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Introduction 
 
Breast cancer refers to a malignant tumor devel-
oped from cells in the breast. Breast cancer is the 
most common cause of malignancy among wom-
en worldwide (1-3) and is a public health chal-
lenge among Nigeria women. Some years ago, 
breast cancer was not common in African coun-
tries especially Nigeria and was thought to be a 
leading course of death in the developed coun-
tries (4). Thirty Nigerian women die of breast 
cancer every day in 2008 and this had risen to 40 
women in 2012. Over 508000 of Nigerian wom-
en died in 2011 as a result of breast cancer (5-7, 
2). In a study about prevalence of breast cancer in 

western Nigeria found that breast cancer alone 
accounted for 37% of all the cancer cases present 
in western Nigeria (8). 
With advancement in medical technology, ad-
vances have been made in the treatment of breast 
cancer among Nigeria women. Better treatment 
for breast cancer patients is difficult to define and 
older women are sometimes excluded from clini-
cal treatment trials, probably because of their age 
(9). Since breast cancer biology differs from pa-
tient to patient with respect to factors like age, 
variation in response to treatment, and substan-
tial competing risks of mortality (10-12), the ex-
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clusion of some patients might not be valid. This 
implies that those aged women included in trials 
are probably not a true representation for the 
general older population (13, 14). Because of this, 
treatment of cancer in women with concise strat-
egy is urgently needed. Therefore, there is need 
for modeling of breast cancer using evidence-
based strategy technique. 
Prognostic factors for breast cancer especially in 
Western Nigerian had been well studied; there is 
paucity of data on population-based research. In 
addition, few studies have used Bayesian to estab-
lish the prognostic factors associated with the 
disease. Hence, we sought to determine risk fac-
tors for treatment given to female breast cancer 
in western Nigeria using generalized linear mixed 
models. This research focuses on the justification 
for the use of the conventional surgery method in 
the treatment of cancer, based on data from two 
understudied hospitals in western part of Nigeria, 
one federally owned, and the other state-owned.  
Hence, we aimed to provide knowledge on risk 
factors for breast cancer treatment modality, us-
ing both the classical and Bayesian approach via 
generalized linear mixed model. 
 

Materials and Methods 
 
Ethics 
Ethical clearance to conduct the study was sought 
from the Ethical Review Committee of the Fed-
eral Teaching Hospital, Nigeria.  
 
Generalized Linear Mixed Model 
Generalized linear mixed models (GLMMs) are 
an extension of linear mixed models to allow re-
sponse variables from different distributions, 
such as binary responses. Alternatively, GLMMs 
is an extension of generalized linear models (e.g., 
logistic regression) to include both fixed and ran-
dom effects (hence mixed models). The general 
form of the generalized linear mixed model is 
expressed: 

( | , , ) 'i i k i kE B B         ٍ                    [1] 

where    is an Nobs × 1 column vector, the out-

come variable; 𝜏𝑖
′ is a N x p matrix of the p pre-

dictor variables;  is a p x 1 column vector of the 
fixed-effects regression coefficients; B is an Nobs × 
Nr  design matrix for the random effects (the ran-

dom complement to the fixed τ); k  is a q x 1 

vector of the random effects (the random com-

plement to the fixed ); and is a N × 1 column 
vector of the errors. 
The present study deals with a specific case of 
generalized linear mixed model where the re-
sponse variable is binary and two levels of anal-
yses (hospitals) are considered which is the best 
model to apply when we have this type of situa-
tion. Only hospital is considered at two levels in 
the model, then the B component is removed 
from the model in equation (1). For a given ob-
servation i within a hospital k, the generalized 
linear mixed model excluding the error term be-
comes: 

( | , )i i k i kE                          [2] 

where k  is the random effect representing the 

influence of hospital k on its within observation. 
Hence, the model utilized a logistic link function 
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From equation (3), it implies that

( 1| , ) ( 1| , )i i i k i i kE pr          . There-

fore, the final model is now expressed as:  
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where i  represents the predictors for an individ-

ual i in an hospital k which is categorical. i  de-

note the response variable,   is the vector of the 

fixed regression coefficients and k  is the ran-

dom effect component (14). The estimated values 
of the regression parameters that maximize the 
probability of obtaining the observed data in clas-
sical statistics (15, 17) can be obtained by maxi-
mum likelihood. Likelihood of k independent 

measurements, given vectors of parameters   
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and explanatory (predictors) variables i  is repre-

sented as (15): 

1

( | , ) ( | , )
k

i

p p     


       [5]  

In case of binary logistic regression where re-

sponse (outcome) variable i = 1 or 0, the likeli-

hood function is estimated as (15): 

𝑝(𝜑|𝜃, 𝜏) =  {
𝑙𝑜𝑔𝑖𝑡−1(𝜔𝑖)  𝑓𝑜𝑟 𝜑𝑖 =    1

1 − 𝑙𝑜𝑔𝑖𝑡−1(𝜔𝑖)  𝑓𝑜𝑟 𝜑𝑖 = 0
 

The above expression can be expressed as fol-
lows 
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The estimate of   that maximizes the likelihood 
function can be computed using advanced calcu-
lus. This is achieved by taking the logarithm of 
the likelihood function: 

1
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[6] 
Hence, the confidence interval of the parameters 
is then computed using Wald test and is repre-
sented as 

µ ¶ µ
1

2

( )j z JZ SE 


        [7] 

where µj  is fixed effect coefficient associated 

with jth covariate, ¶SE  is the estimate of the 

standard error while ¶
1

2

zZ SE


 is the critical value 

for a standard normal distribution? 
The classical statistics fit the logistic regression by 
means of an iterative procedure like maximum 
likelihood. In many situations, as a result of the 
assumptions underlying this iterative procedure, 
the estimation in classical statistics may result in 
non-convergence. These shortcomings as a result 
of non-convergence can be addressed using 
Bayesian inference as an alternative approach. 
Markov chain Monte Carlo algorithm approach 
can be used to provide a very general recipe for 
estimating properties of complicated distributions 

in Bayesian statistics without any difficulties. 
There obviously remain, however, some chal-
lenges in concluding whether Bayesian methods 
perform better than classical statistics in model-
ing breast cancer data. In this paper, we com-
pared the result of classical statistics and Bayesian 
method. As a requirement of the Bayesian ap-
proach, several diagnostics tests were performed 
to ensure convergence of the Markov chain Mon-
te Carlo and the true reflection of the posterior 
distribution. 
 
Bayesian Method 
The methodology employed in this paper de-
scribes the Bayesian inference with emphasis on 
the posterior distribution, prior distribution as 
well as likelihood function for the Bayesian lo-
gistic regression. In the context of Bayesian sta-
tistics, data are regarded as fixed and unknown 
parameters as random variables. Considering a 

given parameter   and a set of observed data, 
the interest of Bayesian technique lies on the 

probability of the parameter   given the set of 

data  , i.e. ( | )p   . The main object of interest 

is the posterior distribution of the unknown pa-
rameters given the data. Mathematically, this can 
be written as  
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Equation 8 is known as the principle of Bayesian 

method. Hence, ( )p   is the prior distribution 

while the likelihood ( | )p    is represented as: 
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            [9]  The quantity  indicates patients diagnosed with malignant breast cancer  or otherwise. The quantity  from the classical logistic technique can be estimated by 
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Hence, the likelihood function is expressed: 
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The preferred prior for logistic regression param-
eters is a multivariate normal distribution and is 
given as (15, 17, 18, 20): 

2~ ( , )k i kN                                   [11]  

Hence, we have: 

11
( ) ) )

2
[ ( )' ( )]k k k k k kp exp         . 

From equation [8], replacing   with k  result in

( | ) ( | ) ( )k k kp p p     . Therefore, the pos-

terior distribution for logistic regression (fixed 
effects only) is represented as: 

  

 
Posterior distribution is usually of high dimen-
sion and analytically intractable which sometimes 
required knowledge of powerful integration. In 
order to overcome this complex nature of poste-
rior, we employed Markov chain Monte Carlo 
(MCMC) algorithm. MCMC technique is among 
of the technique employed to generates the esti-

mates of unknown parameters   and corrects the 
values generated in order to have a better esti-
mate of the desired posterior distribution (21, 
31). 
All the analysis in this study was carried out using 
WinBUGS (21). There were 1500000 iterations, 
with the first 5000 discarded to cater for the 
burn-in period. We assessed MCMC convergence 
of all models parameters by checking Gelman 
Rubin plot (17, 18). The scale reduction factor, 
also known as Gelman-Rubin convergence diag-
nostic (39) was calculated for model parameter to 
assess convergence and adequate mixing of the 
chains. The test statistics for the Gelman Rubin 
diagnostic test can be estimated as 
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where 𝑘 is the number of iterations of the chains. 

�̂� =
𝑣

𝑊
 

Convergence is monitored when �̂�  → 1. �̂� is 
called the estimated potential scale reduction fac-
tor. 
 

Results 
 
Socio-demographic characteristics of partici-
pants 
Out of 237 patients, 192 cases accounting for 
(81.01%) were malignant breast lesions, while 45 
cases (18.99%) were benign giving a ratio of 4.3:1 
for malignant to benign breast lesion. The mean 
age of the respondents was 42.2 ± 16.6 yr with 
52% of the women aged between 35-49 yr. 
93.67% of those who participated in this study 
were Christians while 6.33% were Muslims. Vari-
ous prognostic factors are considered which in-
clude: intercept (λ0), breast cancer types: malig-
nant (λ1), age: 35-49(λ2), 50-69(λ3),70+ (λ4), level 
of education: at least high school (λ5), religion: 
Christian (λ6), tribe: Yoruba (λ7), occupation: site 
of the cancer (λ8), hospital (λ9). 
Table 1 gives a view of the sampled data with the 
following attributes: type of breast cancer, age, 
educational status, race, ethnicity, hospital and 
site of the breast cancer. The association be-
tween the variables of interest and the treatment 
of breast cancer patients received was calculated 
for the entire study (Table 1 model 3). Breast 
cancer (malignant) type was associated with the 
type of treatment given to patients, while other 
socio-economic factors were not significantly 
related, (model 3). The treatment given to breast 
cancer patients should be first based on the di-
agnosis of the breast cancer type. Hospital type 
was significant when breast cancer type was not 
included in the model (model 2). Hospital was 
significant but it’s influence passes through the 
type of breast cancer a patients was diagnosed. 
We can then say that the hospital a patient at-
tended after being diagnosed with breast cancer 
played an important role in their chance of sur-
vival. Model 1 in Table 1 shows that the age and 
the hospital type were both significant with re-
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spect to the modality of treatment given to pa-
tient. The exclusion of type of breast cancer and 
educational status as a determinant for patients’ 

possibility of receiving surgical treatment makes 
age and hospital to be significant (model 1). 

  
Table 1: Classical logit model for independent variables 

 
Parameter Model M3  Model M2  Model M1  

Lambda  Exact 
P-value 

Lambda  Exact 
P-value 

Lambda  Exact 
P-value 

λ0 -0.47[-5.83, 4.88]  1.000 3.96[1.67, 7.97]  0.011 3.95[1.66, 7.95]  1.000 
λ1 -     - -  - 5.01[3.06, 8.80]  <.001 
λ2 -3.04[-8.17, 0.37]  0.118 -2.13[-6.12, 0.21]  0.088 -2.09[-5.95, 0.02]  0.040 
λ3 -2.33[-7.43, 1.03]  0.375 -1.54[-5.49, 0.75]  0.299 -1.49[-5.40, 0.69]  0.290 
λ4 -2.02[-7.09, 1.28]  0.528 -1.14[-5.05, 1.08]  0.546 -1.14[-5.05, 1.08]  0.546 
λ5 0.36[-0.89,1.58]  0.698 0.09[-0.94, 1.11]  1.000 -  - 
λ6 -0.50[-2.27, 1.67]  0.817 -0.45[-1.86, 0.91]  0.661 -0.45[-1.86, 0.92]  0.666 
λ7 -0.72[-3.32, 2.66]  0.916 -1.24[-3.42, 0.84]  0.313 -1.25[-3.44, 0.85]  0.315 
λ8 0.39[-1.80, 0.82]  0.694 -0.48[-1.42, 0.43]  0.360 -0.47[-1.42, 0.43]  0.367 
λ9 0.48[-1.53, 0.60]  0.450 -1.99[-2.79, -1.24]  < 0,001 -1.98[-2.76, -1.26]  0.0001 

 
Table 2 is the results for the model with Bayesian 
non-informative prior. From the 95% posterior 
intervals of λj, we observe that only the posterior 
distribution of the age and malignant are away 
from zero, indicating a significant effect of these 

variables on the modality of treatment patients 
received from this part of Nigeria while other 
predictors considered in this study are not signifi-
cant. 

 
Table 2: Posterior Summary for Bayesian multilevel approach with non-informative 

 
Variable Mean SD MC 

error 
2.5% Median 97.50% 

λ0 -0.217 2.314 0.033 -4.183 -0.288 4.127 
λ1 -0.323 0.917 0.003 0.008 -0.367 1.611 
λ2 0.672 0.556 0.002 -0.389 0.660 1.791 
λ3 0.750 0.588 0.002 -0.365 0.736 1.949 
λ4 3.735 1.988 0.007 0.561 3.495 8.237 
λ5 0.680 1.348 0.007 -2.232 0.766 3.103 
λ6 -6.417 1.510 0.005 -10.010 -6.195 -4.123 
λ7 0.280 0.634 0.002 -0.894 0.255 1.590 
τ.Hosp 3.375 5.095 0.021 0.012 1.505 17.830 

 
Assessing the performance of Markov Chain 
Monte Carlo (MCMC) chains in WinBUGS 
The performance of a diagnostic test can be 
examined in several ways. The diagnostics ex-
amined in this paper are those of Geweke (15), 
Heidelberger and Welch (16), and Raftery and 
Lewis (17), which look at convergence of an 
individual chain, and that of Gelman and Ru-
bin (18), which bases convergence on analysis 
of multiple chains. In order to assess whether 

a chain has converged or not, we plot the 
sampled value against its number in the chain. 
Figure 1 displays the representation of the pa-
rameter behavior after 1,500,000 Monte Carlo 
repetitions. It was found that the kernel densi-
ties for shape and scale parameters exhibit ap-
proximately symmetric distribution. When the 
time series centered around a constant mean, 
it implies that the chain has reached conver-
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gence as reported in Fig. 2 and have the chains 
converged to the same solution.  
 

 
 

Fig. 1: Convergence history for major independent 
parameters 

 
Discussion  
 
Our results confirm findings from previous stud-
ies conducted in Nigeria on prognostic factors 
and breast cancer among women in Nigeria (1, 8, 
2-13). Age could be a risk factor for breast can-
cer. Similar studies have been documented in 
other parts of Africa and the rest of the world 
(28, 29). Compared to the literature, the main 
contribution of the present study is the analysis 
of risk factors associated with modality of breast 
cancer treatment in western Nigeria in addition to 
the use of Bayesian approach. Previous studies 
that focus on the pattern of treatment given to 
breast cancer patients across time frame (years), 
age at diagnosis and educational categories are 
non-existent in western Nigeria. To the best of 
our knowledge, this could be the first study to 
address such scenario. For breast cancer treat-
ment in Nigeria, the reason for surgery treatment 
on cancer patients is not clear (26). The present 
study showed prognosis factors for breast cancer 
treatment in western Nigeria. 

 

 
 

Fig. 2: Gelman-Rubin statistics for major independ-
ent parameters 

 
In this study, patient with at least high school 
education is significant with treatment modality 
given to breast cancer, which is a new and un-
expected finding in this part of Nigeria. From 
our analysis, the higher proportion of those 
treated with surgical treatment is found among 
educated and younger women. One of the pos-
sible explanations for these results may be that 
women with at least high school education pre-
sented their breast cancer cases to a medical 
practitioners than the less educated women. 
The result of Bayesian also reveals that those 
women with at least high school education are 
2 times more likely to take surgery treatment 
than others. Other studies have shown similar 
result but not with treatment modality as inves-
tigated in the current finding (28-30, 32). We 
can infer from our findings that literacy level 
may influence treatment-seeking behavior. This 
finding could be used as an avenue to create 
awareness and advocacy campaigns that target 
less educated women in western Nigeria. 
Therefore, in the context of Nigeria, this is a 
good contribution in the area of breast cancer 
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modeling as previous studies only found age at 
diagnosis as the risk factor that influence 
treatment pattern. 
However, our study did not observe the influ-
ence of education on breast cancer patients, a 
recent study by (33) observed the impact of 
educational level on breast cancer risk using 
Swedish data. Women with higher education 
were more likely to be diagnosed with in situ 
breast cancer. In addition, patients who had 
low level of education were at higher risk of 
late presentation of their breast cancer (34, 35). 
An observation attributed to low level of 
awareness and knowledge about breast cancer 
treatment and screening.  
Another finding from this study is that age at 
diagnosis is associated with treatment modality. 
Majority of the previous studies have indicated 
that age is an important prognostic factor for 
breast cancer screening but not many studies 
have examined age at diagnosis as a factor that 
influences the modality of breast cancer treat-
ment in Nigeria particularly in western region. 
Therefore, this study adds to the large body of 
research indicating that age at diagnosis influ-
ence the pattern of treatment modality for 
breast cancer patients in Nigeria. Considering 
the effects of age in the treatment modality of 
breast cancer patient, Bayesian findings high-
light that patients aged 35-49 yr are 0.67 times 
more likely to receive surgical treatment than 
their counterparts. This suggests that younger 
patients in western Nigeria were more likely to 
be treated with surgery, compared to the older 
patients, an observation supported by previous 
studies (3, 29,30). Some studies attributed poor 
prognosis of breast cancer with age and the 
report indicated further that younger age is af-
fected most due to an increase in invasive 
breast disease among this age group (3, 30, 
32,36). Our result also shows that malignant 
breast lesion was a predictor of breast cancer 
treatment and it appeared to have higher distri-
bution among those who had at least high 
school education, an observation that supports 
previous studies (3, 37-42) that malignant 

breast lesion is predominant in this part of Ni-
geria. 
 

Conclusion  
 
We have demonstrated the socio-demographic 
factors associated with treatment modality of 
breast cancer in western Nigeria. Since under-
standing the risk factors associated is necessary 
for curbing the menace of breast cancer preva-
lence, these results provide a rationale for the 
need to create more awareness campaigns, strate-
gies and sensitization that target less educated 
women to enhance patronization of breast cancer 
screening in Nigeria as a whole. 
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