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Abstract

Background

The rupture of an intracranial aneurysm (IA) causes devastating subarachnoid hemor-

rhages, yet most IAs remain undiscovered until they rupture. Recently, we found an IA RNA

expression signature of circulating neutrophils, and used transcriptome data to build predic-

tive models for unruptured IAs. In this study, we evaluate the feasibility of using whole blood

transcriptomes to predict the presence of unruptured IAs.

Methods

We subjected RNA from peripheral whole blood of 67 patients (34 with unruptured IA, 33

without IA) to next-generation RNA sequencing. Model genes were identified using the least

absolute shrinkage and selection operator (LASSO) in a random training cohort (n = 47).

These genes were used to train a Gaussian Support Vector Machine (gSVM) model to dis-

tinguish patients with IA. The model was applied to an independent testing cohort (n = 20) to

evaluate performance by receiver operating characteristic (ROC) curve. Gene ontology and

pathway analyses investigated the underlying biology of the model genes.

Results

We identified 18 genes that could distinguish IA patients in a training cohort with 85% accu-

racy. This SVM model also had 85% accuracy in the testing cohort, with an area under the

ROC curve of 0.91. Bioinformatics reflected activation and recruitment of leukocytes,
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activation of macrophages, and inflammatory response, suggesting that the biomarker cap-

tures important processes in IA pathogenesis.

Conclusions

Circulating whole blood transcriptomes can detect the presence of unruptured IAs. Pending

additional testing in larger cohorts, this could serve as a foundation to develop a simple

blood-based test to facilitate screening and early detection of IAs.

Introduction

Intracranial aneurysms (IAs) are pathological outpouchings within cerebrovasculature whose

natural history is driven by inflammation [1–3]. Although the rupture of an IA occurs at a rate

of approximately 1% per year, the consequences are devastating. Rupture is the main cause of

non-traumatic subarachnoid hemorrhage (SAH), which carries high rates of mortality (up to

50%) [4–6]. Early IA detection would enable closer monitoring and preventive treatments,

which can drastically reduce the rate of rupture [7, 8]. For instance, one study found that for a

50-year-old man with an IA, the probability of rupture during his remaining lifetime was

22.8%, but can be reduced to 1.6% after surgical clipping or 3.4% after endovascular coiling

[7].

Currently, the only way to diagnose IAs is with cerebral imaging such as MR angiography,

computed tomography angiography (CTA), or digital subtraction angiography (DSA). But as

the vast majority of IAs are asymptomatic, they are mostly detected incidentally. These imag-

ing modalities are generally not suited for regular IA screening due to prohibitively high costs

and potential risks, such as invasive complications (allergic reaction, injection site infection,

hematoma, death) and radiation exposure (e.g., DSA, CTA) [9]. And while MRI without con-

trast enhancement is non-invasive, it is unable to accurately detect many IAs and typically

requires invasive follow-up DSA. As it stands, the American Stroke Association does not rec-

ommend IA screening in the general population by medical imaging because of the high costs

[10], though it has been shown to be cost effecitve in those with an IA family history [11, 12].

Therefore, a blood test would provide an inexpensive, rapid, and minimally-invasive screening

test for detecting unruptured IAs in a large population. Those who test positive could then

plan for diagnostic imaging and preventive maintenance.

In search of blood-based IA biomarkers, we previously studied gene expression profiles in

circulating neutrophils. An initial case-controlled study used RNA-seq to profile neutrophils

from individuals with and without IAs (confirmed by angiography) and identified an 82-gene

signature that was associated with IA [13]. In a follow-up study, we implemented machine

learning to test the feasibility of using gene expression profiles to detect unruptured IAs [14].

The classification algorithm we developed achieved a predictive accuracy of 90% and an area

under the curve (AUC) of 0.80 in a small validation cohort. Bioinformatics analyses demon-

strated that predictive genes were related to neutrophil activation and dysregulated inflamma-

tory responses, which may explain why they distinguished patients with IAs.

While these studies demonstrated that neutrophil transcriptomes can potentially identify

patients with IA, a leukocyte-based diagnostic would not be ideal for clinical implementation.

In this case, neutrophils must be processed immediately after collection, and the abundance of

neutrophil-derived endonucleases [15] makes it difficult to obtain high quality RNA. An assay

using whole blood would overcome these challenges, as whole blood RNAs can be rapidly sta-

bilized at room temperature and do not require rigorous extraction procedures. Such an assay
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transcripts measured in the 20 samples of the
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Supporting Information file.
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could also be run using standard equipment in diagnostic labs. Thus, in this study, we investi-

gated if gene expression differences in whole blood can distinguish individuals with IA from

those without IA, and further, if machine learning could use those differences to build an IA

prediction model.

Methods

Study enrollment

All methods in this study were approved by the University at Buffalo Institutional Review

Board (study no. 030–474433). Written informed consent was obtained from all subjects prior

to sample collection and the study was carried out in accordance with the approved protocol.

Patients at Gates Vascular Institute (Buffalo, NY) receiving cerebral DSA with and without IA

diagnosis were enrolled in this study. Indications for DSA include confirmation of IAs

detected on noninvasive imaging or follow-up noninvasive imaging of previously-detected IAs

for IA group, or to identify presence or absence of vascular disease (i.e. malformations, carotid

stenosis) for control group. Patients who consented to participate in this study were over 18

years old, English-speaking, and had not previously been treated for IA. Patients who were

pregnant, had a fever (>100˚F), recently had invasive surgery, were receiving chemotherapy

treatments, had autoimmune diseases, or were on immunomodulating drugs, as noted in their

medical records, were excluded. Information about patient’s history and comorbidities was

collected from electronic medical records.

Whole blood RNA processing

A volume of 2.5 mL of blood was taken from the femoral access sheath and transferred into a

PAXgene blood RNA tube (PreAnalytiX, Hombrechtikon, Switzerland). Total RNA was

extracted using the PAXgene Blood RNA kit (Qiagen, Venlo, Limburg, Netherlands) accord-

ing to manufacturer’s instructions. Globin mRNA was removed by magnetic-bead capture

with the GLOBINclear kit (Ambion, Austin, TX, USA) following manufacturer’s instructions.

RNA purity and concentration were assessed by absorbance at 260 nm and were measured by

the Quant-iT RiboGreen Assay (Invitrogen, Carlsbad, CA) and the Agilent 2100 BioAnalyzer

RNA 6000 Pico Chip (Agilent, Las Vegas, NV), respectively.

RNA sequencing and data analysis

Libraries were prepared using the Illumina TruSeq stranded total RNA gold kit (Illumina, San

Diego, CA). Samples underwent 50-cycle single-read sequencing in a HiSeq2500 Illumina sys-

tem and were demultiplexed with Bcl2Fastq. After sequencing, per-cycle basecall files gener-

ated by the Illumina HiSeq2500 were converted to per-read FASTQ files using bcl2fastq

version 2.20.0.422 using default parameters. The quality of the sequencing was reviewed using

FastQC version 0.11.5. Potential contamination was detected using FastQ Screen version

0.11.1. No adapter sequences were detected, so no trimming was performed. Genomic align-

ments were performed using HISAT2 version 2.1.0 using default parameters. NCBI reference

GRCh38 was used as reference genome and gene annotation set. Sequence alignments were

compressed and sorted into binary alignment map files using samtools version 1.3. Mapped

reads for genomic features were counted using Subread featureCounts version 1.6.2 using the

parameters -s 2 –g gene_id–t exon–Q 60; the annotation file specified with–a was the NCBI

GRCh38 reference provided by Illumina’s iGenomes. Raw counts were normalized as tran-

scripts per million (TPM), and ComBat in R was used to correct TPM levels for any bias intro-

duced by sequencing on different flow cells [16–18].
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Dispersion of control and aneurysm groups was plotted using log10(TPM+1) for all tran-

scripts with a group average>0 for both aneurysm and control groups. Cell composition analy-

sis was performed using open-access CIBERSORT application (version 1.06) with the TPM

normalized gene expression values and the provided 6 cell-type leukocyte signatures (B cells,

CD8 T cells, CD4 T cells, NK cells, monocytes, neutrophils) [19]. CIBERSORT uses a linear

support vector regression to estimate cell proportions. Transcripts with approved HGNC sym-

bol names (n = 22,924) were used in this analysis. We also visualized how transcriptomes sepa-

rated control and IA samples by hierarchical clustering via hclust in R under default settings

using raw counts with sum>0 across all samples.

Model gene selection

Prior to selecting genes for model building, we randomly divided the whole blood transcrip-

tome dataset into training and testing cohorts, following a 70:30 split for both aneurysm and

control groups. Within the training cohort, we reduced the feature space to protein coding

transcripts with an average TPM>1. Candidate genes for the predictive model were then iden-

tified using Hilbert-Schmidt Independence Criterion Least Absolute Shrinkage and Selection

Operator (HSIC LASSO). Using the l1-regularizer, HSIC LASSO finds a combination of genes

that consists of non-redundant features with strong dependence on disease status. Principal

component analysis (PCA) with the prcomp function in R visualized how the selected tran-

scripts separate IA from control. Statistical significance of differential expression between IA

and control groups was tested by independent samples t-test for equal variance and by Mann-

Whitney U test for unequal variance.

Development of IA prediction model

Features selected by LASSO were used to train a classification model by SVM with a Gaussian

kernel in MATLAB’s Statistics and Machine Learning Toolbox. SVM has been successfully

used in a variety of disease classification applications, including our previous efforts using neu-

trophil transcriptomes [14]. A 10-fold cross-validation within the training set was performed

as the model was being developed to reduce likelihood of overfitting. We compared model pre-

dictions to clinical diagnoses to determine number of true positives, true negatives, false posi-

tives, and false negatives, which were used to calculate sensitivity, specificity, and accuracy as

defined elsewhere [14]. Receiver operating characteristic (ROC) curves were created, from

which area under ROC curve (AUC) was calculated as a metric of model performance in the

training cohort. We also calculated positive and negative predictive values (PPV, NPV) to

examine how disease prevalence influences model’s predictive ability using equations enumer-

ated elsewhere [14]. The model was subsequently applied to the independent testing cohort.

The TPM values of LASSO-selected features for each subject in the testing cohort were input

to the model by a blinded operator to make predictions. Then, the true diagnoses of the sub-

jects (positive or negative for IA) were compared to model predictions to evaluate model per-

formance in the testing cohort.

Bioinformatics

Ontologies that were significantly enriched in model genes compared to the background list

of 34,605 expressed genes in our sequencing were identified using the Gene Ontology

enRIchment anaLysis and visuaLizAtion tool (GORILLA) [20]. We reported biological pro-

cesses with a p-value<0.0005. Pathways and networks associated with the LASSO genes

were studied with Ingenuity Pathway Analysis (IPA) software [21], using fold-changes cal-

culated in the training cohort for the 18 model genes. IPA maps our genes of interest to a
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gene object in the Ingenuity Knowledge Base to create networks based on known interac-

tions between products of the genes and to identify enriched ontologies and upstream regu-

lators. Networks with a p-score �15, ontologies that assign at least 3 model genes and have

a p-value<0.05, and upstream regulators with an activation z-score�|1.5| were considered

significant.

Results

Study population characteristics

We included a total of 67 peripheral blood samples (34 IA, 33 control) that met our inclusion/

exclusion and quality criteria in this study. These samples were randomly divided into an

n = 47 training cohort (24 IA) and an n = 20 testing cohort (10 IA). Control and IA popula-

tions in both cohorts had similar demographics and comorbidities (Table 1), with the excep-

tion of smoking, which was higher in the IA training group. Aneurysm size (largest diameter

measured on DSA) ranged from 1 to 19 mm, with a mean of 5.6 mm (S1 Table). There were 41

IAs total, as 6 patients had multiple IAs.

RNA quality and sequencing metrics are reported in S2 Table. The 67 sequenced samples

had an average 260/280 of 1.9 and average RNA integrity number of 8.4. On average, 57.29

million sequences per sample and 96% aligned rate were obtained. Expression dispersion

between IA and control groups are visualized in Fig 1A. To verify differentially expressed tran-

scripts were derived from expression differences related to presence of IA, rather than differ-

ences in cell populations, we estimated the proportions of different cell populations in each

sample using CIBERSORT [19]. This showed no statistically significant difference in propor-

tions of cell types between control and IA groups. On average across all samples, neutrophils

represent the majority (45%) followed by monocytes (19%), CD4 T cells (16%), CD8 T cells

(8%), B cells (7%), and NK cells (5%) (Fig 1B).

All 67 transcriptomes were sorted by supervised hierarchical clustering using raw counts

without any feature reduction. Generally, clusters were either predominantly IA or control, as

Table 1. Clinical characteristics of training and testing cohorts�.

Training Cohort Testing Cohort

Control (n = 23) Aneurysm (n = 24) Control (n = 10) Aneurysm (n = 10)

Age (Mean±SE) 58±3.6 55±2.6 56±4.0 57±4.6

Over 55 60.87% 45.83% 40.00% 60.00%

Sex

Female 56.52% 70.83% 60.00% 90.00%

Smoker

Yes 0.00% 33.33% 10.00% 30.00%

Comorbidities

Hypertension 30.43% 29.17% 20.00% 40.00%

Heart Disease 17.39% 16.67% 0.00% 20.00%

High Cholesterol 34.78% 33.33% 40.00% 30.00%

Stroke History 17.39% 8.33% 10.00% 0.00%

Diabetes 13.04% 8.33% 10.00% 0.00%

Osteoarthritis 26.09% 25.00% 30.00% 30.00%

�Clinical characteristics of the randomly-created training and testing cohorts. With exception of age, these factors were quantified as binary data points. The clinical

factors were retrieved from patients’ medical records via latest “Patient Medical History” form administered before imaging. SE = standard error.

https://doi.org/10.1371/journal.pone.0241838.t001
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seen in Fig 1C. The first few clusters in the dendrogram are composed of mainly control sam-

ples, but progressing rightwards, there are larger groups of mostly aneurysm samples followed

by a group of equal composition at the far right.

Fig 1. Differential expression analysis. A) Scatterplot depicts dispersion in expression between IA and control groups. B) No difference between cell type

proportions of aneurysm and control groups was found. In both, neutrophils comprise majority of cells expressed in whole blood transcriptomes. C)

Hierarchical clustering using genes with TPM sum>0 for all 67 whole blood transcriptomes. Teal indicates control samples, while pink indicates aneurysm

samples.

https://doi.org/10.1371/journal.pone.0241838.g001
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gSVM model can detect IA with high accuracy

We employed a regression-based technique, LASSO, to select genes with the greatest predictive

ability (S3 Table) to use in our model. Fold-change and p-value of the 18 genes in the training

cohort are reported in Table 2. PCA (Fig 2A) using these 18 genes demonstrates they are able

to clearly separate disease from control cases in the training cohort. The first 3 components

capture the majority (56%) of total variance. These 18 genes were used to train our SVM pre-

diction model.

In training, this model achieved greater than 80% accuracy, sensitivity, and specificity.

Using an estimated prevalence of 5% [22], we calculated that the model had an NPV of approx-

imately 1 (Fig 2B). ROC analysis confirmed the robust predictive ability as the model had an

AUC of 0.92 (Fig 2C). We examined how this set of model genes could separate IA and control

groups within the independent testing cohort, consisting of 20 patients (10 IA). PCA visualiza-

tion demonstrates that these transcripts can still discriminate IA and control groups within

this new dataset, again accounting for the majority of variance (64%) within the first 3 princi-

pal components (Fig 2D). As shown in Fig 2E and 2F, the model performed well in indepen-

dent testing with an accuracy of 85% and an AUC of 0.91.

Genes in model reflect inflammatory processes

Biological functions of the 18 model genes were investigated through gene ontology and path-

way analysis. GORILLA identified 4 significant processes: “negative regulation of secretion”,

“negative regulation of protein secretion”, “negative regulation of peptide secretion”, and

“cytokine-mediated signaling pathway” (Table 3). IPA analysis indicated 2 significant net-

works (Fig 3A and 3B) with functions related to cell death and survival, cardiovascular system

development and function, and tissue development (A); cancer, endocrine system disorders,

and gastrointestinal disease (B). Network A is a highly connected network with dense signaling

Table 2. 18 transcripts selected during model training.

Gene Gene ID Accession no. F-C P-value

ATF3 467 NM_001674 -1.86 <0.001

CBWD6 644019 NM_001085457 1.35 0.001

CCDC85B 11007 NM_006848 1.35 0.001

CCR8 1237 NM_005201 1.68 <0.001

CHMP4B 128866 NM_176812 -1.14 0.007

CLEC4F 165530 NM_173535 -2.81 0.002

CXCL10 3627 NM_001565 -2.64 <0.001

FN1 2335 NM_212476 -2.88 0.06

MT2A 4502 NM_005953 -1.65 <0.001

MZT2B 80097 NM_025029 1.18 0.008

PCSK1N 27344 NM_013271 1.56 0.018

PIM3 415116 NM_001001852 1.31 <0.001

SLC37A3 84255 NM_032295 1.23 0.032

ST6GALNAC1 55808 NM_018414 1.71 <0.001

TCN2 6948 NM_000355 -1.77 <0.001

TIFAB 497189 NM_001099221 -1.48 0.007

TNFRSF4 7293 NM_003327 1.48 <0.001

UFSP1 402682 NM_001015072 1.32 0.003

P-values were calculated in the training dataset by independent t-test if equal population variances, Mann-Whitney U test if not. No. = number, F-C = fold-change.

https://doi.org/10.1371/journal.pone.0241838.t002
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centered around AKT, ERK, FN1, IL1, JNK, MAPK, PI3K, and VEGF. In Network B, TP53

and CTNNB1 function as central nodes. Genes in each network are reported in S4 Table. The

disease and biological functions reported by IPA include activation of leukocytes, cell death of

immune cells, activation of macrophages, inflammatory response, recruitment of leukocytes,

apoptosis of leukocytes (full list presented in S5 Table). Progesterone, OSM, and IL1B (the lat-

ter two being important cytokines involved in inflammatory signaling [23, 24]) were upstream

regulators predicted to be inhibited (Fig 3D).

Discussion

There is a critical need for a minimally-invasive prescreen to identify patients who have an

unruptured IA and would, therefore, maximally benefit from cerebral vascular imaging (such

as MRA) for IA detection. Previously, we hypothesized that circulating blood cells have altered

expression profiles after contact with IA tissue or inflammatory mediators released by IAs

Fig 2. Performance of 18 gene SVM biomarker in training and testing. Top: Training. A) PCA shows this panel can distinguish between aneurysm (red)

and control (blue) samples. B) Accuracy, sensitivity, specificity, 5% NPV, and 5% PPV of model in training. C) ROC curve for model has AUC of 0.92.

Bottom: Testing. D) PCA illustrates panel was able to separate samples in a new cohort. E) Accuracy, sensitivity, specificity, 5% NPV, and 5% PPV of model in

testing. F) ROC shows high performance in testing cohort (AUC = 0.91).

https://doi.org/10.1371/journal.pone.0241838.g002

Table 3. GORILLA ontologies for the 18 transcripts selected by LASSO.

GO term Description P-value Genes

GO:0051048 Negative regulation of secretion 4.29E-05 FN1, PIM3, TIFAB, TNFRSF4

GO:0050709 Negative regulation of protein secretion 2.46E-04 FN1, PIM3, TNFRSF4

GO:0002792 Negative regulation of peptide secretion 2.71E-04 FN1, PIM3, TNFRSF4

GO:0019221 Cytokine-mediated signaling pathway 3.23E-04 CCR8, CXCL10, FN1, MT2A, TNFRSF4

https://doi.org/10.1371/journal.pone.0241838.t003
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[25]. We investigated this by performing a transcriptome profiling study of circulating neutro-

phils in patients with and without IA and found an IA signature in neutrophils [13], which

when trained via a machine learning pipeline demonstrated predictive ability to detect unrup-

tured IAs. In this study, we discovered that a unique IA signature exists in whole blood tran-

scriptomes, albeit there were no common genes between neutrophil and whole blood IA

biomarkers.

Our data yielded 18 genes that discriminated IA from control cases via LASSO regression.

This type of feature selection overcomes shortcomings of traditional statistical filtering, since

filtering methods consider genes independently, neglecting functional interactions between

genes/gene products. Consequently, feature selection by traditional filtering methods may

omit genes that constructively work together during a particular disease state, and may select

redundant genes. During training, we used an SVM algorithm which separates binary labeled

Fig 3. IPA Network analysis of 18 genes identified by LASSO. Transcripts with increased expression in IA are red; transcripts with lower expression are

green; fold-change represented by intensity. A) The first network (p-score = 20) reflects cardiovascular system development and function, cell death and

survival, and tissue development. B) The second network (p-score = 17) has ontologies of cancer, endocrine system disorders, and gastrointestinal disease. C)

Network constructed using 3 significant upstream regulators (progesterone, OSM, IL1B).

https://doi.org/10.1371/journal.pone.0241838.g003
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samples by transforming them into a multidimensional space and establishing a hyper-plane

that maximizes the distance between samples of either class. Our Gaussian SVM (gSVM)

model using the 18 selected genes had a prediction accuracy of 85% in both the training cohort

(via cross-validation) and an independent testing cohort. Using isolated neutrophils in our

previous study, we achieved a maximum accuracy of 90% in an independent testing cohort.

The decrease in observed biomarker performance may be due to additional noise associated

with a heterogeneous cell population in whole blood. There may also be greater inter-patient

variability with whole blood transcriptomes due to contribution of multiple cell types. How-

ever, the whole blood model still achieved an NPV>0.98 in both training and testing, support-

ing its feasibility as a pre-screen for IA, for which high NPV is desired.

We suspect that the 18 classifier transcripts detect IAs because they capture key facets of the

disease, related to inflammation, infiltration, and degradation of the IA wall. Four of the

model genes (TNFRSF4, TIFAB, MT2A, PIM3) are associated with NF-κB, an important

inflammatory signaling pathway implicated in IA pathogenesis [26]. Most notably, NF-κB

upregulates MMP-9 [27], a main driver of IA wall degradation [28], and MCP-1, which

recruits macrophages to the IA wall (a hallmark of aneurysmal tissue) [28]. TNFRSF4
(increased in our study) is a member of the TNF-receptor superfamily that is involved in NF-

κB pathway activation and has also been found to be increased in aneurysm tissue. Both the

TNF family and NF-κB complex contribute to vessel degradation and are captured in the first

IPA-derived network with direct connections to multiple model genes (ATF3, CCR8, CXCL10,

FN1, PIM3, TNFRSF4). TNFα, a cytokine within the TNF family, has increased expression in

plasma of aneurysm patients [29] and IA walls, and leads to EC dysfunction, inflammation,

and apoptosis [28]. Conversely, TIFAB and MT2A (both decreased in our study) inhibit activa-

tion of NF-κB, suggesting another mechanism for NF-κB activation in patients with IAs.

A role for inflammation is also reflected in other biomarker genes (CCR8, CXCL10) related

to cytokine/chemokine signaling. For example, CCR8 (increased in our study) is a member of

the beta chemokine receptor family and has greater expression in M1 pro-inflammatory mac-

rophages (vs. M2 macrophages). M1 macrophages have been shown to be more prevalent in

IAs [30] and may contribute more to pathologic remodeling during IA natural history [31].

Critical signaling pathways are also represented in the first network, with the transcription fac-

tor AP1 interacting with ERK, JNK, and MAPK complexes. AP1 has been linked to other

inflammatory diseases, such as arthritis [32], and has been shown to regulate MMP-2, which

could degrade extracellular matrix in IA [33]. Furthermore, a predicted upstream regulator of

AP1 is IL1B, which is significantly increased in plasma of IA patients [29] and is associated

with extracellular matrix destruction, NF-κB signaling, and vascular SMC apoptosis [34]. IL1B

upregulates adhesion molecules on endothelial cells that recruit neutrophils and monocytes,

and can induce both reactive oxygen species production and MMP-9 degradation via NGAL

[35, 36]. Another important cytokine implicated in IPA analysis is OSM, an upstream regula-

tor. OSM can regulate production of other cytokines, including IL6, which has been implicated

in polymorphism studies of multiple populations [37–39].

While numerous model genes have clear associations to IA pathogenesis via inflammatory

and signaling pathways, others are related to functions that have not been extensively explored

in IA. For example, intra-and extra-cellular signaling, reflected by ATF3, CHMP4B, and

PCSK1N may play a role in the complex reactions of circulating cells to IA presence. Overall,

these and the other remaining genes require further study to elucidate their roles in IA patho-

genesis, since they may represent unique predictive targets in whole blood RNA expression

profiles. One way of determining which transcripts are most associated with IA may be to

investigate if their “signal” increases when blood is collected from the intracranial vessels or

from the aneurysm sac, as others have done [25, 40]. We hypothesize that differences in the
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IA-associated transcripts would be exaggerated in blood samples drawn closer to the IA tissue,

as the circulating cells that confer transcriptomic changes due to a blood-IA interaction would

be most concentrated at that location. Future studies are required to test this hypothesis.

This study has several limitations. First, this is a single-center study, which may have intro-

duced selection bias into our experimental design. Second, every subject underwent imaging

by DSA. Thus, while our control population was confirmed to not have an IA, they may have

other health issues that prompted DSA imaging. Furthermore, we used DSA for identification

of IAs, as it is the gold standard in cerebrovascular imaging because of its high resolution.

However, future studies may use less sensitive modalities, such as CTA or MR angiography, to

confirm the presence of IA, which therefore, may result in false positives for the proposed bio-

marker. Third, there was an imbalance in comorbidities between IA and control groups that

could have contributed to differential expression. To address these limitations, we are cur-

rently planning a multi-center study to prospectively validate our biomarker in patients receiv-

ing both DSA and non-invasive imaging, such as MRA. This large study will increase both our

sample size and the diversity of patient population. It will also allow us to incorporate multiple

control groups, such as those with other types of aneurysm or vascular abnormalities, to iden-

tify transcripts most specific to IA.

Conclusions

In this study we developed an accurate (85%) machine learning classifier derived from whole

blood transcriptomes to predict presence of unruptured IA. Bioinformatics analyses indicate

that critical inflammatory pathways are captured by the model genes, which is consistent with

our previous findings using neutrophils. While other groups have studied whole blood tran-

scriptomes for IA biomarkers, they used single, small RNA molecules [41, 42], did not perform

cerebral imaging on control subjects, or did not use an independent testing cohort. We

addressed these shortcomings by confirming presence or absence of IA with cerebral imaging,

using gSVM with a panel of genes to better handle inter-sample variability, performing feature

identification and model construction in a separate training cohort, and assessing true model

performance in an independent testing cohort. While we implemented an improved study

design, we still need to confirm our biomarker in a large, multi-center study.
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