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Abstract
Background: Cognitive and physical performance can be negatively affected by chronic pain. This study evaluates the effect of
combined physical-, cognitive-, and mindfulness training (PCMT) on cognitive and physical performance.

Methods: From a large pharmaceutical company in Denmark we randomly allocated 112 female laboratory technicians
with chronic upper limb pain to group-based PCMT at the worksite or a reference group for 10 weeks. Neurocognitive
performance was measured by the computerized central nervous system vital signs neurocognitive assessment battery. Physical
function was assessed in terms of shoulder external rotation strength and rate of force development in a custom-made
dynamometer setup.

Results: No between-group differences (least square means [95% confidence interval]) from baseline to follow-up could be
detected in any of the neurocognitive domains as measured by the central nervous system vital signs neurocognitive assessment
battery, for example, Psychomotoer Speed 1.9 (�1.0 to 4.7), Reaction Time�4.0 (�19.5 to 11.6), Complex Attention�0.3 (�1.9 to
1.4), and Executive Function �0.2 (�3.5 to 3.0). Similarly, we found no change in maximal voluntary isometric strength �0.63 (�4.8
to 3.6), or rate of force development 14.8 (�12.6 to 42.2) of the shoulder external rotators. Finally, test–retest reliability of maximal
voluntary contraction and rate of force development shoulder external rotation showed high reliability at 0 to 30 ms, 0 to 50 ms, 0 to
100 ms, and 0 to 200 ms with ICCs at 0.95, 0.92, 0.93, 0.92, and 0.91, respectively.

Conclusion: Ten weeks of PCMT did not improve neurocognitive or physical performance.

Abbreviations: CNSVS = central nervous system vital signs, EMG = electromyography, MVC = maximal voluntary contraction,
RFD = rate of force development, VAS = visual analog scale.
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1. Introduction

During the last decade epidemiological studies have mapped the
prevalence of chronic musculoskeletal pain in the workforce, and
approximately 25% of the population across 15 European
countries report work-related neck- and shoulder pain.[1] While
chronic pain has consequences in terms of reduced self-reported
work ability,[2–6] such evaluations are often performed by
questionnaire. By contrast, objective evaluation methods may be
preferred to obtain more unbiased information. Such objective
methods exist for both cognitive performance and physical
function.
Neurocognitive performance and attention are negatively

affected by chronic pain.[7–9] A recent study by Moore et al[9]

found that the aspects of attention most affected by pain are those
essential for the completion of complex tasks that require the
processing of multiple cues and complex attention control.
Furthermore, after investigating cognitive executive function and
attention, Oosterman et al[7] concluded that in chronic pain
conditions, sustained attention performance is diminished while
mental flexibility, planning, and inhibition appear to remain
intact. In addition, in patients with headache, diminished
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executive function and complex attention control have been
reported[10] and a recent meta-analysis by Berryman et al[11]

revealed small to moderate executive function performance
impairment in people with chronic pain but the authors note a
lack stringent control for possible influencing factors and
methodology. Conversely, a study by Suhr[12] in 28 fibromyalgia
patients, 27 chronic pain patients, and 21 controls revealed that
differences in cognitive function were not apparent when
controlling for fatigue, pain, and depression, which attests to
the complexity of neuropsychological impairment in persons
with pain.
To our knowledge, neurocognitive impairment due to chronic

musculoskeletal pain has yet to be investigated in the working
population among those specifically performing specialized and
repetitive movement tasks (e.g., laboratory technicians). It could
be speculated that a decline in psychomotor speed could
negatively affect cognitive abilities including psychomotor speed
and complex attention tasks, as people with chronic pain often
exhibit decreased rate of force development (RFD) and neural
drive to the painful muscles. Exercise intervention studies
compiled in several reviews[13–15] show promising effects on
cognitive performance in the domains of processing speed,
memory, and executive function in healthy older adults but the
research in healthy work-able women is to our knowledge scarce.
However, the effects of mindfulness meditation interventions on
cognitive flexibility, attentional focus, and emotional regulation,
which are important elements of overall cognitive function, have
been reported showing positive correlations with meditation
practice in both adolescents[16] and adults.[17]

Physical function is affected by chronic pain. Andersen et al[18]

found an 18% lowered maximal voluntary force production
whereas RFD (i.e., rate of rise in contractile force at the onset of
contraction) was reduced by 54% in women with chronic
trapezius myalgia compared with pain-free controls. Andersen
et al[18] suggested that RFD is a more sensitive measure of
mechanical muscle performance in painful conditions than
maximal muscle strength. In support of these findings Ervilha
et al[19] reported that the initial (100 ms) agonistic electromyog-
raphy burst activity was particularly suppressed during dynamic
contractions in conditions of upper limb muscle pain. The effect
of muscle pain on the ability to produce muscular force rapidly is
predominantly caused by neural mechanisms rather than
muscular atrophy, because average trapezius muscle mass and
fiber size do not seem to differ between women with and without
chronic neck pain.[18] In occupational settings, such neuromus-
cular changes are likely to influence the worker’s motor strategy
and compensatory activation of agonistic and antagonistic
muscles to fulfill specific job demands. Concurrently, modifica-
tion in neuro-mechanical function may contribute to aggravation
or spreading of pain accompanied by an escalating imbalance
between work demands and individual musculoskeletal resour-
ces, consequently affecting work participation, and overall
quality of life.[18]

A multitude of physiological parameters are known to
influence RFD in pain-free individuals, including efferent neural
drive to the muscles encompassing both motor neuron recruit-
ment firing frequency, muscle fiber size and composition, and
viscoelastic properties of the muscle-tendon complex.[18–24]

Additionally, RFD obtained in various time intervals is affected
by different physiological parameters, where early-phase RFD
(<40 ms from onset of contraction) is mainly affected by intrinsic
contractile properties of the muscle whereas late-phase RFD is
more reliant on maximal voluntary contraction (MVC).[25]
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Several studies have shown promising and effective reductions in
upper limb musculoskeletal pain in response to specific strength
training performed at the workplace.[26–29]With a biomechanical
approach to pain-relief, several studies have reported increased
RFD paralleled by an augmented rate of electromyography rise in
chronically painful neck/shoulder muscles following interven-
tions of progressive strength training.[18,30,31] Thus, it seems that
progressive strength training has the ability to counteract the
observed inhibition in initial activation of painful muscles,
consequently leading to increased RFD.
The aim of the present study was to evaluate the effect of a

multifaceted intervention strategy with physical-, cognitive-, and
mindfulness training elements versus a reference group on
neurocognitive performance, MVC and RFD in female labora-
tory technicians with chronic upper limb pain. We hypothesize
between-group neurocognitive performance improvements and
increased RFD following the intervention period, as pain may
inhibit motor output and neurocognitive function.[9,32–36]
2. Methods

2.1. Setting

During spring/summer of 2014 our research team conducted a
randomized controlled intervention trial at a large pharmaceuti-
cal company in Copenhagen, Denmark. Briefly, we performed a
single-blinded trial with allocation concealment, in a 2-armed
parallel group format among female laboratory technicians. The
participants were parallel-assigned to receive either a 10-week
physical-cognitive-mindfulness training intervention or continue
following already implemented company guidelines for reducing
work-related musculoskeletal pain of the upper extremity and
low back. The present article presents tertiary outcomes obtained
during the study period. Primary and secondary outcomes on
musculoskeletal pain and work related stress have previously
been reported.[37]
2.2. Ethics and trial registration

Prior participant enrolment we registered the study in the
ClinicaltTrials.gov register: “Implementation of physical exercise
at the Workplace (IRMA09) – Laboratory technicians,”
registration no. NCT02047669. Ethical approval was obtained
from The Danish National Committee on Biomedical Research
Ethics (The local ethical committee of Frederiksberg and
Copenhagen; H-3-2010-062) as part of the research program
“Implementation of physical exercise at the workplace (IRMA).”
This study, as well as the previously published studies describing
the protocol,[38] primary- and secondary[37] outcomes adhere to
the criteria of the revised Consolidated Standards of Reporting
Trials 2010 statement for reporting randomized trials. All
experimental conditions conformed to The Declaration of
Helsinki.

2.3. Participants

At the time of enrolment, the eligible participants (n=112) were
all had chronic musculoskeletal pain in 1 ormore of the following
regions: upper back, lower back, neck, shoulders, elbows, or
hands/wrists. To fulfill the definition of chronic pain all following
criteria were met for at least 1 of these body regions: pain
intensity of ≥3 (0–10 Visual Analogue Scale [VAS] supported by
drawings from the Nordic Questionnaire[39]) during the last
week, pain frequency of≥3 days during the last week, pain lasting
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Figure 1. CONSORT flow diagram showing the flow of participants through the study.
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at least 3 months. Participants with typical exclusion criteria, for
example, severe hypertension (>160/100), were allowed to
participate in the less strenuous part of the training intervention if
their general practitioner provided consent. We excluded
participants with life-threatening diseases, and pregnancy was
considered a contraindication to the training. Figure 1 shows
participant flow through the study.

2.4. Participant allocation

To allocate the participants, a random numbers table in the SAS
statistical software was generated, thus allowing a randomized
distribution of the laboratory technicians to either a Physical-
Cognitive-Mindfulness training (PCMT) intervention group or a
reference group (REF). This allocation was performed after the
participants had answered a baseline questionnaire providing
information on descriptive characteristics and perceived level of
musculoskeletal pain (Table 1). Furthermore, participants were
informed that it was unknown which treatment model would
work best for reducing pain and theywere instructed not to reveal
their particular intervention to colleagues or study assessors.
Following group allocation each participant was invited to
complete a test battery consisting of an extensive clinical
examination by a specialized physical therapist, a neurocognitive
assessment, and a series of physical function measurements of the
shoulder external rotator complex. The entire test battery lasted
approximately 90minutes and all assessors were blinded to
participant allocation. Upon conclusion of the 10-week interven-
tion the participants were asked again to fill out the questionnaire
on musculoskeletal pain and complete the test battery for follow-
3

up measurements. All participants were at the time of enrolment
in the 25th to 74th percentile in the 6 domains of neurocognitive
function, age- and gender matched for normative scores, which
according to the Central Nervous System Vital Signs (CNSVS)
guidelines are described as average with normal function and
capacity.[40]
2.5. Neurocognitive assessment

Neurocognitive function was assessed by the CNSVS (CNS Vital
Signs, Morrisville, NC) computerized test battery, which has
been shown to be a stable and reliable assessment of cognitive
function with high validity.[41] The 5 included subtests were (in
administered order): Symbol Digit Coding test, Shifting Attention
Test, Finger Tapping Test, Stroop Test, and Continuous
Performance Test. The tests themselves are online versions of
standard measures of cognitive task performance and have
previously been described and tested for reliability and validity in
the literature.[41] The test runs were highly consistently delivered:
the test battery is automatically presented to the participants with
written instructions and a short practice round immediately
followed by the actual tests in the selected battery. Time to
completion of the full test battery was between 20 and 30minutes
depending on how long the participants needed to read the
instructions. The CNSVS can be administered in a variety of
languages, including Danish, which was the setting during this
trial. Briefly, the subtests provided domain measures of:
Psychomotor Speed, Reaction Time (measured in milliseconds),
Complex Attention, Cognitive Flexibility, Processing Speed, and
Executive Function. The scores of each of the domains were
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Table 1

Participant characteristics, neurocognitive performance, and
muscle function at baseline after group allocation; presented as
mean (SD).

Group PCMT
mean (SD)

Group REF
mean (SD)

Baseline characteristics
Number of female/male participants 56/0 56/0
Age, y 45.5 (9.0) 47.6 (8.2)
Height, cm 163.4 (7.2) 164.1 (6.8)
Weight, kg 65.5 (14.3) 65.8 (11.4)
Body mass index, kg.m�2 24.5 (3.4) 24.1 (4.2)
Working hours per week 35.6 (7.4) 37.9 (2.3)

Average pain intensity of all regions (0–10 VAS) 2.9 (1.5) 2.6 (1.4)
Regional pain intensity (0–10 VAS)
Neck 3.5 (2.7) 3.5 (2.6)
Upper back 2.7 (2.8) 2.4 (2.7)
Lower back 3.7 (2.6) 3.1 (3.1)
Shoulder 4.0 (2.5) 4.0 (2.5)
Elbow 1.6 (2.3) 1.4 (2.7)
Hand 1.9 (2.5) 1.3 (2.3)

CNSVS neurocognitive domain scores
Psychomotor speed 171 (17) 174 (21)
Reaction time, ms

∗
655 (90) 636 (76)

Complex attention
∗

8.5 (5.1) 7.5 (5.7)
Cognitive flexibility 41 (14) 43 (12)
Proessing speed 58 (10) 60 (8)
Executive function 43 (14) 45 (12)

Muscle function–shoulder external rotation
Maximum voluntary contraction (MVC), N 60 (10) 61 (12)
Rate of force development (0–30 ms) (RFD), N/s 140 (134) 146 (146)
Rate of force development (0–50 ms) (RFD), N/s 184 (166) 191 (178)
Rate of force development (0–100 ms) (RFD), N/s 224 (149) 227 (155)
Rate of force development (0–200 ms) (RFD), N/s 192 (86) 198 (88)

∗
Indicate that lower score is better.
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calculated either as differences between correct and erroneous
responses within each subtest, or summation of the responses
from 2 or more subtests according to the specifications of domain
calculations of the CNSVS.[40,41] For reference, each domain
indicates the following: psychomotor speed is a measure of how
well a subject perceives, attends, responds to complex visual-
perceptual information, and performs simple fine motor
coordination. It is an expression of the ability to perform simple
motor skills and dexterity through cognitive functions (e.g., use of
precision instruments or tools) and performing mental and
physical coordination (e.g., driving a car or playing a musical
instrument). Reaction time is a measure of how quickly the
subject can react to a simple and increasingly complex direction
set. Examples of this include driving a car, attending to
conversation, and responding to a set of simple instructions.
Complex attention is defined as the ability to track and respond
to a variety of stimuli over lengthy periods of time and/or perform
complex mental tasks requiring vigilance. Cognitive flexibility
describes howwell the person is able to adapt to rapidly changing
and increasingly complex sets of directions and/or to manipulate
the information. This can be exemplified as reasoning skill,
switching tasks, decision-making, impulse control, and strategy
formation. Processing speed is how well a person recognizes and
processes information (e.g., fine motor coordination or visual-
perceptual ability). Executive function is defined as how well a
4

person recognizes rules, categories and performs in rapid
decision-making tasks. In everyday life executive function is
the ability to sequence and manage multiple tasks simultaneously
and the ability to quickly respond to changing sets of
instructions.[40]
2.6. Physical function

MVC and RFD of the shoulder external rotators were assessed
during concurrent isometric external rotation of the gleno-
humeral joint using a custom-built dynamometer with 2 strain
gauge load cells (KIS-2, 1 KN, Vishay Transducers Systems,
Germany). Participants were seated upright in a chair with the
elbow of their dominant arm flexed at 90° while applying
outward-directed force to a vertical oriented handlebar (dyna-
mometer setting) in front of them, thus creating external rotation
of the gleno-humeral joint. The anterior part of the forearm was
supported by the dynamometer setting and allowed the
participants to brace against during the isometric MVC. The
participants performed 3 MVCs separated by a 30seconds rest
period, and were instructed to apply force to the dynamometer as
fast and forcefully as possible. Online feedback and verbal
encouragement was given during the MVCs. TheMVC trial with
the highest peak force was selected for further statistical
evaluation. RFD was determined during 4 time intervals
(0–30, 0–50, 0–100, and 0–200 ms from onset of contraction).
The attempt yielding the highest RFD in the respective time
interval was selected for statistical analysis. Raw MVC force
signals were sampled at 1000Hz and subsequently low pass
filtered (15Hz cut-off frequency, fourth-order zero-lag Butter-
worth filter) using a custom-made MatLab program (Math-
Works).
2.7. Test–retest reliability

On a separate occasion, our research team also performed
test–retest reliability measures of the physical function tests in our
lab. Participants (n=32; 15 men and 17 women; mean [standard
deviation]; age: 32 years (8.7), height: 174.0cm (9.0), weight:
69.5kg (13.6), BMI: 22.7 (2.5)) performed the dynamometer
testing of the shoulder external rotation on 2 separate occasions,
1 week apart, in accordance with the testing protocol used in the
present study. All participants were instructed not to perform any
exercises for 48hours leading up to the reliability measures and
were also asked not to engage in any new physical activities
between the first and second test rounds. Lastly, all participants
were instructed to be adequately hydrated and well rested before
testing on both occasions.
2.8. Interventions

The intervention design has previously been described.[37,38] In
short, we introduced a multifactorial 10-week intervention to the
PCMT group consisting of joint mobility exercises focusing on
precise motor control, 4 different strength training exercises with
elastic bands, cognitive behavioral therapy in which education
and counseling about fear of movement, the positive effects of
movement, as well as de-catastrophizing pain were the main
focus areas, and mindfulness group-training. Joint mobility/
precise motor control training, strength training using elastic
resistance bands, cognitive behavioral therapy, focusing on fear
avoidance behavior and pain education, were grouped together
and administered in brief 20minutes sessions 4 times per week by



Table 2

Between- and within group differences at 10-week follow-up on neurocognitive domain scores; presented as least square mean (95%
confidence interval).

Outcome measure Within group (PCMT) Within group (REF) Between group (PCMT vs REF) P value (group by time)

Neurocognitive domain scores
Psychomotor speed 6.7 (4.1 to 9.4) 4.6 (1.8 to 7.3) 1.9 (�1.0 to 4.7) 0.27
Reaction time �31.6 (�46.3 to �16.9) �24.5 (�39.5 to �9.4) �4.0 (�19.5 to 11.6) 0.51
Complex attention �2.0 (�3.6 to �0.5) �1.3 (�2.9 to 0.2) �0.3 (�1.9 to 1.4) 0.53
Cognitive flexibility 6.2 (�3.1 to 9.4) 5.8 (2.5 to 9.0) �0.1 (�3.4 to 3.2) 0.84
Processing speed 3.3 (1.5 to 5.0) 4.4 (2.6 to 6.2) �1.3 (�3.1 to 0.5) 0.36
Executive function 5.9 (2.9 to 9.0) 5.6 (2.4 to 8.7) �0.2 (�3.5 to 3.0) 0.87

P value represents the between-group difference (group by time).
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a professional trainer with a relevant background. The elastic
resistance exercises primarily consisted of 1 to 2 sets of
approximately 10 reps using a resistance band equaling 15 to
20RM of 3 to 4 different upper extremity exercises (e.g., shoulder
lateral raise, shoulder external rotation, andwrist extension). The
primary emphasis during the physical training was on the precise
motor control exercises and the behavioral aspects. Precise joint
mobility and motor control exercises included various shoulder,
neck, elbow, and wrist rotations in more or less challenging body
positions. Further, the instructor was also encouraged to include
exercises for other regions (e.g., hip, sacro-illiac joint, and low
back) to all, or individual participants, if there was a specific need.
Examples of both the elastic resistance exercises and the precise
joint mobility/motor control exercises have previously been
published.[38] Mindfulness sessions were kept separate from the
physical training and were administered once weekly by a
psychologist specialized in stress and yoga. To address possible
confounding factors, we tracked (i.e., asked by questionnaire at
baseline and follow-up): number of days using pain medication
within the last week, number of treatment sessions (e.g., by a
medical doctor, physical therapist, or other types of health
personnel) for pain in the back, neck, shoulders, elbows, or
hands/wrists within the last month. The REF group served as a
control group adhering to on-going company initiatives as
described elsewhere.[38] Primary outcome results have also
previously been reported.[37]
2.9. Statistics

All statistical analyses were performed in accordance with the
intention-to-treat principle by including all subjects in the
analysis regardless of actual participation or dropout. Missing
values were not imputed but handled by the statistical software.
Between-group differences of neurocognitive- and musculoskele-
tal function at follow-up were determined by a linear mixed
model using Proc Mixed of the SAS statistical software, version
9.2 (SAS institute, Cary, NC). Fixed factors were treatment, time
and treatment by time interaction. Analyses of neurocognitive-
and physical function were controlled for neurocognitive
performance and physical function at baseline, respectively. A
priori power analysis based on previous measurements reveals
that 27 participants of each group for 95% power, type I error
probability of 5% is sufficient to test the null-hypothesis of
equality (alpha=0.05, beta=0.05). Given an estimated 10%
dropout rate we aimed at recruiting at least 30 participants for
each group. Results are reported as between-group least square
means (95% confidence interval). We accepted P values less than
0.05 as statistically significant. Baseline and descriptive results are
reported as mean (standard deviation).
5

3. Results

Test–retest reliability measures of the custom-made dynamome-
ter setup on the shoulder external rotation showed high reliability
forMVC andRFD at 0 to 30ms, 0 to 50ms, 0 to 100ms, and 0 to
200 ms with an ICC at 0.95, 0.92, 0.93, 0.92, and 0.91,
respectively.
As previously reported, 3 participants of the intervention study

from each group dropped out of without providing information
as to why. Consequently, 53 participants from each group
completed the follow-up testing and questionnaire on musculo-
skeletal pain.[37]

There were no between-group changes at 10-week follow-up
on any of the neurocognitive domains. Table 2 summarizes the
changes within- and between groups of each domain.
There were no between-group changes at 10-week follow-up

on eitherMVCorRFD at 0 to 30ms, 0 to 50ms, 0 to 100ms, or 0
to 200 ms. Table 3 summarizes the results on physical function of
the shoulder external rotators for each group and between groups
at 10-week follow-up.

4. Discussion

The present study demonstrates that neither neurocognitive
performance, as measured by the CNSVS test battery of
neurocognitive function, nor physical function measured by
MVC and RFD of the shoulder external rotators was improved
by a 10-week physical-cognitive-mindfulness training interven-
tion at a company worksite compared with a reference group
following the company’s ongoing health initiatives. Primary
outcomes on musculoskeletal pain and stress have previously
been reported[37] but as those parameters are a part of discussing
the results of the present study, they are included here as
reference. In brief, average pain of the 6 regions between groups
at 10-week follow-up was�1.0 (�1.4 to�0.6) (P<0.0001). The
PCMT and REF groups decrease in pain was 52% and 15%
respectively. Stress score was not different at 10-week follow-up
between groups (P=0.16). Finally, an explorative dose–response
analysis showed that pain decreased on average 0.6 points (0–10
VAS) per average weekly attended physical-cognitive training
session, whereas pain increased per weekly attended mindfulness
session by 0.15 (0–10 VAS).[37]

The lack of improvement in MVC and RFD is in contrast
to other interventions and investigations using strength
training to reduce chronic and nonchronic musculoskeletal
pain.[18,25,26,30,31] A possible explanation for the lack of
improvement in RFD in the present study may be attributed
to a relatively low intensity of the physical training. That is,
strength training is per definition training that increases muscle
strength, but we did not find any change in muscle strength as
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Table 3

Between- and within group differences at 10-week follow-up on muscle function (maximum voluntary contraction [N] and rate of force
development [N/s]) of the shoulder external rotator; presented as least square mean (95% confidence interval).

Outcome measure Within group (PCMT) Within group (REF) Between group (PCMT vs REF) P value (group by time)

Muscle function
MVC, N �2.7 (�4.1 to �1.3) �3.4 (�4.9 to �1.9) �0.63 (�4.8 to 3.6) 0.49
RFD (0–30 ms), N/s �8.6 (�32.9 to 15.7) �17.5 (�43.4 to 8.3) 3.2 (�37.6 to 44.0) 0.62
RFD (0–50 ms), N/s �10.9 (�40.7 to 18.9) �22.9 (�54.6 to 8.8) 6.6 (�44.1 to 57.2) 0.59
RFD (0–100 ms), N/s �11.9 (�38.0 to 14.3) �31.5 (�59.4 to �3.6) 16.8 (�29.6 to 63.1) 0.31
RFD (0–200 ms), N/s �7.0 (�22.2 to 8.2) �26.9 (�43.06 to �10.66) 14.8 (�12.60 to 42.2) 0.08

P value represents the between group difference (group by time).
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result of the present training regimen. As described previously
by our research team,[37,38] the intervention did in fact have
physical training elements but focused mostly on motor control
training and precise joint mobility. It is therefore reasonable to
speculate that the mechanical load placed on the body during
training was not sufficient to cause adaptations in RFD, as there
is a minimal load necessary to increase neural drive and
stimulate type II fiber hypertrophy.[20,42] As an example,
Andersen et al[18] found improvements in RFD of the trapezius
muscle following high-intensity progressive resistance training
and Jay et al[30] have likewise reported increases in RFD and to
a lesser extent increases in maximal strength following short
duration progressive resistance training using elastic bands.
Both of these studies utilized a progressive resistance training
model with higher work intensities, which is a noteworthy
contrast to the present study and therefore a reasonable
explanation for the observed lack of improvement in RFD.
Regardless of the lack of changes in physical function our
research team has previously reported a 52% (average of 6 body
regions) decrease in musculoskeletal pain in the same popula-
tion of female laboratory technicians.[37] Based on the
aforementioned research on RFD of chronically painful
muscles, we expected to see an increase in RFD following the
intervention period, as pain suggestively could inhibit motor
output.[9,32–36] However, this was not the case. Musculoskeletal
pain may not have been a limiting factor for muscle strength in
the present population of laboratory technicians, and the
present results suggest that pain reductions may not always lead
to increased RFD. This is in contrast to the findings by Andersen
et al[31] showing a significant correlation between pain
reductions and increases in RFD. In our previous study
reporting the changes in pain following the intervention, the
average pain (0–10 VAS) of the 6 body regions was 2.9 and 2.6
for the PCMT and REF groups respectively, with pain scores up
to 3.5 for the neck and 4.0 for the shoulders before intervention
commencement.[37] These pain levels are similar to other studies
demonstrating changes in RFD following resistance train-
ing,[18,30,31] indicating that the female laboratory technicians in
the present study had sufficient chronic musculoskeletal pain for
us to expect increases in RFD.
Similar to the lack of changes in physical function, we did not

observe any changes in neurocognitive performance as tested by
the CNSVS neurocognitive assessment software. This is in
contrast to previous findings, which generally show pain subtly
affecting some but not all domains of cognitive function either in
a direct or indirect manner.[7–10] For example, a review by
Moriarty et al[43] states that neurocognitive impairment is
commonly associated with the pain experience being a severe
obstacle to daily activities and rehabilitation strategies, especially
6

in the chronic pain population. The literature surrounding
chronic pain and cognitive performance impairment is however
not conclusive. As mentioned previously, Oosterman et al[7]

found only diminished sustained attention performance while
mental flexibility, planning, and inhibition appeared to remain
intact when investigating cognitive executive function and
attention and Suhr[12] found that although fibromyalgia patients
had more memory complaints and reported more fatigue, pain,
and depression, they did not differ from healthy controls in
cognitive performance. These observations on cognitive perfor-
mance and pain are noteworthy and should be taken into
account. In the present study, it is very likely that the intensity of
pain experienced by the participants was not severe enough to
affect neurocognitive performance significantly. Furthermore, the
participants were not cognitively impaired at baseline, which
makes it difficult to improve further. Pain has previously been
shown to modulate cerebral activity during cognitive perfor-
mance tasks, but uniformity of themodulation is divergent. Rémy
et al[44] found that a positive modulation effect on thermo-
nociception (thermal hot stimulation 46–49°C) was observed in
the midcingulate and the dorsomedial prefrontal cortex.
Conversely, a negative modulation effect was observed in
perigenual cingulate cortex, insula, and medial thalamus.[44]

We do not know which brain regions were active during the
neurocognitive assessment in the present study, nor do we know
what kind of brain activity chronic musculoskeletal pain of the
magnitude reported by the laboratory technicians, elicits.
Consequently, it can be speculated that overall modulatory
brain activity did not change due to an insufficient pain sensation.
This can be supported by the degree of pain induced to detect
cortical activity changes by Rémy et al.[44] In their study, the
participants reported the hot stimulus (46–49°C), inducing pain
of more than 6 on a 0 to 10 VAS scale, which is much higher than
the musculoskeletal pain reported by our participants. It may
therefore be speculated that the laboratory technicians were not
experiencing sufficiently intense pain to affect cognitive perfor-
mance, which explains the lack of change in neurocognitive
performance.
4.1. Strengths and limitations

The present study contains both strengths and limitations. The
randomized controlled design with parallel assigned, concealed
allocation, and blinded examiners reduced the risk of systematic
bias and is therefore a major strength. Further, the limited
number of drop-outs and the intention-to-treat analysis, which
inherently accounts for missing values, are also noteworthy
strengths. Finally, our dynamometer setup was highly reliable for
testing physical function and was performed by the same test
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leader, which both contribute to the strengths of this study.
However, an important limitation was the inability to blind
participants to the treatments as well as the intervention consisted
of several different elements. Participant outcome expectations
are a limitation in intervention trials but in the present study we
informed participants before group allocation that we did not
know which treatment would work the best and whichever
treatment at the end of the trial that proved to be the most
effective in reducing musculoskeletal pain would be offered to the
participants of the group not having received that particular
treatment during the intervention. Finally, the seemingly non-
consensus about how cognitive function, and what domains to be
included in the evaluation hereof, should be mentioned. For
instance, Veldhuijzen et al[45] used only 2 single tests (the Stroop
Color-Word Test and the Multi-Source Interference Test) to
evaluate cognitive decline in fibromyalgia patients versus health
controls, which lead them to conclude that cognitive inhibition
remained intact but a decline in mental processing and/or
psychomotor speed was evidenced. Clearly, a uniform definition
of what is included as domains in cognitive processing is
undetermined and constitutes a limitation to the present study as
the CNSVS test battery does include psychomotor speed as a
domain of cognitive function and processing ability.

5. Conclusion

A 10-week physical-cognitive-mindfulness training intervention
did not improve maximal strength or RFD of chronically painful
muscles. Neither did neurocognitive performance change over the
intervention period. These findings are contradictory to previous
findings, both in the field of musculoskeletal pain rehabilitation
and neurocognitive function. Interestingly, RFD can remain
unaltered even with significant decreases in pain. Furthermore,
testing pain-derived impairment of neurocognitive function may
lack validity without monitoring different brain regions, as the
modulation of cognitive performance is not uniform in the cortex.
In the present study, however, pain intensity may not have been
sufficiently severe to limit neurocognitive function. Further
exploration of neurocognitive impairment and musculoskeletal
pain is therefore warranted.
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