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GATA transcription factors (TFs) constitute a conserved 
family of zinc-finger TFs that fulfill diverse functions 
across eukaryotes. Accumulating evidence suggests 
that GATA TFs also play a role in lifespan regulation. In 
a recent study, we identified a natural polyphenol, 
4,4’-dimethoxychalcone (DMC), that extends lifespan 
depending on reduced activity of distinct GATA TFs. 
Prolonged lifespan by DMC treatment depends on au-
tophagy, a protective cellular self-cleansing mecha-
nism. In yeast, DMC reduces the activity of the GATA 
TF Gln3 and, genetic deletion of Gln3 is sufficient to 
increase autophagy levels during cellular aging. In ad-
dition, we observed similar changes in the abundance 

of several amino acids in the metabolome of DMC-
treated and GATA/Gln3 depleted cells. Here, we exam-
ine current data on the involvement of GATA TFs in the 
regulation of autophagy and longevity in different or-
ganisms and explore if GATA TFs might be suitable tar-
gets for anti-aging interventions. 
 
Global life expectancy at birth has increased over the past 
decades from 66.5 years in 2000 to 72.0 years in 2016: an 
increase of 5.5 years. In contrast, healthy life expectancy at 
birth, the number of years a person might live without 
disabilities, has only experienced an average increase of 
only 4.8 years between 2000 and 2016 [1]. Put simply, a 

 
 
________________________ 

Comment on Carmona-Gutierrez D, Zimmermann A, Kainz K, Pietrocola F, Chen G, Maglioni S, Schiavi A, Nah J, Mertel S, Beuschel CB, 
Castoldi F, Sica V, Trausinger G, Raml R, Sommer C, Schroeder S, Hofer SJ, Bauer MA, Pendl T, Tadic J, Dammbrueck C, Hu Z, Ruckenstuhl C, 
Eisenberg T, Durand S, Bossut N, Aprahamian F, Abdellatif M, Sedej S, Enot DP, Wolinski H, Dengjel J, Kepp O, Magnes C, Sinner F, Pieber TR, 
Sadoshima J, Ventura N, Sigrist SJ, Kroemer G, Madeo F (2019). The flavonoid 4,4'-dimethoxychalcone promotes autophagy-dependent 
longevity across species. Nat Commun 10(1):651. doi: 10.1038/s41467-019-08555-w 
 

doi: 10.15698/mic2019.05.676 
Received originally: 22.04.2019, Revised: 30.04.2019, Accepted 01.05.2019, Published 06.05.2019.  
Keywords: GATA, yeast, anti-aging, flavonoids, amino acids, autophagy. 
 
a Just paraphrasing Juliet; of course, I know that mitochondria, plastids and bacteria, like everything in biology, are far from being perfect. 
b Juliet’s word play regarding the rose might appear harmless, but the following (mutual) denial of her and her lover’s names soon leads to 
the untimely loss of her and her lover’s lives. “Loss” is a euphemism, but elaborating more would be off topic. 
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person born today will likely spend the last decade of her 
or his life suffering from age-associated conditions, like 
neurodegeneration, cardiovascular disease, diabetes or 
cancer. Anti-aging strategies aim at closing this gap be-
tween life- and healthspan, either by behavioral – mostly 
dietary – interventions or by pharmacologically targeting 
cellular pathways that influence aging. Among these anti-
aging molecules are compounds like rapamycin, which 
inhibits the central nutrient sensing kinase mechanistic 
target of rapamycin (mTOR), resveratrol, which stimulates 
the activity of the histone deacetylase sirtuin-1, or spermi-
dine, which inhibits the acetyltransferase EP300 [2–5]. 
Thus far, dozens of anti-aging compounds have been de-
scribed, and most of them act via decreased nutrient sig-
naling and/or reduced protein acetylation, which seems to 
be a common hallmark among pharmacological anti-aging 
interventions [2]. Nevertheless, novel molecules, especially 
those acting via alternative pathways, are needed, since 
they might be used in new combinatory approaches. 

In a recent study [6], we investigated different classes 
of flavonoids, a group of secondary metabolites from 
plants, for their ability to promote longevity. For that pur-
pose, we conducted a high-throughput screen based on 
chronological aging of the yeast Saccharomyces cerevisiae, 
an established model for the aging of post-mitotic cells [7, 
8]. In particular, our screen measured three different ag-
ing-associated hallmarks as readouts: (i) the loss of plasma 
membrane integrity, (ii) the accumulation of reactive oxy-
gen species, and (iii) the loss of clonogenic potential. The 
compound that most consistently improved all three pa-
rameters was the chalcone 4,4’-dimethoxychalcone (DMC), 
which we detected in the Asian traditional medicine plant 
Angelika keiskei (also known as Ashitaba). Subsequent ex-
periments unraveled that DMC administration prolonged 
lifespan in nematodes (Caenorhabditis elegans) and fruit 
flies (Drosophila melanogaster) and decelerated cellular 
senescence in human cancer cells.  

Many anti-aging compounds induce autophagy, an in-
tracellular mechanism that recycles superfluous or dam-
aged cellular material by sequestering it in vesicles. These 
so-called autophagosomes subsequently fuse with lyso-
somes, in which the cargo is degraded to replenish building 
blocks for anabolic reactions [2, 9]. DMC treatment led to 
elevated autophagy levels in all organisms tested, including 
yeast, nematodes, flies, mice and cultured human cells. 
DMC injection protected mice from hepatotoxicity induced 
by acute ethanol intoxication and from cardiovascular 
damage induced by prolonged ischemia, which are two 
conditions that can be improved by autophagy induction 
[6]. Importantly, both lifespan extension and cardioprotec-
tion – but not liver protection – depended on intact au-
tophagic signaling, as DMC was not able to improve these 
parameters upon deletion of autophagy-related (ATG) 
genes. Moreover - unlike many other anti-aging com-
pounds - DMC treatment did not reduce mTOR signaling, 
and in yeast, the anti-aging effects depended neither on 
the mTOR component Tor1, nor on the sirtuin-1 homolog 
Sir2. Instead, a mechanistic screen in yeast revealed that 

DMC required the depletion of the GATA transcription fac-
tor (TF) Gln3 to exert its anti-aging effects. DMC treatment 
of wildtype cells resulted in a phenotype similar to cells 
devoid of Gln3: both DMC treatment and GLN3 deletion 
reduced cell death and promoted autophagy during chron-
ological aging. In addition, we observed similar changes in 
the abundance of amino acid in the metabolome of DMC-
treated wildtype and Δgln3 cells. Importantly, DMC treat-
ment reduced Gln3 signaling close to the levels of Δgln3 
cells, altogether suggesting that DMC might mimic a Gln3-
depleted status. Gln3 is a part of a zinc finger TF system, 
which also includes the GATA TFs Gat1, Gzf3 and Dal80. All 
these GATA family members recognize similar core consen-
sus sequences and regulate nitrogen catabolite repression 
(NCR), which primarily serves to replenish amino acid bio-
synthesis when cells grow on poor nitrogen sources. GATA 
TFs can both activate and repress transcription of target 
genes, and all yeast GATA TFs are woven into a net of ex-
tensive cross-regulation and feedback loops [10]. Despite 
the functional similarity among GATA TFs, only deletion of 
GLN3, but not of any other GATA TF, was able to mimic the 
anti-aging effects of DMC [6]. 

Gln3 translocates to the nucleus and activates NCR-
responsive genes (e.g. the ammonium permease MEP2) 
upon rapamycin treatment, indicating that mTOR signaling 
regulates Gln3 activity [11]. Since mTOR inhibition by ra-
pamycin potently induces autophagy and Gln3 activation 
coincides with increased autophagic flux, it has long been 
suggested that Gln3 is a direct activator of genes involved 
in autophagy. Expression of ATG14 is reportedly induced 
upon deletion of Ure2, a cytosolic protein that sequesters 
and inhibits both Gln3 and Gat1 [12], although a more re-
cent study has found no direct effect of GLN3 deletion on 
ATG14 transcription [13]. In chronological aging experi-
ments, we observed that deletion of GLN3 resulted in in-
creased autophagic flux, and rapamycin treatment was 
even more effective (both when monitoring survival and 
autophagy) in Δgln3 cells, suggesting that rapamycin-
induced autophagy induction and nuclear Gln3 localization 
are rather correlative than causal events. Importantly, Gln3 
might have a different role upon acute autophagy induc-
tion, e.g. by nitrogen starvation. Indeed, ‘basal’ Gln3 activi-
ty seems to repress transcription of several ATG genes in 
rich media, while some ATG genes showed reduced tran-
scription upon nitrogen starvation when Gln3 was absent 
[13]. In any case, a model where basal Gln3 activity re-
presses autophagy during chronological aging is more con-
sistent with the reported longevity phenotype of Δgln3 
cells [6, 14]. Since Gln3 regulates the expression of genes 
which mediate amino acid biosynthesis, it is possible that 
Gln3 inhibition leads to depletion of amino acids, which in 
turn activates autophagic flux as an alternative pathway for 
replenishing amino acid pools. This hypothesis is corrobo-
rated by the metabolic signature of Δgln3 cells, albeit the 
causal mechanistic relationship between these changes 
and autophagy induction remains to be determined [6]. 

Importantly, our study corroborated that GATA TFs are 
involved in the beneficial effects of DMC in higher eukary-
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otes. Indeed, DMC failed to increase lifespan in nematodes 
with concomitant depletion of the Gln3 homolog elt-1. In 
addition, RNAi-mediated knockdown of elt-1 led to in-
creased autophagosome formation, and DMC did not fur-
ther increase the number of autophagosomes in elt-1 
RNAi-treated animals [6]. Similarly, DMC was unable to 
boost autophagosome formation in human cells when GA-
TA-2 (and to a lesser extent GATA-3 and GATA-4), but not 
other GATA TFs were depleted. 

In multicellular organisms, GATA TFs have mainly been 
implicated in development, particular hematopoiesis and 
cardiac differentiation [15, 16]. Interestingly, the crosstalk 
among different GATA TFs seems to be conserved between 
yeast and humans, as GATA TF switching and feedback 
inhibition represent important developmental control cir-
cuits in both species [17]. Nevertheless, in multicellular 
organisms, it is poorly investigated whether GATA TFs are 
involved in the regulation of amino acid biosynthesis and 
autophagy and whether they are influenced by mTOR sig-
naling. In hematopoietic cells, GATA-1 overexpression acti-
vates the expression of genes involved in autophagy, alt-
hough some ATGs (e.g. ATG5) are repressed [18]. In other 
tissues, GATA-4 accumulates with age and might contrib-
ute to the senescence-associated secretory phenotype and 
age-associated tissue inflammation, making it an attractive 
target for anti-aging interventions. Intriguingly, GATA-4 
seems to be targeted by SQSTM1/p62 for autophagic deg-
radation [19]. It is unknown, however, if GATA-4 itself can 
regulate autophagy. On the other hand, in nematodes, 
aging is accompanied by decreasing levels of the GATA TF 
elt-2, and accordingly, elt-2 overexpression extends 
lifespan [20]. In flies, the GATA TF serpent (srp), the closest 
Drosophila homolog of Gln3 has been suggested to play a 
role in autophagy execution, as srp knockdown prevents 
fusion of lysosomes with autophagosomes [21]. In contrast, 
a more recent study has implicated srp as a negative regu-
lator of dietary restriction-mediated lifespan extension in 
flies for at least two reasons. First, genes that were differ-
entially expressed upon restriction of essential amino acids 
(EAA), a condition that extends longevity, were enriched 
for GATA TF binding sites. Second, fatbody-specific knock-
down of srp was sufficient to increase lifespan and abol-
ished the positive effects of EAA restriction. Of note, the 
signature of EAA-enriched GATA-regulated genes was also 
observed upon rapamycin treatment, suggesting that in 
Drosophila, GATA TF signaling might be regulated by mTOR. 
Interestingly, whole-body srp knockdown had a similar 
effect on lifespan as dietary restriction, but reduced fecun-
dity, suggesting that systemic depletion of this TF comes at 
a cost [22]. Our data yielded a similar picture: systemic 
elt-1 depletion in nematodes failed to increase lifespan, yet 
abolished the anti-aging effect of DMC [6]. As a possibility, 
in multicellular organisms, tissue-specific depletion of GA-
TA TFs might yield life- or healthspan effects that cannot 
be seen upon whole-body depletion, but this needs to be 
further investigated. 

Apparently, longevity-extending effects of DMC rely on 
an increase in autophagic flux. Still, several questions re-

garding the mode of action of DMC remain to be an-
swered: 

(i) how does DMC inhibit Gln3? We could not demon-
strate any physical interaction of the compound with the 
Gln3 protein. In fact, DMC might target Gln3 indirectly by 
acting on Gln3 regulators. Besides mTOR-mediated regula-
tion, Gln3 activity can be modulated by PP2A-like protein 
phosphatases, although in many cases, mTOR activity in-
versely correlates with PP2A activity [23]. Intriguingly, 
DMC-mediated cytoprotection was lost in yeast strains 
lacking the PP2A subunits Tpd3 or Pph21/Pph22 [6]. Possi-
ble direct effects of DMC on such PP2A-like enzymes 
should be studied in the future. 

(ii) Does DMC reduce GATA signaling in multicellular 
organisms? While we did not measure GATA activity in 
multicellular models, two pieces of information suggest 
that this could be the case. First, we found metabolomic 
lterations in the liver and heart tissues from DMC-treated 
mice, particularly in amino acid-related metabolism, that 
are reminiscent of those found in yeast. Second, as in yeast, 
the pro-autophagic DMC effects are dependent on GATA 
TFs in nematodes and human cell culture. However, it re-
mains to be formally demonstrated that these changes 
correlate with reduced GATA signaling. 

(iii) Are there other factors involved in the pro-
autophagic activity of DMC? Although our data indicate 
that DMC promotes autophagy in an mTOR-independent 
manner and requires GATA signaling, we cannot exclude 
further mechanistic determinants. For instance, the activity 
of other TFs might be required for, or influenced by GATA 
TFs in the context of aging. The likely complexity of such a 
GATA-connected transcriptional network will be a matter 
of further investigation. In fact, in mammals, the transcrip-
tional regulation of autophagy alone encompasses a set of 
at least 20 TFs, including FOXO1/3, ATF4 and TFEB [24]. So 
far, except for GATA-1, GATA TFs have not been part of the 
transcriptional landscape of autophagy regulation. Again, 
future studies will have to explore to what extent GATA TFs 
are involved in the transcriptional control of autophagy, 
likely in a cell type-dependent fashion given the tissue-
specific expression profile of GATA TFs in mammals [25] 
and the dependency of caloric restriction on GATA signal-
ing in Drosophila [22]. 

GATA TF signaling has diverse functions across different 
phyla. It is not unlikely that an ancient system of interde-
pendent paralogous TFs has evolved to fulfil different 
needs in distinc species, ranging from tight regulation of 
nitrogen sensing in yeast to developmental switches in 
multicellular organisms. Nonetheless, emerging evidence 
suggests that more regulatory functions are conserved 
across species than previously expected, although tissue-
specific effects of GATA TF modulation have to be taken 
into account. Arguably, this complicates pharmacological 
anti-aging interventions, as compounds will either have to 
modulate GATA TF activity in a localized manner or specifi-
cally target GATA TF subtypes. Despite these constraints, 
accumulating data place GATA TFs in the limelight as ac-
tionable targets for postponing age-associated disease.  
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