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Non-genetic cardiac pathologies develop as an aftermath of extracellular stress-
conditions. Nevertheless, the response to pathological stimuli depends deeply on
intracellular factors such as physiological state and complex genetic backgrounds.
Without a thorough characterization of their in vitro phenotype, modeling of maladaptive
hypertrophy, ischemia and reperfusion injury or diabetes in human pluripotent stem
cell-derived cardiomyocytes (hPSC-CMs) has been more challenging than hereditary
diseases with defined molecular causes. In past years, greater insights into hPSC-CM
in vitro physiology and advancements in technological solutions and culture protocols
have generated cell types displaying stress-responsive phenotypes reminiscent of in vivo
pathological events, unlocking their application as a reductionist model of human
cardiomyocytes, if not the adult human myocardium. Here, we provide an overview of
the available literature of pathology models for cardiac non-genetic conditions employing
healthy (or asymptomatic) hPSC-CMs. In terms of numbers of published articles, these
models are significantly lagging behind monogenic diseases, which misrepresents the
incidence of heart disease causes in the human population.

Keywords: ischemia – reperfusion, diabetes, non-genetic diseases, HPSC-cardiomyocytes, hPSC-CM,
maladaptive hypertrophy

INTRODUCTION ON HPSC-CMS

Nearly two decades since their first description (Kehat et al., 2001), hPSC-CMs are beginning to
fulfill their potential as a reductionist model of the human cardiac muscle. Thanks to constant
improvements in differentiation protocols (Mummery et al., 2003; Laflamme et al., 2007; Yang et al.,
2008; Kattman et al., 2011; Lian et al., 2012; Burridge et al., 2014) and increasing understanding of
their in vitro cardiac phenotype, hPSC-CMs are now an integral part of proposed high-throughput
drug screening (Kirby et al., 2018; Fiedler et al., 2019) and drug risk-assessment platforms (Yang
and Papoian, 2018; Lu H.R. et al., 2019; Li et al., 2020). Furthermore, there is evidence for their
increasing reliability in predicting adverse drug effects (Blinova et al., 2018).

The successful induction of pluripotency in human somatic cells (Takahashi et al., 2007; Yu
et al., 2007; Lowry et al., 2008; Park et al., 2008) opened the cardiac field to patient-specific
disease modeling (Carvajal-Vergara et al., 2010; Moretti et al., 2010), although patient-specific
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treatment modeling still remains an open challenge (Blinova
et al., 2019). The race toward generating mutation-specific
in vitro models produced >150 independent hiPSC lines over
the past 10 years and hundreds of scientific papers frequently
and comprehensively reviewed (Ross et al., 2018; van Mil et al.,
2018; van den Brink et al., 2019). Consequently, there is a
clear literature unbalance against non-genetic cardiac pathology
models, often coming with additional challenges in recreating
in vitro either the pathological phenotype, the pathological
environment or both (Figure 1).

Here, we discuss modeling of non-genetic heart conditions,
focusing exclusively on results obtained on human cells when the
referenced study makes only sparing use of hPSC-CMs

ADVANTAGES AND LIMITATIONS

Inter-species differences are a major concern in translational
research. Therefore, the human origin paired with virtually
unlimited low-cost supply constitute the most valuable
advantages of hPSC-CMs. Beyond the most often quoted
heart size, beating rate, electrophysiology and protein function
(Nerbonne et al., 2001; Haghighi et al., 2003), more subtle
differences are apparent also in stress-responses. For instance, an
in vitro angiotensin-II-induced heart failure model reproduces
the appearance observed in failing myocardia of two loss-
of-function NaV1.5 channel isoforms produced by abnormal
SCN5A splicing through a mechanism absent in species other
than primates (Gao et al., 2011, 2013). Such response contributes
to the sodium current reduction in angiotensin-II-treated
hPSC-CMs, mimicking pro-arrhythmic conditions in failing
ventricles (Mathieu et al., 2016). Similarly, evolutionarily closer
species display divergent transcriptomic responses to ischemia-
mimetic environments, with rhesus macaque monkey PSC-CMs
failing to overlap results with hPSC-CMs at gene regulation
level (Zhao et al., 2018), and chimpanzee PSC-CMs still
diverging in regulation of critical genes tightly related to human
ischemia/reperfusion pathogenesis (Ward and Gilad, 2019).

Although hPSC-CMs can develop full adult phenotypes, these
have been achieved so far only by integration within healthy
animal myocardia (Cho et al., 2017; Kadota et al., 2017), and
hPSC-CM developmental immaturity is seen as their major
drawback. We (Martewicz et al., 2019) and others (van den Berg
et al., 2015) have shown that transcriptomic profiling places
hPSC-CMs within the first trimester of fetal development, with
structural, functional and metabolic features further supporting
such characterization (Machiraju and Greenway, 2019).

Nevertheless, unprimed hPSC-CMs (no maturation
protocol applied) still represent a valid reductionist model
in dissecting molecular mechanisms within human and cardiac
cell backgrounds. For instance, a recent study successfully
identified direct inactivation mechanisms of human voltage-
sensitive L-type calcium channels by molecular O2 and acidosis
(Fernandez-Morales et al., 2019), complementing our findings
in murine models (Martewicz et al., 2012). Simultaneously, the
authors clearly show how studying more complex functional
features requires careful evaluation of cardiac structural

maturation, with whole-cell ion dynamics changing following
substrate interaction, which our group showed to be mediated by
mechanotransduction signaling (Martewicz et al., 2017).

Additionally, taking advantage of developmentally early
phenotypes of hPSC-CM and hijacking the differentiation
process from hPSCs allows modeling developmental defects
leading to postnatal pathological conditions. Such is the case
of hypoplastic left heart syndrome in a chronic-hypoxia model
(Gaber et al., 2013), which preceded patient-specific hPSC-
CMs models ultimately identifying the underlying genetic-driven
molecular mechanisms (Jiang et al., 2014; Kobayashi et al.,
2014; Tomita-Mitchell et al., 2016; Hrstka et al., 2017; Yang
et al., 2017). Similarly, hPSC-CMs were used to model the
role of the mitochondrial calcium uniporter in cardiac fetal
development and maturation (Shanmughapriya et al., 2018).
Finally, although chemically induced cardiotoxicity will not be a
subject of this review [see (Magdy et al., 2018)], one recent study
considered the impact of ethanol on hPSC-CM functionality as a
model of prenatal exposure during maternal alcohol intoxication
(Rampoldi et al., 2019).

MALADAPTIVE HYPERTROPHY
MODELING

The developmentally early phenotype of hPSC-CMs provides
additional complexity in modeling hypertrophy in vitro, with
differentiation/maturation phenomena blurring distinctions
between physiological and pathological hypertrophy.
Physiological hypertrophic growth is a cardiac perinatal
maturation process, reactivated in adulthood upon regular
physical activity, and differs substantially from pathological
(or maladaptive) hypertrophy in activation mechanisms and
elicited functional responses (McMullen and Jennings, 2007). For
instance, the evaluation of cell-size increase must be performed
carefully, being an ambivalent hallmark for both processes
(Rupert et al., 2017), and appears to be absent in advanced
maturation stages (Ronaldson-Bouchard et al., 2018). Similarly
ambivalent is the application of mechanical stretch, which
simultaneously induces hypertrophic responses and promotes
hPSC-CM maturation (LaBarge et al., 2019), generating
phenotypes divergent from pathological neurohormonal
stimulation relative to αMHC/βMHC transcription activation
ratios (Foldes et al., 2011) or CathepsinD/TroponinT release
(Hoes et al., 2019).

Chronic adrenergic activation is one of the pathogenic
triggers of maladaptive hypertrophy, and the effects of prolonged
exposure to isoproterenol or phenylephrine have been studied
in hPSC-CMs in regard to hypertrophy-inhibiting effects of
several active compounds (Foldes et al., 2011; Martin et al.,
2014; Gesmundo et al., 2017). Nevertheless, the reliability of
this approach is hindered by hPSC-CM immature adrenergic
signaling (Jung et al., 2016; Uzun et al., 2016; Trieschmann
et al., 2019), which generates highly variable and aberrant
stress-responses (Foldes et al., 2014) often failing to produce
representative pathological phenotypes in vitro (Tanaka et al.,
2014; Cui et al., 2016; Naftali-Shani et al., 2018).
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FIGURE 1 | Non-genetic pathological conditions leading to heart failure. (A) The three main pathological conditions discussed in this review are schematically
represented, highlighting the major molecular drivers and pathological phenotypes that need to be reproduced in vitro in order to generate a representative and
reliable pathology model. (B) Main experimental strategies employed to generate pathological phenotypes in non-genetic cardiac disease models in vitro. For
detailed experimental protocols employed in the reviewed studies, see Supplementary Materials.

Hormonal stimulation has been shown to be more
effective for maladaptive hypertrophy modeling purposes,
with angiotensin-II and especially endothelin-1 treatments
successfully recapitulating hypertrophic phenotypes in terms of
expression/secretion of natriuretic peptides A and B (Carlson
et al., 2013), myofibrillar disarray (Tanaka et al., 2014) and
mRNA/miRNA profiling (Aggarwal et al., 2014). Such a model
has been dually employed thus far to study the molecular
mechanisms of maladaptation in vitro (Cui et al., 2016; Rosales
and Lizcano, 2018), and evaluate anti-hypertrophic effects of
miRNAs (Scrimgeour et al., 2019), herbal extracts (Zhang et al.,
2017) and antiparasitic compounds (Qin et al., 2017), for which
hPSC-CMs are superior to murine cardiac cell lines lacking in
expression of several key target proteins (Nagai et al., 2017).

Alternatively to being employed as in vitro hypertrophy
modeling platform, hPSC-CMs have proven useful in
experimentally confirming observations made in human
and murine hypertrophic heart biopsies of the involvement of
non-coding RNAs in maladaptive pathogenesis (Wang et al.,
2016; Mirtschink et al., 2019).

ISCHEMIA/REPERFUSION INJURY
MODELING

Ischemia is the most dramatic of cardiac insults, leading to
or aggravating pre-existing stages of heart failure. The nature
of the pathological stressors (a composite of fast dynamic
changes in nutrients, waste products, O2 and ROS) makes
cellular responses and pathological fallouts tightly connected to

adult cardiomyocyte metabolic processes, elevating hPSC-CM
maturation to a necessity for modeling purposes.

Indeed, several studies describe little or no response to
I/R-mimetic conditions in unprimed hPSC-CMs, although
showing minimal but relatively significant cardioprotection by
the individual molecules of interest (Hsieh et al., 2015; Wei
et al., 2017; Mo et al., 2019). Our own experiments with
oxygen/glucose deprivation in microfluidic devices show clearly
divergent responses of postnatal murine cardiomyocytes and
unprimed hPSC-CMs characterized by abnormal intracellular
glycogen stores (Martewicz et al., 2018). Similar experimental
setups have been used to study the mechanistic action of
anesthetics (Lu Y. et al., 2019) and miRNA-based regulation of
metalloproteases (Scrimgeour et al., 2019).

Recent studies demonstrate how developing a stress-
responsive phenotype must be set as an essential element in a
feasible hPSC-CM model for I/R studies. Priming hPSC-CMs
through simple maturation steps generates cells responsive to
I/R with mortality rates unseen in their unprimed counterparts,
ultimately providing the biological model needed to test clinically
effective small molecules (Hidalgo et al., 2018) or investigate the
cardioprotective mechanism of cardiac progenitors (Sebastiao
et al., 2019). The most intriguing example of in vitro I/R modeling
to date fully embraces hPSC-CMs as platform for both drug
screening and development (Fiedler et al., 2019). The researchers
identify MAP4K4 as a druggable target, activity of which is
altered across several clinically relevant heart failure models,
and employ an I/R setup with primed hPSC-CMs to screen for
suitable small-molecule inhibitors. After using the identified
lead-compound to develop a novel inhibitor, they ultimately
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translate the cardioprotective properties of a small-molecule
newly developed in hPSC-CMs to an in vivo murine model of
ischemic insult.

DIABETES MODELING

Similar to ischemia models, replicating diabetic pathophysiology
in vitro requires primed hPSC-CMs as starting point. While
underlying genetic factors might further its severity, prolonged
exposure to altered metabolic stimuli is the leading trigger
and driving force of the clinical manifestations of diabetic
cardiomyopathy (Graneli et al., 2019). Indeed, an I/R model that
linked anesthetic-conferred cardioprotection to pharmacological
tuning of mitochondrial function in hPSC-CMs (Sepac et al.,
2010; Canfield et al., 2016) produced no differences between
diabetic patient-specific cells and healthy controls. Both showed
equal abrogation of protection under acute hyperglycemic
conditions, thus failing to replicate the clinical differences between
healthy and diabetic surgery patients (Canfield et al., 2012).

On the other hand, when allowed to adapt to prolonged
exposure to hyperglycemic stress, hPSC-CMs develop
pathological hypertrophy characterized by contractile and
calcium cycling dysfunctions (Ng et al., 2018). Capitalizing on
this phenotype has enabled investigations into mechanisms
behind unexpected clinical trial evidence of empagliflozin-driven
reduction of deadly cardiovascular complications in diabetic
patients. Similar approaches of metabolic overload with fatty
acids allow the induction of insulin-resistance and dissection
of its mechanism in hPSC-CMs (Chanda et al., 2017; Liu et al.,
2017; Graneli et al., 2019).

Primed hPSC-CMs develop a complete panel of diabetic
cardiomyopathy phenotypes by integrating metabolic overload
conditions with additional hormonal stimulation abnormally
present in the diabetic milieu (Idris-Khodja et al., 2016;
Joseph and Golden, 2017), proven by aggravated contractile
dysfunction following endothelin-1 stimulation (Wu et al., 2018).
A complete set of stressors (metabolic overload, endothelin-1
and cortisol treatment) recapitulates in vitro hypertrophic-like
transcriptomic changes, increased BNP secretion, compromised
calcium cycling and contraction, lipid accumulation and
oxidation, sarcomeric disorganization (Drawnel et al., 2014),
insulin-resistance and reduced respiratory capacity (Graneli
et al., 2019), and deregulated non-coding RNAs expression
(Pant et al., 2019). Satisfying all of these conditions in such
a multifactorial pathological setting provides the necessary
platform for drug-screening experiments and is instrumental in
revealing underlying differences between healthy and patient-
derived hPSC-CMs (Drawnel et al., 2014).

OTHER PATHOLOGY MODELS

Hypertrophy, ischemia/reperfusion and diabetes are conditions
with major economic and social impacts. Nevertheless, hPSC-
CMs have been also employed in modeling less common
pathological settings, such as systemic pathogen infections

leading to myocarditis and heart failure. Modeling septic shock
by exposure to bacterial lipopolysaccharides affects hPSC-CM
survival, electrophysiology and demonstrates their competence
in activating innate immune inflammatory responses (Yucel
et al., 2017). Indeed, hPSC-CM display stronger macrophage
chemo-attractant properties than purified chemokines (Pallotta
et al., 2015) and significant stress-responsive paracrine pro-
inflammatory signaling (Sebastiao et al., 2020) mediating fibrosis
in vivo and in vitro (Kumar et al., 2019; Zhang et al.,
2019). Furthermore, functional expression of coxsackievirus and
adenovirus receptor (Scassa et al., 2011) makes hPSC-CMs
a better predictive model than murine cardiac cell lines for
therapeutic approaches against viral myocarditis (Sharma et al.,
2014). Similarly, hPSC-CMs are a viable host for parasites causing
Chagas disease (da Silva Lara et al., 2018; Bozzi et al., 2019)
and, consequently, a good screening platform for novel drugs
preventing infection and major cardiac fallouts of the pathology
(Sass et al., 2019a,b).

Spaceflight-associated stressors such as radiation and
microgravity induce cardiac atrophy and arrhythmias, increasing
cardiovascular complication rates in astronauts (Acharya et al.,
2019). Thus far, the intrinsic challenges of hPSC-CM aerospace
applications limit in vitro models to phenotypic descriptions,
orphan of underlying molecular mechanisms. Microgravity
modeling, for instance, has been performed only twice on human
PSC-CMs, observing increases in beating rate under acute
conditions during parabolic flight (Acharya et al., 2019) and
mainly transcriptomic changes during chronic exposure onboard
the International Space Station (Wnorowski et al., 2019).
Although studied relative to anti-cancer treatment, radiation-
induced heart disease is another astronaut concern, and
hPSC-CMs respond to ionizing radiations in dose-dependent
manner with electrophysiological (Becker et al., 2018b) and
transcriptomic (Becker et al., 2018a) alterations.

DISEASE MODELING WITH 3D
CONSTRUCTS

hPSC-CM maturation in vitro is relatively fast in comparison
with in vivo development, supporting the idea that these
mechanisms differ substantially. Thus, modeling non-genetic
pathologies mostly originating from insults to the adult heart
in the late stages of cardiac development is within reach
of 1,2 month-long cultures. While originally proposed as a
maturation mechanism (Sartiani et al., 2007; Otsuji et al.,
2010; Kamakura et al., 2013; Lundy et al., 2013), extended
time in culture was recently extensively characterized over
a 4-month period showing expression of aging markers in
unprimed hPSC-CMs and increased sensitivity to I/R in
disorganized 3D aggregates (Acun et al., 2019). To date, human
engineered heart tissues (hEHTs) provide the closest match to
an adult cardiomyocyte phenotype in vitro (Tiburcy et al., 2017;
Ronaldson-Bouchard et al., 2018).

hEHTs assemble hPSC-CMs into 3D constructs integrating
multifactorial stimuli such as electrophysiological pacing
(Lemme et al., 2019; Zhao et al., 2019), mechanical loading
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(Leonard et al., 2018), ECM structure (Goldfracht et al., 2019)
and non-myocyte cell interactions (Varzideh et al., 2019). Such
constructs, in their immature state, have been proposed as
models to study human cardiac self-regenerative potential after
localized injury (Voges et al., 2017), and produce structurally
and metabolically primed hPSC-CMs when allowed to develop
further, even in absence of additional stimuli (Ulmer et al., 2018).

A recent hEHT I/R model showed for the first time in human
cells the cardioprotective effect of ischemic preconditioning
and efficacy of one out of three proposed cardioprotection

treatments for reperfusion injury (Chen and Vunjak-Novakovic,
2019). Nevertheless, similar hEHTs generated by pure hPSC-
CM populations are limited in their maturation potential (Park
et al., 2019) and limit the study of the complex bidirectional
crosstalk of multiple cell types, important during ischemic stress
via paracrine signaling (Sandstedt et al., 2018; Sebastiao et al.,
2019, 2020) and neurohormonal stimulation. The latter can be
effectively modeled solely with hEHTs, as 2D cultures lack or
display functionally impaired a β-adrenergic signaling cascades
(Jung et al., 2016; Uzun et al., 2016; Trieschmann et al., 2019),

FIGURE 2 | Literature statistics on cardiac pathology models and cited references. (A) Complete representation of pathological models for cardiac diseases available
on PubMed between January 1st 2018 and January 2nd 2020. HCM, Hypertrophic Cardiomyopathy; DCM, Dilated Cardiomyopathy; AC, Arrhythmogenic
Cardiomyopathy; L/SQTS, Long/Short QT Syndrome; CPVT, Catecholaminergic Polymorphic Ventricular Tachycardia; BS, Brugada Syndrome; AF, Atrial Fibrillation;
DYS, Muscular Dystrophies [Duchenne (9), Myotonic (4), Limb-Girdle (1)]; FRDA, Friedriech’s Ataxia; FD, Fabry Disease; DD, Danon Disease; NS, Noonan Syndrome;
Other, different genetic diseases represented by (1) article. Inset: all cardiac genetic pathology models reported in 2018–2019 relative to cell model derivation. “Lab
engineered”: healthy hPSC genetically edited to carry the mutation under consideration. (B) Representation of non-genetic conditions referenced in this review
according to the pathological condition modeled. Inset: distribution per year of publication of the referenced articles (same color coding). For bibliographical research
methods and full list of references reported in this figure, see Supplementary Material.
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despite being able to form functional sympathetic neuro-
junctions (Sakai et al., 2017). Indeed, chronic exposure of
hEHTs to norepinephrine induces contractile dysfunction
and β-adrenergic desensitization, which with additional
endothelin-1-driven hypertrophic stimulation, generates an
advanced model of heart failure (Tiburcy et al., 2017).
Notably, endothelin -1 treatment does not produce additional
hypertrophic growth in hPSC-CM at such late stages of
maturation, but induces more clinically relevant hypertrophic
features, such as contractile dysfunction (Ronaldson-Bouchard
et al., 2018). Additionally, porcine scaffold-based hEHTs have
been employed recently to highlight the vicious cycle of
maladaptive hypertrophy, with healthy hPSC-CMs responding to
hypertrophic ECMs with impaired function, which in vivo would
feed-back to the cardiac microenvironment triggering additional
maladaptation preventing recovery under pharmacological
treatment (Sewanan et al., 2019).

CONCLUSION AND FUTURE
PERSPECTIVES

Animal-derived models often incorrectly represent human
cardiac features and diverge in stress-responses (Olson et al.,
2000; Davis et al., 2011). hPSC-CMs offer an invaluable tool
to study the human heart in vitro, provided that stress-
responsive phenotypes are apparent and representative of in vivo
conditions. The necessity of hPSC-CM priming for pathology
modeling is apparent in some hereditary monogenic pathologies
(Kim et al., 2013), but becomes essential for most non-genetic
diseases described here, given their incidence later in adult
life. Optimization of cardiac maturation and metabolic priming
protocols generated better insight into the crosstalk between
structural, functional and metabolic states of hPSC-CMs. These
advances now allow more representative modeling of non-
genetic diseases, still lagging behind the highly penetrant genetic
conditions with clear analytical read-outs that dominate hPSC-
CM literature (Figure 2A).

Currently, advanced modeling of the adult myocardium
requires hEHTs. These multiparametric setups integrating
stimulation and data acquisition systems, act as human
preclinical models refining the predictive efficacy of less
throughput-limited 2D hPSC-CM models (Fiedler et al., 2019).
Nevertheless, while closely resembling adult tissue transcriptomic

and functional features, hEHTs fall short of gaining the status
of full-fledged organoids, not fully mimicking adult myocardial
macroscopic ultrastructure (Tiburcy et al., 2017; Ronaldson-
Bouchard et al., 2018), thus requiring additional bioengineering
efforts to scale up the systems from tissue- to organ-models, as the
recently proposed atrioventricular composite (Zhao et al., 2019).

Importantly, the widespread use of commercially available
cell products in the studies reported here (Supplementary
Table S1) highlights the necessity of increasing robustness and
reproducibility of the results through differentiation and culture
protocols standardization. Indeed, whenever patient-specificity
is not essential, employment of standardized experimental
platforms is desirable to study a plethora of environmental
cardiac insults (Turnbull et al., 2018; Figure 2B), remaining
mindful of the pitfalls of broadening the results of few cell lines to
the general population and of the aspirations toward personalized
medicine approaches.

Finally, combining hPSC-CM-based models with high
precision genome-editing technologies will be instrumental
in not only supporting modeling of hereditary diseases by
screening artificially introduced genetic variants of unknown
significance (VUSs) (Figure 2A), but also in dissecting complex
dynamics between non-genetic pathological stimuli and genetic
backgrounds characterized by polygenic interactions.
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