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Abstract: Sex is determined genetically in amphibians; however, little is known about the sex
chromosomes, testis-determining genes, and the genes involved in testis differentiation in this class.
Certain inherent characteristics of the species of this group, like the homomorphic sex chromosomes,
the high diversity of the sex-determining mechanisms, or the existence of polyploids, may hinder
the design of experiments when studying how the gonads can differentiate. Even so, other features,
like their external development or the possibility of inducing sex reversal by external treatments,
can be helpful. This review summarizes the current knowledge on amphibian sex determination,
gonadal development, and testis differentiation. The analysis of this information, compared with the
information available for other vertebrate groups, allows us to identify the evolutionarily conserved
and divergent pathways involved in testis differentiation. Overall, the data confirm the previous
observations in other vertebrates—the morphology of the adult testis is similar across different groups;
however, the male-determining signal and the genetic networks involved in testis differentiation are
not evolutionarily conserved.
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1. Introduction

The class Amphibia includes 8301 species in three orders, with distinct representation
and anatomical features: 88% Anura (frogs and toads), 9% Caudata (salamanders and
tritons), and 3% Gymnophiona (caecilians, or limbless amphibians) [1]. Despite their
worldwide decline, new species are discovered every year (60% increase in the number of
species since 1985) [1].

Amphibians constitute an interesting group in which reproductive successful hybrids
can be produced, and polyploidy (natural or artificial) is well tolerated. Natural polyploids
have been described in 15 anuran and four urodelan families, whereas (to the best of
our knowledge) no polyploid species have been identified in caecilians (for a thorough
review on amphibian polyploid species, see [2]). True parthenogenesis does not exist
in this class, but there are examples of unisexual and bisexual species reproducing by
hybridogenesis (Pelophylax kl. esculentus [3]), kleptogenesis (unisexual salamanders of the
genus Ambystoma [4]), gynogenesis (induced [5,6], not demonstrated in nature), and pre-
equalizing hybrid meiosis (Bufo pseudoraddei baturae [7]). Amphibians show developmental
plasticity in response to environmental conditions [8] and a great variety of reproductive
modes [9]. Their development includes an embryonic period and a larval phase that
ends in metamorphosis. The majority of amphibian species are oviparous, with the eggs
developing in a wide range of environments (e.g., water, foam, plants, or even in the
back or the stomach of the adults). Viviparous and ovoviviparous species exist, mainly in
urodelan and caecilians, with the eggs developing in the oviducts. These characteristics
can be beneficial for research, but can also impair the analysis of gonadal development in
this clade.

In this review we will cover the process of testis development in amphibians, from the
appearance of the gonad in the body cavity to testis differentiation at metamorphosis. Testis
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differentiation in juvenile and adults in the class Amphibia is thoroughly covered in [10].
Before starting with gonadal development, we have included one section about the sex
chromosomes and sex-determining genes in this group, highlighting those characteristics
that hinder the analysis of gonadal development and differentiation.

2. Amphibian Sex Chromosomes and Sex Determination
2.1. Sex Chromosomes

In general, the males are the heterogametic sex in mammals (XX/XY), whereas, in
birds, it is the females (ZZ/ZW). The situation in amphibians is not as simple. Both male
(XX/XY) and female (ZZ/ZW) heterogamety can be found in this class, and transitions be-
tween the same or different sex chromosome systems are identified even in closely related
species (e.g., the family Ranidae [11], the genus Xenopus [12,13], and the genus Bufo [14]).
Other combinations are also possible, like systems with multiple sex chromosomes [15–17],
with the extreme example of the six pairs of sex chromosomes described in Leptodactylus
pentadactylus [18], or the 00/W0 female heterogamety identified in Leiopelma hochstetteri [19].
To further complicate the situation, most amphibian species have homomorphic sex chro-
mosomes (for a review, see [20–22]). According to The Tree of Sex Consortium [23], the
sex chromosomes have been analyzed in about 2% of amphibian species (114 Anura,
58 Caudata and 1 Gymnophiona), identifying sex chromosome heteromorphism in 38%
of the analyzed species (17% in Anura, 45% in Caudata and in the only Gymnophiona
analyzed) [23].

The identification of the sex chromosome system operating in one species is not
straightforward if the sex chromosomes are homomorphic. In that case, this informa-
tion can be obtained by analyzing the sex ratio in the offspring produced by gynogene-
sis, or from crosses that involve sex-reversed individuals (e.g., Pleurodeles waltl [24] and
Xenopus laevis [25,26]). These results are not always straightforward, and bizarre sex ra-
tios may reveal non common sex-determining mechanisms. This is the case of the frog
Fejervarya kawamurai, where a multifactorial complementary sex determination has been
proposed [27]. With the advent of genome sequencing strategies, sex-linked markers (and
sex heterogamety) have been identified in a growing number of amphibian species. These
markers reveal a lack of conservation in the sex chromosomes in this group and show
that specific chromosomes have evolved independently as sex chromosomes in different
lineages. These “preferred” sex chromosomes harbour sex-related genes like dmrt1, sox3,
ar, and foxl2 [11,28–31].

Geographical variations in sex chromosomes have been described in single species
(e.g., Rana temporaria [32,33], Glandirana rugosa [34,35], and Xenopus tropicalis [36]) and
should be taken into account when analyzing gonadal development, since different pop-
ulations can have different sex-determining genes. The most extreme example occurs in
G. rugosa, in which six geographic variants with both XX/XY and ZZ/ZW sex chromo-
somes evolved after two independent chromosomal inversions followed by hybridization
events [37–42]. Another example of intraspecies variation occurs in the amphibian model
X. tropicalis, a species with three sex chromosomes (Y > W > Z) coexisting in laboratory
strains [36] and in natural populations [43], which likely originated after the emergence of
a Y chromosome from an ancestral Z chromosome [43].

2.2. Sex Determination

Amphibian sex determination is presumed to be controlled genetically [34,44–48].
However, it is also evident that environmental cues, such as temperature or steroid hor-
mones, can override genetic sex determination, producing sex reversal [49–51]. Sexual
steroids, estrogens, and androgens can easily induce sex reversal (for a review, see [45,49,50]).
On the other hand, though thermal effects on sex determination have been considered
anecdotal under natural conditions [45], high and low temperatures can induce sex re-
versal in anuran and urodelan species (e.g., Rana chensinensis [52], Quasipaa spinose [53],
Fejervarya limnocharis [54], Xenopus polyploid hybrids [55], Hynobius retardatus [56],
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P. waltl [24], Pleurodeles poireti [57], Triturus cristatus [58], and Triturus carnifex [50]) (for a
recent review, see [59]). The implication of environmental factors in sex reversal in natural
populations of amphibians has been underscored, likely due to the lack of knowledge
regarding the sex chromosomes or the sex-determining genes in most amphibian species.
Indeed, the increasing number of molecular sex-linked markers suggests that sex reversal
may be more common than suspected in amphibians (sex-reversed individuals have been
described in natural populations of the species Rana clamitans [60] and R. temporaria [61]).

The genes involved in sex determination in amphibians are largely unknown, partly
due to the difficulty in identifying the sex chromosomes in most species. In addition,
homomorphic sex chromosomes facilitate the rapid turnover of sex-determining genes [62].
This could explain why so many different sex-determining genes have been identified in
fish (dmy, Sdy, Gsdfy, Sox3y, amhy, amhr2y, Dmrt1, and gsdf6y (for a review, see [63,64])),
a group also characterized by a high frequency of homomorphic sex chromosomes, and
foreshadows a similar situation in amphibians [65,66].

The only sex-determining gene known in this class, the dm-w gene, is also the only
W-linked sex-determining gene identified in vertebrates [67]. It was first described in
X. laevis, an allotetraploid species with homomorphic ZZ/ZW sex chromosomes [68,69],
which originated after the hybridization of two ancestral species (genomes L and S) with
2n = 18 chromosomes each (2n = 4x = 36, LLSS) [70]. The dm-w gene evolved from a partial
duplication of dmrt1.S (on chromosome 1S), occurring after allotetraploidization [71,72].
dm-w shows specific expression in ZW bipotential gonads, and its role in X. laevis sex
determination was confirmed by functional analysis. The overexpression of dm-w can
induce female differentiation in ZZ tadpoles, whereas dm-w knockdown can cause female-
to-male sex reversal in ZW larvae [67,73]. The precise mechanism of action of dm-w is
still unknown. It has been proposed that Dm-w functions as a dominant-negative form of
Dmrt1 (lacking the transactivation domain), antagonizing the testis formation promoted
by Dmrt1 and resulting in a high expression of cyp19a1 and foxl2 [74].

dm-w is present in other species of the genus Xenopus (though not in X. tropicalis) [13,72],
but its involvement in sex determination in these species has not yet been experimentally
confirmed. In those species in which dm-w is not completely female-specific, this gene
may be a weak determining gene, or not necessary to determine female development [13].
In addition, species with a female-specific dm-w gene may have differences in their sex-
determining pathways. This is likely the case in X. laevis and X. gilli, two species with the
same chromosome number (2n = 4x = 36) that can hybridize in nature [75–77]. Both species
have a ZZ/ZW sex chromosome system and a female-specific dm-w gene [13,72]. There is
no information regarding the sex-determining ability of dm-w in X. gilli, but the sex ratios
of polyploid hybrids show that the sex-determining pathways may not be equivalent in
both species (the frequency of males with WLZZ genotypes depends on the species that
provided the Z chromosomes) [55,78].

No other sex-determining gene has been identified in amphibians. Several lines of
evidence have proposed a critical role of the androgen receptor (ar) as a male-determining
gene in G. rugosa [79,80], although functional experiments do not fully corroborate this
role [30,81]. Thus, it remains unclear which gene is required for sex determination in this
species. The existence of different sex-determining loci in different populations should
be also taken into account, since they can provide an explanation for the 1:1 sex ratios
observed among the XZ offspring of crosses between XX females and ZZ males from
different populations [82].

Autosomal factors may also be involved in sex determination in amphibians (i.e.,
F. kawamurai) [27]. This could be the case for the Japanese frog Buergeria buergeri, a species
with heteromorphic ZZ/ZW sex chromosomes [83] where triploid ZZW individuals (n = 80)
can be either male (53.8%) or female (46.2%) [84]. An alternative explanation could be that
sexual differentiation proceeds randomly in either the male or female direction if one W
and two Z chromosomes cannot tilt the balance toward the male or the female pathway in
ZZW individuals [85].
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3. Gonadal Development and Differentiation in Amphibians
3.1. General Considerations

The general model of gonad development appears to be universal for all vertebrates.
However, variations in particular vertebrate groups, or even in species, are evident. In
amphibians, gonadal formation takes place during the larval stages; however, not all
amphibian species have differentiated gonads at metamorphosis, as the development of
testes and ovaries progresses at different paces in different species [86]. The rates of gonadal
differentiation vary considerably among species and sexes. Depending on the stage of
differentiation at metamorphosis, three rates can be established in the ovaries: the basic
rate (ovarian cavity appears at the end of metamorphosis), delayed rate (the first diplotenic
oocytes arise after metamorphosis), and accelerated rate (pre-vitellogenic oocytes appear
before metamorphosis) [87]. Correspondingly, three rates can also be considered during
testicular development based on the timing of the differentiation of seminiferous tubules:
the basic rate (during metamorphosis), delayed rate (after metamorphosis), and accelerated
rate (before metamorphosis) [88].

Undifferentiated gonads in most amphibian species differentiate directly into ovaries
or testes. This pattern of gonadal differentiation has been called differentiated or undif-
ferentiated, depending, respectively, on the simultaneous or delayed differentiation of
the testes compared with the ovaries [89]. In certain species or populations (sexually
undifferentiated races, according to [90]), it has been reported that undifferentiated gonads
of both sexes undergo a secondary undifferentiated condition of ovarian type before go-
nadal differentiation. In this pattern of gonadal differentiation (called semi-differentiated
by Gramapurohit [89]), testes will develop in males after oocyte degeneration. A semi-
differentiated pattern has been described in several anuran species (e.g., Rana sylvatica,
Rana dalmatina, Rana latastei, Rana curtipes, and Rachophorus arboreus [91] and the references
therein). It has been argued that undifferentiated testes in amphibians do not go through an
ovary-like transition phase [87,92]. However, the existence of this transition phase cannot
be completely ruled out, considering the information available on undifferentiated races
(sensu Witschi) [93,94]. In addition, a similar condition (called “juvenile hermaphroditism”)
was described in zebrafish (Danio rerio [95]) and black tetra (Gymnocorymbus ternetzi [96]).
In these species, during gonadal development, most individuals develop undifferentiated
ovary-like gonads [97,98]. The transformation of these gonads into testes is characterized,
as in amphibians, by the apoptosis of early diplotenic oocytes [97]. The apoptosis of oocytes
could be triggered by a decrease in aromatase, as lower levels of aromatase were detected
in early diplotenic oocytes from undifferentiated ovary-like gonads changing to testes [97].
This possibility is supported by the results obtained after treatment with fadrozole, as this
aromatase inhibitor induces oocyte apoptosis and female-to-male sex reversal [97,99]. In
this regard, it would be of interest to analyze the expression pattern of the genes involved
in gonadal differentiation in species with an alleged semi-differentiated pattern. In this
way, it would be possible to check if the initiation of the female pathway takes place in
these species before the onset of the male pathway.

3.2. Sexually Undifferentiated Gonad
3.2.1. Germ Cell Specification

Germ cells constitute an essential part of the gonad, although they originate outside it.
Two modes of germ cell specification exist in animal embryos [100], and both can be found
in amphibians [101]. In anurans, primordial germ cells (PGCs) have an endodermal origin
and are specified through preformation/inheritance, as a consequence of the localization in
the egg of maternally inherited germ cell determinants (germ plasm) [102]. In urodeles, the
PGCs are of mesodermal origin and the segregation of the germ cell lineage among somatic
cells occurs as it does in mammals, through cell–cell interactions (inducing signals secreted
by embryonic tissues) [103,104]. In Gymnophiona, the PGCs are located at a young stage
in the endoderm [105], although not much is known about their specification.
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Inductive germ cell determination is likely an ancestral mode of germ cell speci-
fication, whereas inherited specification is a derived mechanism that evolved through
convergence. Thus, the acquisition of the germ plasm must have evolved independently in
several lineages of vertebrate embryos, including anurans. The evolutionary cause for the
convergence of the germ plasm is still under debate [100,106].

3.2.2. Initial Gonadal Formation

In amphibians, the presumptive gonads originate from two longitudinal thickenings
of the celomic epithelium, localized on the ventral part of the mesonephros along both
sides of the gut mesentery (reviewed in [45,49,92,105]). As in other vertebrate species,
primordial germ cells (PGC) of extragonadal origin invade the gonadal anlagen, forming
undifferentiated gonads composed of germ and somatic cells. In some amphibian species,
genital ridges only become evident when the PGCs arrive at the presumptive gonad (e.g.,
Bombina orientalis [107], X. laevis [108], and Bombina variegata [109]). However, genital ridges
can develop independently of germ cells, as sterile gonads can differentiate in the absence
of these cells (e.g., X. laevis [110,111], Xenopus hybrids [112], P. waltl [113]).

Initially, the gonads are bipotential and no histological differences between sexes can
be identified [49]. The bipotential gonads in amphibians differ from those of birds and
reptiles by the absence of primitive sex cords (for a review, see [114]). However, as in
birds and reptiles, they are compartmentalized into two domains: the cortex, formed by
somatic cells and gonia, and the medulla, formed only by somatic cells (e.g., Bufo bufo [91],
R. nigromaculata [115]). The presence of these two domains is common in amphibians, al-
though the onset of their separation is species-specific (e.g., B. orientalis [107], B. variegata [109],
Ambystoma mexicanum [116], and caecilians [105], reviewed in [92]), and independent of the
presence of germ cells [110].

3.3. Sexual Differentiation of the Testis
3.3.1. Morphological Changes

The fate of the bipotential gonad is established during sex determination. Despite
the lack of conservation in the sex-determining gene in this group, one of the first mor-
phological signs of sexual differentiation, the change in the localization of the germ cells
in males, is quite conserved. In the differentiating testes, the germ cells migrate from the
cortex into the medulla, where they interact with differentiating Sertoli cells (precursor
Sertoli cells) and peritubular myoid cells, forming cysts. Thus, developing testes are eas-
ily distinguishable due to the lack of a clear compartmentalization into the cortex and
medulla: the sterile cortex becomes a thin layer that surrounds the gonad (the tunica al-
buginea), whereas the germ cells (spermatogonia) are distributed through the entire gonad
(e.g., B. bufo [91], Rana nigromaculata [115], X. laevis [117], R. temporaria, Hyla arborea and
Pelophylax lessonae [118], and P. waltl [104]). In the differentiating ovaries, oogonia remain
in the cortex, where they proliferate and form follicles when surrounded by somatic cells,
whereas a medulla without germ cells forms in the center of the gonad. Soon after the onset
of differentiation in the ovary, the medulla is completely modified, with medullary cells
losing cell junctions and resulting in the formation of ovarian cavities, which are absent in
the testes (e.g., B. bufo [91], R. nigromaculata [115], X. laevis [117], and P. waltl [104]); for a
review, see [92].

Depending on the species, the germ cells and their migration from the cortex to
the medulla are not required for testis cord formation or for testis differentiation (e.g.,
X. laevis [110], Xenopus hybrids [112], P. waltl [113]). However, germ cells may play impor-
tant roles in the development of the ovaries and the maintenance of the ovarian structures.
In fact, ZW tadpoles from X. laevis develop male gonads when their germ cell number is
reduced after knocking down the germ cell-specific form of dmrt1.L [119].

The origin of the somatic cells of the gonads is controversial in amphibians [45,49].
Ultrastructural analysis has suggested that somatic cells in both the seminiferous cords and
follicles are derived from the celomic epithelium [91,93,109,115,120,121]. The origin of the
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medulla is less evident. It has been proposed that the mesonephric blastema [104,122] or
the interrenal gland [123] contribute cells to the medulla. However, most studies state that,
in anurans, the medulla is derived from the celomic epithelium (e.g., B. bufo [91], Rhacopho-
rus arboreus [93], B. variegata [109], R. nigromaculata [115], Rana pipiens and X. laevis [121]).
The rete testis is formed from medullary cords near the hilus. Thus, it is not unusual
that species that lack a sterile medulla during testicular differentiation also lack the rete
testis (e.g., B. variegata [109]). Finally, mesenchymal cells and blood vessels migrate from
the mesonephros into the gonads [117,121]. They are located between the cortex and the
medulla, with basal lamina forming at the interface of the celomic epithelium-derived cells
and the stromal cells. In this way, different gonadal structures are achieved in both sexes
([117] and the references therein).

3.3.2. Cellular Mechanisms Involved in Testis Differentiation

The development of the testis in vertebrates occurs through a series of common cellular
mechanisms, although differences between groups or species are possible. The proliferation
of Sertoli cell precursors is one of the first morphological differences observed between the
sexes in mice [124], chickens [125], and turtles [126], indicating that it may be a conserved
mechanism in vertebrate testis organogenesis [127]. Proliferation has been studied in a
wide variety of anuran (X. laevis, [117], R. nigromaculata [120], G. rugosa [128]) and urodelan
(A. mexicanum [116], P. waltl [129]) species. However, its role in testis differentiation in
this class is not evident. The proliferative activity in undifferentiated amphibian gonads
is more marked in the proximal regions, including the gonadal mesentery and medulla;
however, no differences were observed between both sexes before differentiation began.
In differentiated gonads, sex-specific cell proliferation patterns can be observed, with the
testes showing somatic proliferation throughout the gonads, whereas proliferation occurs
in proximal locations in developing ovaries [117,128].

Another cellular mechanism involved in testis differentiation in certain species is the
migration of mesonephric cells into the gonads. Mesonephric cell migration is required for
testis cord formation in mice [130,131]. However, cells migrating from the mesonephros do
not appear to be necessary for testis cord formation in the sea turtle (Lepidochelys olivacea), as
bipotential gonads separated from the mesonephros showed testis cord development [132].
The existence of primitive sex cords in the bipotential gonads in turtles, but not in mice,
could explain the requirement of mesonephric cell migration for testis cord formation in
mice, but not in turtles [126]. In fact, although male-specific mesonephric cell migration
is conserved in both mice and chickens, its inhibition has no effect on the testis cord
organization in chickens, a species that also retains primitive sex cords in undifferentiated
gonads [133,134]. In amphibians, migration from the mesonephros occurs in both sexes, but
only after gonadal differentiation [117,122,128]. Thus, differences in mesonephric migration
in vertebrates (regarding (1) its onset, (2) its requirement for testis cord formation, and
(3) the sex of the gonads where mesonephric cells migrate) may be the consequence of
different requirements to form or maintain testis cords in developing gonads. This, in
turn, could depend on (1) the presence or absence of primitive cords in bipotential gonads
and (2) the presence or absence of compartmentation of undifferentiated gonads in the
cortex and medulla. Investigating the requirement of mesonephric cell migration for the
formation of testis cords in amphibian male gonads will provide information about the
evolutionary dynamics of vertebrate testis differentiation.

3.3.3. Germ Cell Differentiation: Spermatogenesis

The sex of the germ cells depends on the sex of the developing gonads. In amphibians,
as in all vertebrate groups, the onset of meiosis depends on the developmental pathway
of the gonad. Germ cells enter meiosis in the larval ovary; however, meiosis is generally
delayed until after metamorphosis in males [87,88,135]. Exceptions exist, and species have
been described that produce sperm at the end of metamorphosis, including Pseudis paradox
and Pseudis minuta [136,137].
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The somatic cells, specifically Sertoli cells, are responsible for providing the correct
environment for germ cell proliferation, meiosis, and sperm differentiation (spermato-
genesis) [138,139] (for detailed reviews, see [140–142]). In vertebrates, two major types
of spermatogenesis can be identified based on the structure of the basic unit where it
takes place. In amniotes (mammals, birds, and reptiles), spermatogenesis occurs in the
seminiferous tubules (non-cystic spermatogenesis), whereas in anamniotes (amphibians
and fish) spermatogenesis takes place in cysts, a structure formed when Sertoli cells engulf
a single spermatogonia stem cell (for a discussion about the cyst concept, see [143] and
references therein).

Spermatogenesis in amphibians has been divided into prespermatogenesis and active
spermatogenesis [144], in the same way it has been described for humans [145]. During pres-
permatogenesis the gonocytes (also called prespermatogonia or prospermatogonia [146])
proliferate in the developing testes of tadpoles, surrounded by pre-Sertoli cells. On the
other hand, during active spermatogenesis, spermatogonial stem cells inside the cyst either
proliferate (self-renewing the spermatogonial pool) or produce secondary spermatogonia
that enter meiosis (primary and secondary spermatocytes), yielding round spermatids
and then sperm [10,144]. According to this division, primary spermatogonia can be pres-
permatogonia (in larval testes, equivalent to gonocytes in mammals) or spermatogonial
stem cells (in juvenile and adult testes), two cell types showing distinct ultrastructural
morphology [144].

Information about amphibian spermatogenesis mostly cover active spermatogenesis
(e.g., Pelophylax bedriagae [147], P. kl. esculentus [148], Salamandra salamandra [149]) or
spermiogenesis (Odontophrynus cultripes [150], and Ambystoma dumerilii [151]), whereas
prespermatogenesis has been only studied in P. lessonae and Pelophylax ridibundus [144]. For
a detailed description of spermatogenesis in the three amphibian orders, see [10,152].

Sertoli cells differentiate and proliferate as the cyst grows and matures. The number
of Sertoli cells forming a given cyst grows with the mitotic division of the germ cells.
Once germ cells enter meiosis, proliferation ceases, coinciding with the formation of tight
junctions and desmosomes between Sertoli cells (the testis barrier is formed). Once the
spermiogenesis has finished, the cysts open to release spermatozoa during spermiation. In
this process Sertoli cells degenerate in urodelan amphibians [140]. In anurans, the basal
parts of the Sertoli cells remain after spermiation, later regenerating the Sertoli cells [153].
The transient germinal epithelium characteristic of cystic spermatogenesis requires the
turnover of Sertoli cells. Sertoli cells can divide when they are in contact with mitotically
active spermatogonia stem cells. In this way, new cysts are formed periodically. It has been
hypothesized that a population of Sertoli stem cells must exist in amphibians, as it exists in
the transition zone (where seminiferous tubules connect to the rete testis) in mammals [154],
but evidence is still lacking [155]. Most data on the control of Sertoli cell proliferation
come from observations in fish (e.g., Oreochromis niloticus [156,157], Clarias gariepinus [158],
D. rerio [159]; for a review, see [141]). In this group two regulatory mechanisms of Sertoli
cell proliferation have been described: (1) to generate new cysts (stimulated by thyroid
hormone/FSH and estrogen through high levels of Igf3 and Pdecgf), and (2) during the
development of existing cysts (activated by FSF and progestins through Igf3 and androgens
produced by Leydig cells) [155]. The existence of equivalent regulatory pathways in
amphibians must be corroborated experimentally.

The spermatogonial stem cells in the cyst proliferate by mitoses. Due to incomplete
cytokinesis, cytoplasmic bridges keep germ cells connected (a characteristic widely con-
served across animals). As a consequence, all the germ cells enclosed in one cyst are at
the same developmental stage, although examples of asynchrony in the same cyst have
been described (e.g., P. lessonae and P. ridibundus [144]). It has been proposed that the
asynchrony could be due to the breakage of cytoplasmic bridges (e.g., due to cell death) or
to the inclusion of two germ cells in the same cyst [144].

Spermatogenic efficiency (and the Sertoli supporting capacity) has been reduced over
the course of vertebrate evolution [155]. The change from cystic to non-cystic spermatoge-
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nesis involves an increase in regulatory complexity in Sertoli cells (these cells provide a
supporting environment for germ cells at different developmental stages at the same time,
e.g., cells located in basal, medial, and adluminal regions of the seminiferous tubules) and
a reduction in the Sertoli supporting capacity. On the other hand, cystic spermatogenesis
supports the development of more spermatogonia, producing a higher amount of sper-
matozoa. In fact, the supporting capacity of Sertoli cells is 10 times higher in anamniotes
than in mammals [155]. In this sense, greater attention should be paid to the effect of
environmental contaminants on the supporting capacity of Sertoli cells in amphibians and
on the fertility of these species.

4. Testis Plasticity

Most caudata are atypical regarding testis differentiation. In Salamandridae and
Plethodontidae, males possess multi-lobulated testes that continue to differentiate during
adult life [160]. In the differentiated testis of P. waltl, two regions can be identified: (1) the
undifferentiated anterior region, a source of germ cells for the differentiated lobe, although
it can also form a functional testis if the differentiated lobe is removed [160]; and (2) the first
lobe, located in the posterior region of the developing gonad at the end of metamorphosis.
New lobes can form periodically after the extrusion of spermatozoa and regression of
the empty part of the testis. This triggers differentiation of adjacent Leydig cells and the
formation of the glandular region in the last lobe. Quiescent germ cells present in the
glandular region become spermatogonia and generate another testis lobe in the caudal
position [160].

Another particularity of testis development in certain amphibian species (the Bu-
fonidae family) is Bidder’s organ [161–163], an ovary-like gonadal structure located at
the most anterior part of male and female developing gonads (for a description of the
morphological diversity of Bidder’s organ and adult gonads in bufonids, see [162]). The
development of Bidder’s organ has been studied in several species and conditions (e.g.,
Bufo ictericus [164], B. bufo [161], Bufo woodhousii [165], and Rhinella schneideri [166]). This go-
nadal structure resembles ovarian tissue. In most species, no evident medulla and medullar
cavity are observed (the medulla can be evident only during some developmental stages
(e.g., B. bufo [161]). However, there are species with an identifiable cortex (with follicles
at different stages of development) and medulla (with collagen fibers and blood vessels
in some cases) (e.g., B. ictericus [164]). At pre-metamorphic stages, the oocytes in Bidder’s
organ are similar to diplotenic ovarian oocytes, surrounded by a layer of follicular cells
in both cases [167]. Therefore, it is not surprising that the expression profile of Bidder’s
organ, although different, is more similar to developing ovaries than testes [163].

The pre-vitellogenic oocytes in Bidder’s organ do not mature, but undergo a degener-
ative process, ending with their reabsorption by the follicle cells [164,167,168]. The stock of
stem germ cells (for successive annual oogenetic waves) is maintained as nests of germ cells
at different stages of oogenesis. Low doses of estrogens can induce vitellogenesis in the
bidderian oocytes, but not their maturation [168]. Treatments with different sex-steroids
and antiandrogens reveal that the germ cells of Bidder’s organ have a strong commitment
to the oogenetic pathway, probably related to their early entry into meiosis [169]. On
the other hand, after removal of the testes by orchidectomy, Bidder’s organ becomes a
functional ovary and the oocytes reach vitellogenic stages and complete maturation (e.g.,
B. bufo [168,170], B. woodhousii [165], and Rhinella marina [167]). Thus, the testes (androgens)
inhibit the complete maturation of bidderian germ cells (probably inhibiting the response
to gonadotropin), but not their proliferation and the oogenetic pathway [165].

The formation of Bidder’s organ may be related to localized high levels of retinoic acid
in a region with early high expression levels of Raldh2 (which catalyzes the synthesis of
retinoic acid) and low levels of Cyp26b1 (involved in the inactivation of retinoic acid) [171].
Increased levels of retinoic acid may be the reason for the early entry into meiosis and the
advanced development observed in the bidderian germ cells, compared with those of the
developing ovary [161].
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The function of Bidder’s organ is still unknown. It has been considered a vestigial
structure, or a morphological strategy to produce sexual cells for the reproduction of
the species [164]. The most appealing hypothesis suggests that Bidder’s organ is a func-
tional steroidogenic organ [163,172] that could be involved in the control of reproductive
activity [162].

5. Genetic Control of Testicular Differentiation

Analysis of the genes expressed sex-specifically in the developing gonads of mam-
mals [173], birds [174], reptiles [175,176], amphibians [177], and fish [178] reveals common
genes between groups. However, differences in the expression patterns are also evident in
different clades, with different genes showing heterochronic shifts between species (e.g.,
see Figure 4 in [179] for a comparison of the temporal onset of genes with sex-specific
expression between turtles and mice during testis development) [177,179–181].

According to the current view, the differentiation of the gonads as testes or ovaries
is not considered to be under the control of unidirectional pathways, but regulated by
mutually exclusive (antagonistic) non-hierarchical networks [182]. These regulatory net-
works will activate one pathway while inhibiting the other to ensure that only one gonadal
phenotype is achieved and maintained in adults. The molecular networks involved in testis
differentiation in amphibians are not fully understood, as they have not been uncovered to
the depth of those working in mice, chicken, reptiles, or fish (for a review, see [44,114,179]).
The main reason may be related to the limitations of the amphibian species used as models
to study the molecular networks involved in gonadal development. X. laevis can be sexed
easily, but the interpretation of the gene expression results is difficult when differences
between paralogous genes cannot be considered or have not been taken into account (e.g.,
comparing the dmrt1 expression patterns in [119,183,184]). X. tropicalis, the diploid alterna-
tive to X. laevis, has three sex chromosomes, and the genetic sex of developing tadpoles
cannot be easily established. G. rugosa is another widely studied species, although the exis-
tence of several populations with different sex chromosomes should be considered when
the results are analyzed (e.g., differences in steroid sensitivity have been found between
different populations [185]). Finally, regarding urodeles, P. waltl constitutes a well-known
and widely used model. Its only limitation (and advantage from an evolutionary point of
view) is that the results obtained may not be extrapolated to anurans.

Transcriptome analysis during gonadal differentiation has been performed in two
anuran species (X. laevis and X. tropicalis) [177,186,187], whereas the information available
on urodeles (the newt Cynops orientalis) is from adult gonads [181]. In addition, orthologs
of genes known to be part of the gonadal differentiation pathway in mammals (DMRT1,
SOX9, FOXL2, AMH, DAX1, WNT4, SF1, etc.) are also expressed during gonadal develop-
ment in amphibians and have been analyzed in a wide number of anuran and urodelan
species [119,135,171,183,188–192]. In general, these genes have expression profiles similar
to those observed in other vertebrates, although differences between species regarding the
onset and expression patterns reveal differences between the molecular networks, even in
closely related species.

Gonadal expression patterns suggest that dmrt1 has an important role in the differ-
entiation of male gonads in amphibians (X. laevis [119,183,184,188,193], G. rugosa [194], B.
bombina, B. viridis, H. arborea, R. arvalis and R. temporaria [188], H. retardatus [195]). The dmrt1
gene was upregulated in differentiating amphibian testes [196–199], in the sex-reversed
gonads of genetic females [194,200], and in female-to-male sex-reversed ZW gonads from G.
rugosa tadpoles that were transgenic for ar and treated with low levels of testosterone [30].
On the other hand, in male-to-female sex reversal, dmrt1 is downregulated. This has been
described in the urodele H. retardatus, when genetic males were transformed into pheno-
typic females by means of high temperature treatments [195]. In X. laevis, the function of
dmrt1 in testis differentiation is antagonized by dm-w. The opposed roles of dm-w and dmrt1
in testis differentiation are evident, as their overexpression induces ovarian and testicular
development in ZZ and ZW gonads, respectively [73,74]. Furthermore, over-expression of
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the dm-w transgene in X. laevis ZZ gonads results in a high expression of cyp19a1 and foxl2
in developing gonads [74]. These two genes are involved in the differentiation of the ovary;
both are upregulated in the gonads of female tadpoles or in the gonads of male-to female
sex-reversed tadpoles [44,177,201]: cyp19a1 (aromatase) converts testosterone into estrogen,
leading to feminization, whereas foxl2 can promote cyp19a1 transcription in a Xenopus cell
line [202].

Dmrt1 is also required for spermatogonial stem cell maintenance in mice [203]. As
in other vertebrates, in X. laevis two distinct promoters control the expression of dmrt1.L
in Sertoli cells in males and in germ cells in both sexes [119]. The elimination of the tran-
scripts derived from the germ cell-specific promoter causes a reduction in the number of
germ cells in male and female gonads and results in female-to-male sex reversal in ZW
tadpoles [119]. These results indicate that oocyte-produced signaling molecules could
maintain the suppression of testis differentiation [204]. This has been demonstrated in ze-
brafish, as oocyte-produced Bmp15 maintains cyp19a1a expression and estrogen production
in granulosa cells, whereas Bmp15-deficient females became fertile males during the mid-
to late-juvenile stage [205].

Steroids play important roles in sex differentiation in amphibians. Exogenous an-
drogens or estrogens affect sexual differentiation during critical periods of development
and cause the complete or partial sex reversal of the gonads [45]. Thus, it is not strange
that one of the earliest changes in gene expression (taking place before any sign of go-
nadal differentiation) observed in developing tadpoles of X. laevis and G. rugosa concerns
two steroidogenic enzymes, cyp17a1 (a key enzyme involved in the production of male
sex steroids) and cyp19a1 (which controls the androgen/estrogen ratio by catalyzing the
conversion of testosterone into estradiol) [196,197].

Other steroidogenic enzymes may be involved in gonadal differentiation. For example,
the activity of 5α-reductase is higher in males than in females, leading to an increase in the
conversion of testosterone into dihydrotestosterone (DHT). In this way, the ratio of DHT to
estradiol could be responsible for male or female gonadal development [206].

The androgen receptor (ar) is involved in testis differentiation. In G. rugosa, the gene
encoding ar is located on the sex chromosomes (Z, W, Y, and X) of this species [79]; and
the W-linked ar copy has a lower level of expression than the Z-linked copy [80]. The Z-ar
transgene, together with low doses of testosterone, can induce testis differentiation and the
upregulation of dmrt1 and cyp17a1 in transgenic ZW tadpoles [30], suggesting that both
genes could be a possible downstream target of Z-ar in this species.

Sox9 is a key element in the testis pathway of mammals and birds, suggesting a
conserved role for this gene in male differentiation [179,207]. However, sox9 may not have
a major role in testicular differentiation in amphibians. In X. tropicalis, sox9 is detected
in both male and female gonads after metamorphosis, indicating that this gene does not
play a major role in early gonadal differentiation [189]. A similar situation was described
in G. rugosa and R. marina, where sox9 is expressed in both sexes during development,
whereas upregulation in the testes was observed after metamorphosis [208,209]. In X. lae-
vis, both sox9 paralogs show higher expression in ZZ than ZW gonads during tadpole
development [184], suggesting a possible role in testis differentiation. However, according
to immunostaining results [184], it is also possible that these sequences are expressed in
germ cells. In fact, expression of sox9 in germ cells after metamorphosis has been described
in X. tropicalis [189]. Thus, taking into account its participation in germ cell differentiation
in fish [210], its role in somatic cell differentiation during testis development in birds and
mammals must have been acquired later during evolution.

Amh, another key player in the testis-determining pathway in vertebrates, has a role
in testis differentiation that is largely dependent on the clade analyzed. In mammals, Sox9
cooperates with Sf1 to activate Amh expression during testicular development [211]. In
amphibians [184,209], as in chickens [212], amh precedes sox9 expression. Upregulation of
amh expression in the developing anuran testes has been described in X. tropicalis, X. laevis,
and G. rugosa, among others [184,188,213,214]. In X. tropicalis, the Müllerian ducts begin to
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form between stages 57–66, according to [123], once the gonads have differentiated into
testes or ovaries [213]. Thus, earlier expression in males could indicate a role in gonadal
differentiation. In P. waltl, amh was also expressed at higher levels in the developing testes
compared with the ovaries, with higher levels before and during gonadal differentiation in
male gonads [191]. This profile of amh expression during the differentiation of amphibian
testes could be related to its role in the control of germ cell proliferation, as described in
fish [215–217]. In fact, in parabiosis experiments, in ZZ/ZW associations in P. waltl, the
germ cell numbers in the ZW gonad were similar to those observed in the ZZ gonad and
two-fold lower than in a control ZW gonad [218]. Similarly, mutations in the receptor of
amh (amhrII) in the medaka caused the feminization of the gonads by altering proliferation
at a specific stage of germ cell development [215,217]. This evidence suggests that amh
had a primitive role in the proliferation and development of germ cells in early and adult
gonads of both sexes, acquiring the function of Müllerian duct regression later during
evolution [219].

Regarding the role of amh in Müllerian duct regression in amphibians, it is noteworthy
that these ducts are maintained without differentiation in the male sex in urodeles [49,104]
despite the expression and synthesis of amh in the developing testes [191]. Analysis of the
expression of amhr2 in the Müllerian ducts of the urodeles may explain its persistence, even
though amh is expressed.

6. Conclusions

A general lack of knowledge exists about the sex-determining genes existing in am-
phibians. The available information on the sex chromosomes in this group predicts the
existence of a wide variety of sex-determining genes. To improve our knowledge on am-
phibian testicular differentiation, it will be necessary to uncover more sex-determining
genes in other species.

The undifferentiated amphibian gonads are organized into two domains: the cortex
and the medulla. One of the first morphological signs of testis differentiation is the
movement of germ cells from the cortex to the medulla (germ cells remain in the cortex in
females). Among the main differences with testes in amniotes are: (1) the spermatogenesis
takes place into the cyst; (2) all the germ cells that interact with one Sertoli cell in a cyst
are at the same developmental stage; (3) there is a turnover of Sertoli cells in the adult due
to the transient nature of the germinal epithelium. As consequence, the spermatogenic
efficiency and the Sertoli supporting capacity of the testis are higher compared to amniotes.

Amphibians do not resemble fish in regard to their extreme testis plasticity, although
examples of testis plasticity can be found in urodelans, in which new testis lobes develop
in adult life. Furthermore, ovarian-like structures with pre-vitellogenic oocytes (Bidder’s
organ) persist attached to the testes in bufonid males. The testis has an inhibitory effect on
the differentiation of Bidder’s organ as an ovary, but no lethal effect on the germ cells.

The gene networks controlling testis differentiation in amphibians are closer to those in
fish than those in birds and mammals. dmrt1, cyp19a1, foxl2, and cyp17a1 are major players
in controlling the gonadal development of amphibians. Establishing relations between
these and other elements will require functional analysis. Amphibians are emerging as
interesting models to discover how mutually exclusive networks evolved in vertebrates to
control gonadal differentiation and how new sex-determining genes are frequently added
to these networks in different species.
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