 1 group and p < 0.01 in
the OTA 10 group) (Figure 9). However, the phosphorylated NRF2 (at Ser40 amino acid) protein
level was not changed due to OTA administration (Figure 56 in Supplementary Materials). The NRF2
protein level was increased at the higher OTA-treated group (p < 0.01) (Figure 10). On the other hand,
the Ser40 phosphorylated NRF2 expressions remained stable at the protein level (Figure S7 in
Supplementary Materials). The expression of the Keap1 significantly decreased at mRNA level by
dose-dependent manner to single oral dose (24 h) OTA administration on day 1 (Figure 11, p < 0.01 at
the highest OTA-dose-treated group). On day 3, the repeated daily oral dose (72 h) OTA administration
elevated the Nrf2 mRNA level at both applied doses (p < 0.01 in the OTA 1 group and p < 0.001 in the
OTA 10 group) (Figure 8B). On day 3 of OTA exposure, the Keapl mRNA level decreased significantly,
but independently of the OTA dose applied (Figure 11B, p < 0.05). The repeated daily oral dose
(21 days) OTA treatment significantly elevated the Nrf2 mRNA level (Figure 8C, p < 0.01), but the
protein levels of NRF2 and its Ser40 phosphorylated form were not altered (Figures S8 and S9 in
Supplementary Materials). The repeated daily oral dose (21 days) administration of the MMS as
a positive control caused an increase in the NRF2 and NRF2 (Ser40) phosphorylated protein levels
(Figures S8 and S9, p < 0.01). However, the repeated daily oral dose (21 days) OTA treatment did not
influence the Keapl mRNA expression (Figure 11C).
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Figure 7. Effect of OTA expositions on the Gpx1 and Gpx2 mRNA expression levels in the kidney cortex.
A: Gpx1 gene mRNA expressions of the single oral dose (24 h) OTA-treated kidney samples.
OTA treatment did not influence the GpxI mRNA level. B: Gpx1 gene expression levels of the
repeated daily oral dose (72 h) OTA-treated kidney samples. Both applied OTA doses decreased
the Gpx1 mRNA levels (p < 0.001). C: Gpx1 gene expression alterations of the repeated daily oral
dose (21 days) OTA-treated kidney samples. The applied OTA dose decreased the Gpx1 mRNA
level (p < 0.01). D: Gpx2 gene expression of the single oral dose (24 h) OTA-treated kidney samples.
Both applied OTA doses increased the Gpx2 mRNA levels (p < 0.05). E: Gpx2 gene expression alterations
of the repeated daily oral dose (72 h) OTA-treated kidney samples. Both applied OTA doses decreased
the Gpx1 mRNA levels (p < 0.001). F: Gpx2 gene expression levels of the repeated daily oral dose (21 days)
OTA-treated kidney samples. OTA treatment did not significantly influence the Gpx2 mRNA level.
Abbreviations: MMS: methyl-methanesulfonate-treated group; OTA 1 and OTA 10: 1 and 10 mg/kg bw
ochratoxin-A-treated groups in the single oral dose (24 h) and repeated daily oral dose (72 h) experiment;
OTA 0.5: 0.5 mg/kg bw ochratoxin-A-treated group in the repeated daily oral dose (21 days) experiment.
Mean + S.D. Data were analyzed by one-way ANOVA and Tukey’s post hoc test. * p < 0.05, ** p < 0.01,
*** p < 0.0001 vs. vehicle.

2.8. Gene Expression Alteration of the Antioxidant Response Element (ARE) Responsive Genes

The heme oxygenase 1 (Ho-1) mRNA level increased significantly in repeated daily oral dose
(72 h) toxicity at the highest dose of mycotoxin exposure exclusively (Figure 12B, p < 0.05), but did not
change as effect of repeated oral dose for 21 days (Figure 12C). The NAD(p)H dehydrogenase (quinone)
(Ngol) mRNA levels reduced significantly in the single oral dose (24 h) and repeated daily oral dose
(72 h) OTA-treated animals, independently of the applied OTA dose (Figure 13A,B, p < 0.01, p < 0.001
and p < 0.01, p < 0.05, respectively). However, repeated daily oral dose (21 days) OTA exposure did
not affect Ngol gene expression (Figure 13C). The glutathione synthetase (Gss) mRNA expression
was reduced exclusively in a single oral dose (24 h) and repeated daily oral dose (72 h) experiments
in a dose-dependent manner (Figure 14A,B, p < 0.001, and p < 0.01, respectively), but no significant

changes were found as effect of repeated oral dose for 21 days (Figure 14C).
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Figure 8. Effect of OTA expositions on the Nrf2 mRNA expression levels in the kidney. (A) Nrf2 gene
mRNA expressions of the single oral dose (24 h) OTA-treated kidney samples. Both applied OTA doses
increased the Nrf2 mRNA levels (p < 0.01 and 0.0001, respectively). (B) Nrf2 gene expression levels of
the repeated daily oral dose (72 h) OTA-treated kidney samples. Both applied OTA doses increased
the Nrf2 mRNA levels (p < 0.01 and 0.0001, respectively). (C) Nrf2 gene expression alterations of the
repeated daily oral dose (21 days) OTA-treated kidney samples. The applied OTA dose increased the
Nrf2 mRNA level (** p < 0.01). Abbreviations: MMS: methyl-methanesulfonate-treated group; OTA
1 and OTA 10: 1 and 10 mg/kg bw ochratoxin-A-treated groups in the single oral dose (24 h) and
repeated daily oral dose (72 h) experiment; OTA 0.5: 0.5 mg/kg bw ochratoxin-A-treated group in the
repeated daily oral dose (21 days) experiment. Mean + S.D. Data were analyzed by one-way ANOVA
and Tukey’s post hoc test. ** p < 0.01, *** p < 0.0001 vs. vehicle.
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Figure 9. Effect of single oral dose (24 h) OTA expositions on the NRF2 protein expression levels in
the kidney. (A) Quantification of protein expression normalized to vehicle-treated controls by densitometry.
Significant differences were found in the OTA-treated animals. (B) Representative examples of Western
blots using kidney homogenates from mice. Abbreviations: MMS: methyl-methanesulfonate-treated
group; OTA 1 and OTA 10: 1 and 10 mg/kg bw ochratoxin-A-treated groups in the single oral dose (24 h)
experiment. Mean + S.D. Data were analyzed by one-way ANOVA and Tukey’s post hoc test. * p < 0.05,
** p < 0.01 vs. vehicle.
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Figure 10. Effect of repeated daily oral dose (72 h) OTA expositions on the expression of NRF2
protein in the kidney. (A) Protein expression normalized to vehicle-treated controls by densitometry.
Significant protein expression elevation was found in the high dose of OTA-treated animals.
(B) Representative examples of Western blots from kidney homogenates mice. Abbreviations: MMS:
methyl-methanesulfonate-treated group; OTA 1 and OTA 10: 1 and 10 mg/kg bw ochratoxin-A-treated
groups in the repeated daily oral dose (72 h) experiment. Mean + S.D. Data were analyzed by one-way
ANOVA and Tukey’s post hoc test. ** p < 0.01 vs. vehicle.
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Figure 11. Effect of OTA expositions on the Keapl mRNA expression levels in the kidney. A: Keapl
gene mRNA expressions of the single oral dose (24 h) OTA-treated kidney samples. The highest OTA
dose decreased the Keapl mRNA level (p < 0.01). B: Keapl gene expression levels of the repeated
daily oral dose (72 h) OTA-treated kidney samples. Both applied OTA doses decreased the Keapl
mRNA levels (p < 0.05). C: Keap1 gene expression alterations of the repeated daily oral dose (21 days)
OTA-treated kidney samples. The OTA treatment did not influence the Keapl mRNA level significantly.
Abbreviations: MMS: methyl-methanesulfonate-treated group, OTA 1; and OTA 10: 1 and 10 mg/kg
bw ochratoxin-A-treated groups in the single oral dose (24 h) and repeated daily oral dose (72 h)
experiment; OTA 0.5: 0.5 mg/kg bw ochratoxin-A-treated group in the repeated daily oral dose (21 days)
experiment. Mean + S.D. Data were analyzed by one-way ANOVA and Tukey’s post hoc test.* p < 0.05,
**p <0.01 vs. vehicle.
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Figure 12. Effect of OTA expositions on the hem-oxygenase (Ho-1) gene expression levels in the kidney.

A: Ho-1 gene mRNA expressions of the single oral dose (24 h) OTA-treated kidney samples. The OTA
treatment had no significant effect on the Ho-1 mRNA level. B: Ho-1 gene expression levels of the
repeated daily oral dose (72 h) OTA-treated kidney samples. The high dose of OTA treatment increased
the Ho-1 mRNA level significantly (p < 0.05). C: Ho-1 gene expression alterations of the repeated daily
oral dose (21 days) OTA-treated kidney samples. The OTA treatment did not influence significantly
the Ho-1 mRNA level. Abbreviations: MMS: Group treated with methyl-methanesulfonate; OTA 1
and OTA 10: groups treated with 1 and 10 mg/kg bw ochratoxin A in the single oral dose (24 h) and
repeated daily oral dose (72 h) experiment; OTA 0.5: group treated with 0.5 mg/kg bw ochratoxin A in
the repeated daily oral dose (21 days) experiment. Values are expressed as the mean + SD. Data were
analyzed by one-way ANOVA followed by Tukey’s post hoc test.* p < 0.05 vs. vehicle.
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Figure 13. Effect of OTA expositions on the NgoI mRNA expression levels in the kidney. A: Ngol gene
mRNA expressions of the single oral dose (24 h) OTA-treated kidney samples. Both applied OTA doses
decreased the Ngol mRNA levels (p < 0.01 and p < 0.001, respectively). B: Ngo1 gene expression levels
of the repeated daily oral dose (72 h) OTA-treated kidney samples. Both applied OTA doses decreased
the Ngol mRNA levels (p < 0.01, and p < 0.05, respectively). C: Ngol gene expression alterations of
the repeated daily oral dose (21 days) OTA-treated kidney samples. The OTA treatment did not have
asignificant effect on the NgoI mRNA level. Abbreviations: MMS: methyl-methanesulfonate-treated
treated group; OTA 1 and OTA 10: 1 and 10 mg/kg bw ochratoxin-A-treated groups in the single oral
dose (24 h) and repeated daily oral dose (72 h) experiment; OTA 0.5: 0.5 mg/kg bw ochratoxin-A-treated
group in the repeated daily oral dose (21 days) experiment. Mean + S.D. Data were analyzed by
one-way ANOVA and Tukey’s post hoc test.* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 vs. vehicle.
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Figure 14. Effect of OTA expositions on the Gss mRNA expression levels in the kidney. A: Gss gene
mRNA expressions of the single oral dose (24 h) OTA-treated kidney samples. The highest OTA dose
decreased the Gss mRNA levels (p < 0.001). B: Gss gene expression levels of the repeated daily oral
dose (72 h) OTA-treated kidney samples. The highest OTA dose decreased the Gss mRNA levels
(p < 0.01). C: Gss gene expression alterations of the repeated daily oral dose (21 days) OTA-treated
kidney samples. The applied OTA dose did not cause significant alteration. Abbreviations: MMS:
methyl-methanesulfonate-treated group; OTA 1 and OTA 10: 1 and 10 mg/kg bw ochratoxin-A-treated
groups in the single oral dose (24 h) and repeated daily oral dose (72 h) experiment; OTA 0.5: 0.5 mg/kg
bw ochratoxin-A-treated group in the repeated daily oral dose (21 days) experiment. Mean + S.D. Data
were analyzed by one-way ANOVA and Tukey’s post hoc test. ** p < 0.01, *** p < 0.001 vs. vehicle.

2.9. Expression Changes of the Duperoxide Dismutase (Sod) Enzymes in the Kidney

Single OTA administration significantly increased Sod1 mRNA expression at the highest dose
treated group (Figure 15A, p < 0.05), but not significant difference was found in Sod2 mRNA expression
(Figure 15D). However, at day 3, after repeated daily oral dose (72 h), OTA exposure in both enzyme
Sod1 and Sod2 expressions at mRNA level decreased significantly (Figure 15B, p < 0.01 and p < 0.001 in
OTA 1 and OTA 10 groups, respectively) (Figure 15E, p < 0.001 in OTA 10 group). Repeated daily oral
dose (21 days) mycotoxin treatment did not influence the Sod enzymes at the mRNA level significantly
(Figure 15C,F).

2.10. Hacel and Racl mRNA Expression Changes by OTA Administration in the Kidney

Single high-dose OTA administration increased the HECT domain. The mRNA expression of the
ankyrin repeat-containing E3 ubiquitin-protein ligase 1 (Hacel) also increased significantly (Figure 16A,
p < 0.01). On the other hand, the repeated daily oral dose (72 h) OTA exposition significantly decreased
the Hacel expression at the mRNA level in both applied dose (Figure 16B, p < 0.001). On the contrary,
the repeated daily oral dose (21 days) OTA exposition significantly increased the Hacel mRNA level
(Figure 16C, p < 0.05). The Rac family small GTPase 1 (Rac1) mRNA expression significantly elevated
at day 3 in kidney samples of the highest OTA-exposed group (Figure 16E, p < 0.001). The other
treatments did not alter the Racl expressions (Figure 16D,F).
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Figure 15. Effect of OTA expositions on the Sod1 and Sod2 mRNA expression levels in the kidney.
A: Sodl gene mRNA expressions of the single oral dose (24 h) OTA-treated kidney samples. The high
OTA dose significantly increased the Sodl mRNA level (p < 0.05). B: Sod1 gene expression levels of the
repeated daily oral dose (72 h) OTA-treated kidney samples. Both OTA administration significantly
decreased the Sodl mRNA level (p < 0.001 and 0.0001, respectively). C: Sod1 gene expression alterations
of the repeated daily oral dose (21 days) OTA-treated kidney samples. The OTA treatment did not
significantly influence the Sod1 mRNA level. D: Sod2 gene mRNA expressions of the single oral
dose (24 h) OTA-treated kidney samples. The OTA treatment did not significantly influence the Sod2
mRNA level. E: Sod2 gene expression levels of the repeated daily oral dose (72 h) OTA-treated kidney
samples. The high OTA dose treatment significantly decreased the Sod2 mRNA level (p < 0.001),
F: Sod2 gene expression alterations of the repeated daily oral dose (21 days) OTA-treated kidney
samples. The OTA treatment did not significantly influence the Sod2 mRNA level. Abbreviations: MMS:
methyl-methanesulfonate-treated group; OTA 1 and OTA 10: 1 and 10 mg/kg bw ochratoxin-A-treated
groups in the single oral dose (24 h) and repeated daily oral dose (72 h) experiment; OTA 0.5: 0.5 mg/kg
bw ochratoxin-A-treated group in the repeated daily oral dose (21 days) experiment. Mean + S.D.
Data were analyzed by one-way ANOVA and Tukey’s post hoc test * p < 0.05, ** p < 0.01, ** p < 0.001,
**** p < 0.0001 vs. vehicle.
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Figure 16. Effect of OTA expositions on the Hacel and Racl mRNA expression levels in the kidney.
A: Hacel gene mRNA expressions of the single oral dose (24 h) OTA-treated kidney samples. The high
OTA dose significantly increased the Hacel mRNA level (p < 0.01). B: Hacel gene expression levels of
the repeated daily oral dose (72 h) OTA-treated kidney samples. Both OTA administrations significantly
decreased the Hacel mRNA level (p < 0.0001). C: Hacel gene expression alterations of the repeated
daily oral dose (21 days) OTA-treated kidney samples. The OTA treatment significantly increased
the Hacel mRNA level (p < 0.05). D: Racl gene mRNA expressions of the single oral dose (24 h)
OTA-treated kidney samples. The OTA treatment did not significantly influence the Racl mRNA
level. E: Racl gene expression levels of the repeated daily oral dose (72 h) OTA-treated kidney
samples. The high OTA dose treatment significantly increased the Rac1 mRNA level (p < 0.001),
F: Racl gene expression alterations of the repeated daily oral dose (21 days) OTA-treated kidney
samples. The OTA treatment did not significantly influence the Rac1 mRNA level. Abbreviations: MMS:
methyl-methanesulfonate-treated group; OTA 1 and OTA 10: 1 and 10 mg/kg bw ochratoxin-A-treated
groups in the single oral dose (24 h) and repeated daily oral dose (72 h) experiment; OTA 0.5: 0.5 mg/kg
bw ochratoxin-A-treated group in the repeated daily oral dose (21 days) experiment. Mean + S.D.
Data were analyzed by one-way ANOVA and Tukey’s post hoc test.* p < 0.05, ** p < 0.01, ** p < 0.001,
*4* p < 0.0001 vs. vehicle.

3. Discussion

15 of 25

The NRF2 and KEAP1, as master regulators of the antioxidant defense, have an effect on the gene
expression of the phase II enzymes, such as Heme Oxygenase (HO-1), NQO1, and GSS for cellular
protection against oxidative stress [20]. Our in vivo experiments demonstrate that OTA exposition
significantly increases the Nrf2 mRNA levels both in single oral dose (24 h), repeated daily oral dose
(72 h), or repeated daily oral dose (21 days) OTA expositions. A similar observation was published in
a rat model after a 28 days OTA exposition [16]. However, previous in vitro studies demonstrated on
porcine LLC-PK1 kidney cell lines that OTA exposure for 12 and 24 h decreased N7f2 mRNA and NRF2
protein levels. Moreover, the presence of NRF2 protein in the nucleus was significantly reduced by the
OTA exposition, suggesting that a high OTA dose inhibits the NRF2 translocation into the nucleus [30].
In our in vivo study, the NRF2 protein levels were decreased after a single OTA treatment on day 1
in a dose-dependent manner (Figure 9). NRF2-dependent gene transcriptions, such as Gss and Ngol,
were significantly decreased at mRNA level, equally in a dose-dependent or -independent manner,
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respectively (Figures 14A and 13A). Interestingly, the Ho-1 expression remained stable (Figure 12A) in
the present trial. The in vitro 24 h OTA exposition on the LLC-PK1 kidney cell line revealed lower
Ho-1 mRNA and HO-1 protein levels, as well [31]. However, in an in vivo experiment at day 1 of OTA
treatment (1 mg/kg bw), a significantly elevated HO-1 protein level was found in toxin-sensitive male
Fischer-344 rats [32]. The GSH, the end product of the activity of GSS, was significantly decreased,
independently of the applied OTA dose. For this reason, the glutathione synthesis seems to be the
most sensitive antioxidant pathway to a single dose of OTA exposition.

HACEL1 and RAC1 is the other antioxidant response pathway. A single OTA treatment significantly
elevated the Hacel mRNA synthesis when the higher OTA dose (10 mg/kg bw) was applied. The lower
dose (1 mg/kg bw) and repeated oral treatment for 21 days with a dose of 0.1 mg/kg bw revealed that
the Racl expression remained stable.

The highest N1f2 mRNA elevation was detected at day 3 in the kidney of OTA-treated animals at
both applied doses (1 or 10 mg/kg bw) in a single (24 h) or repeated (72 h) oral exposure. However,
the NRF2 protein level was significantly elevated, but GSS and NgoI mRNA levels decreased significantly
on day 3 in the treated animals” kidney. On the other hand, the NRF2-dependent Ho-1 mRNA level
increased considerably in the kidney of the high OTA dose (10 mg/kg bw) in single (24 h) or repeated
(72 h) exposed animals. The presence of high OTA content in the kidney cells presumably inhibits the
activated NRF2 protein translocation into the nucleus [30], resulting in lower transcription frequency
in ARE-related genes such as the Gss and Nqol. Altered NRF2 protein distribution in the cytoplasm
and the nucleus was detected in an in vitro model in HepG2 cells treated with OTA. For instance,
cells treated with OTA for 48 h showed remarkable retention of NRF2 protein in the cytoplasm [33].
The histopathological analysis revealed that the presence of the necrotic tubular cells was more
abundant at day 3 in animals exposed to 10 mg OTA/kg bw as compared to treated groups exposed
for a shorter period (day 1) and lower (1 mg/kg bw) OTA dose (Supplementary Figure S5). A similar
observation was published in a rat model at day 3 of OTA administration at 10 mg OTA/kg bw dose [13].
However, the 3 days long exposition of high OTA dose induced certain DNA damage, apoptosis,
and cancer-related gene expression activation, such as Gadd45, Gadd153, annexin2, and clusterin,
served as markers of the single oral dose (24 h) free-radical-mediated tissue damage in the kidney [13,34].
The OTA induced single oral dose (24 h) kidney tubular cell necrosis, presumably activating the HO-1
expression independently of the NRF2 [35]. Toxic agent exposure or injury of the kidney resulted in
cellular stress, which destabilizes the intracellular hem proteins, results in ROS formation, and leads to
lipid peroxidation [36,37]. As a result of activation of the HO-1, a cellular defense mechanism was
induced by the free-radical-mediated tissue damage, but the organism was unable to protect the cells
from the harmful effects of the uncontrolled lipid peroxidation in the kidney. A good explanation for
this phenomenon is the remarkable elevated level of CD at 10 mg OTA/kg bw treated repeated daily oral
dose (72 h) group (Figure 6A), indicating the increase in the initial phase of lipid peroxidation. Inhibition
of Gss mRNA synthesis and reduced GSS activity at the 10 mg OTA/kg bw treated animals and reduced
mRNA levels of Gpx1 and Gpx2 at both applied OTA doses led to an unaltered level of the GSH and
GSSG in the kidney. Moreover, the Gsr expression and GR activity remained stable, which means
that the glutathione redox cycle remained more or less unaltered; therefore, it can neutralize ROS
and metabolites. This finding is supported by the increase in the initial, but not the terminal, phase
markers of lipid peroxidation, which means no chain reaction occurred after initiation.

The repeated daily oral dose (72 h) OTA exposition significantly decreased the Sodl and
mitochondrial Sod2 (at high, 10 mg/kg bw, OTA dose only) mRNA expression levels in the kidney.
Previous findings in the human embryonic kidney (HEK-293) cells demonstrated that OTA exposure
caused ROS overproduction and decreased SOD activity [38]. Moreover, the same study on HEK-293
cells demonstrated a loss of mitochondrial membrane potential [38], suggesting the functional failure of
the mitochondrion as an effect of OTA exposure. Inhibition of hydrogen peroxide detoxifying enzymes,
such as catalase or glutathione-peroxidase (GPx) in hepatic cell culture by 3-amino-1,2,4-triazole and
mercaptosuccinic acid, significantly decreased the SOD2 expression (both at mRNA and protein level)
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and robustly increased the number of the necrotic cells in an in vitro model [39]. These results are
confirmed by the elevated number of the necrotic tubular cells in the repeated daily oral dose (72 h)
high-dose-OTA-treated mice.

The Hacel mRNA levels were robustly decreased in a dose-independent manner at day 3 of
OTA exposition. Moreover, the Racl expression was increased at the 10 mg OTA/kg bw treated group.
Hacel knockout mice showed NADPH oxidase-dependent ROS elevation [29].

The Racl expression increased exclusively when the highest OTA dose was introduced, but then,
the acel expression change was dose-independent. The elevated level of the Racl suggests the
Nox1-dependent ROS overproduction at the 10 mg OTA / kg bw treated mice’s kidney. Repeated daily
oral dose (21 days) OTA exposure significantly elevated the Nrf2 mRNA level, but the protein
expression remained stable. In addition, the Keapl mRNA expression remained stable. Previous studies
demonstrated that chronic (6 or 12 months) OTA exposition in a rat model significantly reduces the
cellular antioxidant defense by inhibiting NRF2 [18,40]. The OTA-induced oxidative stress did not
influence the NRF2 regulated Gss, Ngol, and Ho-1 expressions in our experiments. In a rat model,
elevated Nrf2 and unaltered Ngol and Ho-1 mRNA levels were observed at day 28 of OTA
(0.21 mg/kg bw) exposition in the kidney [16]. The Hacel mRNA expression was elevated considerably
in the kidney cortex of the repeated daily oral dose (21 days) OTA-treated animals. However, the HACE1
target Racl mRNA level remained unchanged. The activation of the HACE1 suggests the higher
frequencies of the RAC1 protein inactivation leads to lower NoxI-dependent ROS production.

OTA is a well-known initiator of oxygen free radical formation in the kidney [41] and, consequently,
activate lipid peroxidation [42]. These findings did not support the present study results in a single
oral dose (24 h) exposure on day 1. Still, on day 3, the marker of the initial phase of lipid peroxidation,
CDs, revealed such a process. The result can be explained with the significant decrease in GSH and
simultaneous activation of Gpx2 gene expression on day 1, which showed the opposite tendency
two days later. It means that early activation of some components of the glutathione redox system
eliminated the free radicals formed as an effect of OTA exposure, but this effect was eliminated
during the next two days; therefore, no adequate antioxidant defense was available, and free radicals
were able to initiate lipid peroxidation. Another glutathione redox component, GST, did not activate
as the effect of OTA exposure. This is contradictory to some previous data when oxidative stress
upregulated GST [43]. Repeated daily oral dose (21 days) (0.5 mg/kg bw) of OTA exposure revealed
lipid peroxidation, which reached the terminal phase, as shown by thiobarbituric acid reactive
substances concentration, at the end of the 21-days trial. Free radical formation and lipid peroxidation
in chronic exposure, supported by the results of [44] in rats, caused a significant decrease in GSH and
an increase in GSSG concentrations. The decrease in GSH and increase in GSSG cannot explain with
the changes in the activities of GPx and G.R., because those remained at the control level. However,
marked and significantly lower expression of both enzymes was found. Previous research also suggests
that oxidative stress in response to OTA may result from the down-regulation of genes involved in
antioxidant defense [18,40]. These results suggest that probably other mechanisms, such as conjugation
of the non-chlorinated metabolite of OTA with GSH [45], may result in its lower concentration.

The NRF2 Ser40-p protein level in the kidney was not influenced either in a single oral dose (24 h)
or repeated daily oral dose (21 days) OTA exposition. The release of NRF2 from KEAP1 possibly affects
PKC-6-mediated phosphorylation of NRF2 S40-P [46]. This step is essential to the activated NRF2
translocation from the cytoplasm to the nucleus [46]. A previous study demonstrated that KEAP1
controls the ubiquitination of NRF2. This process is mediated by Cullin 3 (Cul3)-dependent ubiquitin
ligase (E3) [47]. Lack of the alteration of the Ser40 phosphorylation of the NRF2 at the day 3 OTA
exposed samples, which is an essential step for the release of NRF2 from KEAP1 binding, suggests that
de novo transcription and translation is the primary mechanism to increase the NRF2 level in
the cytoplasm. OTA treatment in itself did not influence NRF2 Ser40 phosphorylation-mediated rescue
from degradation. On the other hand, the single OTA treatment robustly reduced NRF2 translation,
suggesting their putative post-translation inhibition by microRNAs. A previous study demonstrated a
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negative regulation of the mir-132 on NRF2 in LLC-PK cells to 24 h of OTA treatment [31]. The role
of the microRNAs in the OTA toxicities was not investigated in an in vivo model. The Keapl mRNA
expression decreased significantly, but the low level at both doses of single oral dose (24 h) OTA exposure,
suggesting the diminished rate of NRF2 degradation. The repeated daily oral dose (21 days) OTA
administration did not influence the NRF2 Ser40-P protein levels; thus, the reduced antioxidant
defense resulted in significant lipid peroxidation, as shown by the concentration of thiobarbituric acid
reactive substances.

In conclusion, the results revealed that OTA initiates free radical formation in the kidney. However,
this process is more dependent on the duration of exposure than on the dose applied. Free radical
formation activates the KEAP1/NRF2/ARE pathway but in a different time and dose-dependent manner.
OTA exposition increased the Nrf2 mRNA levels, suggesting activation of genes encoding ARE, but it
was not supported by the NRF2 Ser40-P protein level, which can be transported to the nucleus,
and activates ARE. As suggested by the low mRNA level of NRF2-dependent genes, lack of ARE
activation resulted in an improper antioxidant defense, thus oxidative stress, and, consequently,
cell damage.

4. Materials and Methods

4.1. Reagents

OTA (Fermentek, Jerusalem, Israel), methyl-methanesulfonate (MMS) (Sigma-Aldrich.,
St.  Louis, MO, USA), dimethyl-sulfoxide-DMSO (Sigma-Aldrich, St. Louis, MO, USA),
Tris-(hydroxymethyl)-aminomethane, Tris (Sigma-Aldrich, St. Louis, MO, USA) were used. All other
chemicals were obtained from Sigma-Aldrich, USA, at the highest purity as available.

4.2. Animals and Diet

Test animals were adult, male CD1 mice (7-9 weeks old) (from the colony breed at the Institute of
Experimental Medicine). Animals had free access to feed and tap water. Animals were maintained under
controlled conditions (temperature: 21 + 1 °C; humidity: 65%; dark-light cycle, 12 h dark/12 h light,
lights on 07:00). Batches of rodent feedstuff were tested by Soft Flow Hungary R&D Ltd. (Pecs, Hungary),
and traces of Ochratoxin-A were detected (3.05 + 0.12 pg/kg fodder). All procedures and experiments
were conducted according to guidelines of the European Communities Council Directive (86/609 EEC),
and the protocol was accepted by the Institutional Animal Care and Use Committee of the Institute
of Experimental Medicine, Budapest Hungary (permit number: PEI/001/35-4/2013, approval date:
13 February 2013, this permit is valid for 5 years). Animal experiments were performed in February
and March 2013.

4.3. Measuring of the OTA Concentration in Blood Plasma by ELISA

OTA extraction was performed from 50 pL plasma samples with 100 puL chloroform and 10puL
(0.1 M H3POy4). The mixture was homogenized and incubated on Bio RS524 vertical mini rotator
(bioSan, Riga, Latvia) rotating 25 rpm (20 min), then homogenized and subsequently centrifuged
for 10 min (10000x g). The lower phase was placed in a plastic tube, mixed with 100 uL (3% (w/v))
NaHCOj solution, and subsequently incubated on a Bio RS24 vertical rotator (25 rpm, 10 min). The
two bands were obtained, and the upper phase was used for OTA measurements.

The ochratoxin-A concentration of the extract was determined by Toxi-Watch™ Ochratoxin-A
ELISA Kit (Cat#301051, Soft Flow Hungary, Pecs, Hungary). Measurements were carried out on
Thermo Scientific Multiskan EX plate absorbance reader (Thermo Scientific, San Jose, CA, USA).
Measurements were performed in triplicate.
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4.4. Animal Treatment

Male, adult (7-9 weeks old) CD1 mice were housed with full access to fodder and tap water.
The testing parameters and the applied dose and time were determined, according to Luhe et al. [13]
and Zeljezic et al. [48]. Animal experiments were performed in February and March 2013. Bodyweight,
food, and tap water consumption were measured daily. Ochratoxin-A was solved in dimethyl-sulfoxide
(DMSO), and a master mix in 100 mg/mL OTA content was diluted and stored at 4 °C. This master
mix was subsequently diluted with sterile tap water (containing 10 mM Tris, pH 8) to reach the
required OTA doses. OTA and vehicle solutions (sterile tap water containing 10 mM Tris, pH 8) were
administered once daily via oral gavages (200 uL/animal) in the morning period.

For testing the toxic effects of OTA, three different dosage groups were established. For a single
oral dose (24 h) and repeated daily oral dose (72 h) tests, the groups treated with 1 mg/kg body weight
(bw) and 10 mg/kg bw OTA and sacrificed after 24 or 72 h, respectively. Vehicle solution (sterile
drinking water contained 10 mM Tris (pH 8)); it was supplemented with the same DMSO amount
with which the high OTA dose administration was applied. For the repeated daily oral dose (21 days)
(21 days, repeated oral dose) test, the animals treated with 0.5 mg/kg body weight OTA daily were
sacrificed on day 21. Sterile tap water (containing 10 mM Tris, pH 8) and equal concentration of
dimethyl-sulfoxide with high-dose-OTA-treated groups in the single oral dose (24 h) and repeated
daily oral dose (72 h) experiments and equal concentration of DMSO with the repeated daily oral
dose (21 days) experiment were applied in the control (vehicle) groups. As a positive reference,
MMS treatment was introduced in 100 mg/kg bw (per day) dose for the single oral dose (24 h) and
repeated daily oral dose (72 h) experiments and 40 mg/kg body weight dose for the repeated daily
oral dose (21 days) experiment—Zeljezic et al. [48]. The testing parameters and the applied dose and
time were determined, according to Luhe et al. [13] and Zeljezic et al. [48]. For the single oral dose
(24 h) experiment, 6 animals were used in the vehicle group; 6 animals were used in the MMS-treated,
positive control group; 7 animals were used in the 1 mg/kg body weight OTA-treated group; 7 animals
were used in the 10 mg/kg body weight OTA-treated group. For repeated daily oral dose (72 h)
experiment, 6 animals were used in the vehicle group; 6 animals were used in the MMS-treated,
positive control group; 10 animals were used in the 1 mg/kg body weight OTA-treated group; 7 animals
were used in the 10 mg/kg body weight OTA-treated group. For repeated daily oral dose (21 days)
experiment, 8 animals were used in the Vehicle group; 6 animals were used in the MMS-treated and
positive control group; 10 animals were used in the 0.5 mg/kg body weight OTA-treated group.

Animals were decapitated, trunk blood was collected to polypropylene tube (BD Vacutainer
K2EDTA Plus Tubes, BD, Franklin Lakes, NJ, USA) until the centrifugation was stored on ice, spleen,
and kidneys were removed, and subsequently, their wet weights were measured. After weighing,
the kidneys were cut longitudinally, resulting in two half kidneys. One-half parts were stored in 10%
buffered (pH 7,4) formalin solution for histopathological analysis. From the other half parts of the
kidneys, the medulla and cortex were dissected and immediately freeze in dry ice. The prepared
samples were stored at —80 °C.

4.5. Determination of Lipid Peroxidation and Antioxidant Parameters

Before the biochemical analyses, frozen kidney samples were completely homogenized by IKA
Ultra Turrax instrument (IKA, Staufen, Germany) in 9-fold ice-cold (4 °C) physiological saline (0.85%
w/v NaCl). The amount of conjugated dienes (CD), and in addition, conjugated trienes (CT) in the
renal cortex samples, as specific markers of the lipid peroxidation at the initial phase, were measured
at 232 and 268 nm after 2,2,4-trimethylpentane extraction [49]. Thiobarbituric reactive substances
concentrations, as a marker of the lipid peroxidation at the terminal stage, were measured according to
the method of Botsoglou et al. (1994) in native kidney homogenates and expressed as malondialdehyde,
which served as standard [50].

In 10,000 g supernatant section of kidney homogenates, glutathione-peroxidase (GPx) activity was
determined according to Lawrence and Burk [51]. This method was applied cumene-hydroperoxide
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as a substrate. The measurement of glutathione reductase (GR) activity was carried out according to
Smith et al. (1988) [52], while in the case of glutathione-S-transferase (GST), the analytical procedure
of Mannervik et al. [53] was used. Reduced glutathione (GSH) content and the concentration of
glutathione disulfide (GSSG) were measured by Ellmann’s reagent according to the analytical procedure
of Rahman et al. [54]. GSH and GSSG content and enzyme activities were calculated to the total protein
content of the 10,000 g supernatant section of the renal cortex homogenate, which was determined by
Folin-phenol reagent (Sigma- Aldrich, USA) according to the analytical method of Lowry et al. [55].

4.6. Quantitative Real-Time PCR

The renal cortex samples were completely homogenized by IKA Ultra Turrax T25 instrument
in TRI Reagent Solution (Ambion, Austin, TX, United States). The total RNA was isolated from the
samples using QIAGEN RNeasy Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s
instruction. The genomic DNA contaminations were eliminated by DN-ase on-column digestion.
One hundred microliters RN-ase-free DNase I (1 unit DN-ase) (Thermo Scientific, San Jose, CA, USA)
solution was applied in this reaction. Quality control and the quantitative measurements of the total
RNA samples were performed with NanoDrop (Thermo Scientific, San Jose, CA, USA). The RT-minus
controls did not show amplification. The cDNA synthesis was carried out using the High Capacity
cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA). The oligonucleotide
primers for the mRNA expression analysis (comparative Ct, qRT-PCR) were designed using the
Primer Express 3.0 software. The oligonucleotides (Microsynth, Wien, Ausztria) were applied in the
real-time PCR reactions. Fast EvaGreen qPCR Master Mix (Biotium, Hayward, CA, USA) served as
a fluorescent dye and enzyme. The reactions were carried out on the ABI StepOnePlus instrument.
The oligonucleotide primers were listed in Supplementary Material Table S1. The gene expression
alterations were analyzed by ABI Step One 2.3 software (Thermo Scientific, San Jose, CA, USA). The
integrities of the amplicons were tested with Melt Curve Analysis on the ABI Step OnePlus instrument.
Expressions were normalized to mouse ppia (peptidylprolyl isomerase A) mRNA expression levels [56].

4.7. Western Hybridization

The renal cortex samples were completely homogenized by IKA Ultra Turrax T25 homogenizer in
Radio Immunoprecipitation Assay (RIPA) solution. Phosphatase and protease inhibitor cocktail tablets
were used to prevent the protein and the phosphate group degradation (Complete Mini and PhosSTOP,
Roche, Basel, Switzerland) according to the manufacturer’s instruction. Total protein contents was
determinate by the Pierce BCA Protein Assay Kit (Thermo Scientific, San Jose, CA, USA). Target proteins
in the kidney tissue were measured by Western blot analysis using the following antibodies: rabbit
antibodies against mouse NRF2 (bs-1074R) and NRF2 (Ser40) (bs-2013R) were purchased from Bioss
(Bioss, Huissen, The Netherlands). Antibody against the B-actin housekeeping protein was purchased
from Sigma (A5316 Ac74, Sigma, St. Louis, MO, USA).

Samples containing 30 pg proteins were separated on 12% denaturating SDS-PAGE at 120 V for 2 h,
and subsequently, the proteins were transferred to a Hybond-ECL membrane (Amersham Life Science,
Amersham, UK) by using semi-dry transfer instrument (Trans Blot SD Cell, Biorad, Hercules, CA, USA).
The transfer was performed at 24 V for 60 min. Cold Tris-Glycine-Methanol buffer (4 °C) was applied
to this step. The membranes were incubated for 1 hour in blocking solution (1 x TBS, 0.05% Tween-20,
3% Cohn fraction V of BSA) and then incubated overnight in the same solution containing the given
antibodies at 4 °C. The rabbit anti-NRF2 antibody was used at 1: 1000 dilutions, the rabbit anti-NRF2
(Ser40) antibody was used at 1:750 dilutions and the anti-b-actin antibody was used at 1:10,000 dilutions.
The membranes were washed (three times) for 5 minutes in 1 X TBS, 0.05% Tween-20 buffer before
a 2 h incubation in a solution (1 X TBS, 0.05% Tween-20 and 1% BSA Cohn fraction V) containing
biotinylated anti-rabbit IgG (BA 1000, Vector, Burlingame, CA, USA) and anti-mouse IgG (BAA 2000,
Vector, Burlingame, CA, USA) at 1:1000 dilution. The membranes were rinsed four times and developed
by Vectastain Elite ABC Peroxidase Kit (Vector, Burlingame, CA, USA).
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4.8. Histology

The kidney samples were fixed in formalin. We used the standard protocol for processing and
paraffin embedding. The kidney sections (4 pm) were stained with eosin and hematoxylin. An expert
veterinary pathologist analyzed the slides in a blind testing manner.

4.9. Statistical Analysis

Data are expressed and illustrated as means + SD. The data were first analyzed by the
Kolmogorov-Smirnov normality test. Passing this normality test, data were subjected to one-way
ANOVA (followed by Tukey’s post hoc analysis). If the data showed non-Gaussian statistical
distribution, the Kruskal-Wallis statistical method was applied to data analysis. GraphPad PRISM 6
software was applied to statistical analysis (GraphPad Software, 6.0, San Jose, CA, USA). p < 0.05 was
considered statistically significant.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6651/12/11/732/s1,
Figure S1: Blood plasma OTA content in single oral dose (24 h), repeated daily oral dose (72 h) and repeated
daily oral dose (21 days) experiments. A: OTA concentrations in blood plasma after single oral dose (24 h)
mycotoxin administration at 1 mg/kg bw OTA (843.02 + 285.16 ng/ml OTA in plasma) and 10 mg/kg bw OTA
(2717.88 + 391.52 ng/ml OTA in plasma) were applied. B: Repeated daily oral dose (72 h) mycotoxin treatment
significantly elevated OTA concentration in the blood plasma in OTA 1 (269.73 + 60.6 ng/ml OTA) and OTA 10
(1969.28 + 654.6 ng/ml OTA) groups. C: Repeated daily oral dose (21 days) OTA treatment (0.5 mg/kg bw) resulted
significantly elevated 231.35 + 50.23 ng/ml OTA level in the blood plasma. Abbreviations: MMS-Group treated
with methyl methanesulfonate, OTA 1 and OTA 10-Groups treated with 1 and 10 mg/kg bw ochratoxin A in
single oral dose (24 h) and repeated daily oral dose (72 h) experiment, OTA 0.5-Group treated with 0.5 mg/kg bw
ochratoxin A in repeated daily oral dose (21 days) experiment. Values are expressed as the mean + S.D. Data
were analysed by one-way ANOVA followed by the Tukey’s post hoc test. ** p < 0.01, *** p < 0.001, **** p < 0.0001
vs. vehicle. Figure S2: Effect of single oral dose (24 h) OTA administration on the spleen and kidney weight.
A: The single oral OTA treatment (24 h) significantly elevated the normalized wet weight of the kidney in both
OTA dose (p < 0.01 and 0.05). B: The normalized wet weights of spleen was significantly higher in the higher
OTA treated group (* p < 0.05). Abbreviations: MMS-Group treated with methyl methanesulfonate, OTA 1 and
OTA 10-Groups treated with 1 and 10 mg/kg bw ochratoxin A in acute experiment. Values are expressed as the
mean + 5.D. Data were analysed by one-way ANOVA followed by the Tukey’s post hoc test. * p < 0.05,** p < 0.01
vs. vehicle. Figure S3: Effect of repeated daily oral dose (72 h) OTA administration on the spleen and kidney
weight. A: The repeated daily oral dose (72 h), 72 h, OTA toxicity did not influence significantly the wet weight of
kidney. B: The normalized wet weights of spleen were significantly lower in both MMS and OTA treated groups,
as compared to the control (** p < 0.01). Abbreviations: MMS-Group treated with methyl methanesulfonate, OTA 1
and OTA 10-Groups treated with 1 and 10 mg/kg bw ochratoxin A in repeated daily oral dose (72 h) experiment.
Values are expressed as the mean + S.D. Data were analysed by one-way ANOVA followed by the Tukey’s post
hoc test. ** p < 0.01 vs. vehicle. Figure S4: Effect of repeated daily oral dose (21 days) OTA administration on
the spleen and kidney weight. A: The repeated daily oral dose (21 days) OTA treatment decreased significantly
the normalized wet weight of kidney in the OTA treated group. B: The normalized wet weight of spleen did not
show statistically significant differences between the MMS and OTA treated groups (** p < 0.01). Abbreviations:
MMS-Group treated with methyl methanesulfonate, OTA 0.5-Group treated with 0.5 mg/kg bw ochratoxin A in
repeated daily oral dose (21 days) experiment. Values are expressed as the mean + S.D. Data were analysed by
one-way ANOVA followed by the Tukey’s post hoc test. ** p < 0.01 vs. vehicle. Figure S5: Histology of the kidneys
following OTA treatment. Representative photomicrographs showing hematoxylin-eosine stained kidney sections.
Abbreviations: (A) Vehicle, (B) OTA 0.5-Group treated with 0.5 mg/kg bw ochratoxin A in repeated daily oral
dose (21 days) experiment. (C) OTA 1 and (D) OTA 10-Groups treated with 1 and 10 mg/kg bw ochratoxin A in
repeated daily oral dose (72 h) experiment. Symbols: white arrow- detached necrotic epithelial cells, black arrow-
necrotic tubular cells, white arrowhead- tubular cell regeneration. Scale bar: 100 um. Figure Sé6: Effect of single
oral dose (24 h) OTA expositions on the NRF2 Ser40-P protein expression levels in kidney. A: Quantification of
protein expression normalized to vehicle treated controls by densitometry. Significant differences were not found
in the OTA treated animals. B: Representative examples of Western blots using kidney homogenate from mice.
Abbreviations: MMS-Group treated with methyl methanesulfonate, OTA 1 and OTA 10-Groups treated with 1
and 10 mg/kg bw ochratoxin A in single oral dose (24 h) experiment. Values are expressed as the mean + S.D.
Data were analysed by one-way ANOVA followed by the Tukey’s post hoc test. Figure S7: Effect of repeated daily
oral dose (72 h) OTA expositions on the NRF2 Ser40-P protein expression levels in kidney. A: Quantification of
protein expression normalized to vehicle treated controls by densitometry. Significant protein expression change
was not found in the OTA treated animals. B: Representative examples of Western blots using kidney homogenate
from mice. Abbreviations: MMS-Group treated with methyl methanesulfonate, OTA 1 and OTA 10-Groups
treated with 1 and 10 mg/kg bw ochratoxin A in repeated daily oral dose (72 h) experiment. Values are expressed
as the mean + S.D. Data were analysed by one-way ANOVA followed by the Tukey’s post hoc test. Figure S8:
Effect of repeated daily oral dose (21 days) OTA expositions on the NRF2 protein expression levels in kidney.
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A: Quantification of protein expression normalized to vehicle treated controls by densitometry. Significant protein
expression elevation was found in the MMS treated animals, but the repeated daily oral dose (21 days) OTA
administration did not influence the protein levels. B: Representative examples of Western blots using kidney
homogenate from mice. Abbreviations: MMS-Group treated with methyl methanesulfonate, OTA 0.5-Group
treated with 0.5 mg/kg bw ochratoxin A in repeated daily oral dose (21 days) experiment. Values are expressed
as the mean + S.D. Data were analysed by one-way ANOVA followed by the Tukey’s post hoc test. ** p < 0.01
vs. vehicle. Figure S9: Effect of repeated daily oral dose (21 days) OTA expositions on the NRF2 Ser40-P protein
expression levels in kidney. A: Quantification of protein expression normalized to vehicle treated controls by
densitometry. Significant protein expression elevation was found in the MMS treated animals, but the repeated
daily oral dose (21 days) OTA administration did not influence the Ser40 phosphorylated NRF2 protein levels.
B: Representative examples of Western blots using kidney homogenate from mice. Abbreviations: MMS-Group
treated with methyl methanesulfonate, OTA 0.5-Group treated with 0.5 mg/kg bw Ochratoxin A in repeated daily
oral dose (21 days) experiment. Values are expressed as the mean + S.D. Data were analysed by one-way ANOVA
followed by the Tukey’s post hoc test. * p < 0.05 vs. vehicle.
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