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Abstract

Background: Identifying the DNA binding sites for transcription factors is a key task in modeling the gene regulatory
network of a cell. Predicting DNA binding sites computationally suffers from high false positives and false negatives due to
various contributing factors, including the inaccurate models for transcription factor specificity. One source of inaccuracy in
the specificity models is the assumption of asymmetry for symmetric models.

Methodology/Principal Findings: Using simulation studies, so that the correct binding site model is known and various
parameters of the process can be systematically controlled, we test different motif finding algorithms on both symmetric
and asymmetric binding site data. We show that if the true binding site is asymmetric the results are unambiguous and the
asymmetric model is clearly superior to the symmetric model. But if the true binding specificity is symmetric commonly
used methods can infer, incorrectly, that the motif is asymmetric. The resulting inaccurate motifs lead to lower sensitivity
and specificity than would the correct, symmetric models. We also show how the correct model can be obtained by the use
of appropriate measures of statistical significance.

Conclusions/Significance: This study demonstrates that the most commonly used motif-finding approaches usually model
symmetric motifs incorrectly, which leads to higher than necessary false prediction errors. It also demonstrates how
alternative motif-finding methods can correct the problem, providing more accurate motif models and reducing the errors.
Furthermore, it provides criteria for determining whether a symmetric or asymmetric model is the most appropriate for any
experimental dataset.
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Introduction

Transcription is a key step in gene expression and its regulation.

The transcription initiation reaction is facilitated by cis-regulatory

regions containing DNA sequence motifs which are binding sites

for general and/or specific transcription factors [1,2,3]. In order

for the right gene to be expressed at the right place and time and at

the right level, a high degree of specificity during protein-DNA

recognition events is required to recruit the transcriptional

machinery. The challenging task of identifying cis-regulatory

elements often suffers from high false positive and false negative

rates. One contributing factor to the error rate is inaccurate

models of transcription factor specificity. The convergence of in

vivo experimental approaches and computational methods can

help in identifying motifs for a particular transcription factor [4],

but critical issues related to motif discovery approaches need to be

addressed.

Large genomic scale experimental approaches that determine

the genomic locations of binding sites for specific transcription

factors, such as ChIP-chip and ChIP-Seq assays [5,6,7,8,9], are

sufficient for many overall characteristics of regulatory networks,

such as the connectivity between regulatory factors and the genes

they regulate. But having a model for the specificity of the

transcription factor allows one to have a finer scale resolution of

the binding sites [4,10,11,12] and to infer the effects of genetic

variations on gene expression [13,14]. Most specificity models

employ position weight matrices (PWMs) [15,16,17] although

more complex models can be used if needed [18]. A variety of

motif discovery algorithms have been developed to predict the

binding site specificity of a transcription factor based on collections

of sequences containing binding sites (reviewed in [4,16,19,20,21]).

Since most transcription factors can affect gene regulation in

either orientation, motif discovery algorithms generally search

both strands of the DNA regions to find the common motif. But

there are a large number of transcription factors that bind DNA as

homo-dimers, in which case the binding site is often symmetric, or

at least approximately symmetric. A symmetric motif does not

imply that each individual binding site is symmetric, merely that

the consensus sequence is and that changes in affinity due to

variations from the consensus should be equivalent in both halves

of the site. Motif discovery algorithms that search both strands for

binding sites, but don’t require symmetry, will often find incorrect,

approximately symmetric motifs. This is easily demonstrated using

the HincII restriction enzyme (Figure 1) as an example. Its
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recognition site is GTYRAC (Y = C/T, R = A/G) which matches

four distinct DNA sites, two of them perfectly symmetric

(GTTAAC and GTCGAC) and two of them asymmetric

(GTCAAC and GTTGAC). A motif discovery algorithm that

allows either orientation of the sites will use the opposite

orientation of one of the asymmetric sites to generate a motif

that is asymmetric (Figure 1 bottom). This is clearly an inaccurate

model for the motif, although for a restriction enzyme where the

activity is all-or-none for sites that either match or not, it would

not affect the prediction of sites. But for transcription factors,

where variations in binding affinity can be important for proper

regulation, such an inaccurate model could lead to loss of

sensitivity and specificity in binding site predictions. The issue of

symmetric binding sites has been addressed many times before,

and most motif finding algorithms allow the user to constrain the

search for symmetric patterns (e.g. [22,23,24,25,26,27]). However,

it is usually left to the user of those programs to determine the

motif they find most convincing and any artifacts that they report

are often propagated to motif databases. To highlight this issue

and propose a solution we use simulation studies to demonstrate

the problems associated with motif discovery on symmetric sites

and how to select the most accurate model.

Methods

Binding Site Models
Binding site models are derived from the experimentally

measured and characterized Mnt protein of salmonella phage

P22 [28]. Mnt is a repressor that binds as a tetramer, with each

dimer binding to a nearly symmetric seven base-pair half-site with

a consensus of GTGGACC. If positions five and six are switched it

becomes the symmetric site GTGGCAC, (this is an ‘‘odd

symmetry’’ with a central base not included in the symmetry;

the other strand is GTGCCAC, so the symmetric consensus is

GTGSCAC, where S = G/C). To compare the performance of

different algorithms we have created eight different variants of the

Mnt motif that are used as ‘‘true motifs’’ from which sample

binding sites are obtained for motif discovery (Figure 2). Four of

the true motifs are seven-long, having either the Mnt-like

asymmetric consensus of GTGSACC (M7A-1 and M7A-2) or

the symmetrized version GTGSCAC (M7S-1 and M7S-2) in

which the fifth and sixth motif positions are exchanged but all of

the parameters remain the same. In the other four of the true

motifs the central base is deleted to create two asymmetric 6-long

motifs with a consensus of GTGACC (M6A-1 and M6A-2) and

two with an ‘‘even symmetry’’, a completely symmetric model with

a consensus of GTGCAC (M6S-1 and M6S-2). The differences

between the two models of each type (‘‘-1’’ vs ‘‘-2’’) are variations

in the degree of symmetry. For example, position 2 of M7A-1 has

the affinity ranks of T,G.C,A, whereas M7A-2 has affinity ranks

T,A.C,G. The set of energies in each position are the same

except for the center position of the 7-long matrices where there is

less specificity (differences in affinity) between the bases in ‘‘-2’’

models. These differences affect the propensity for choosing the

orientation of sites in asymmetric models (see RESULTS).

DNA binding site sampling
For each of the energy matrices of Figure 2 we generated

random samples of 500 binding sites. The probability of any

specific 6- or 7-long sequence, Si, depends on its binding energy,

Ei, as specified by energy matrix, using the standard biophysical

model for binding [29,30,31]:

Pr(Si bound)~
1

1zeEi{m
ð1Þ

where m is the chemical potential of the DNA-binding protein

(related to its concentration). For our simulations we define the

binding energy of the consensus sequence as 0 (Figure 2) and set

the m value to 20.5 such that the consensus sequence has binding

probability of 0.38. This means that the ratio of every other

sequence to the consensus will be very nearly equal to the ratios of

their binding affinities. The sets of all the sampled binding sites

and their energies are provided in Table S1.

Motif finding and significance testing
Each set of sequences (Table S1) was analyzed by the motif

discovery program Consensus [32,33]. In this case the motif

discovery problem is trivial and any other program that finds a

model which maximizes the probability of the data, such as by

Expectation Maximization (EM) or Gibbs’ sampling [25,34],

would return nearly identical results. Using Consensus it is easy to

test three different modes of motif finding. In the first mode

(runtime parameter -c0) the sites are just taken as given. This

serves as a control because the discrepancy between its discovered

motif and the true motif is due only to the limited sample size (500

sites) and the difference in binding probability between the

assumed probabilistic model of the algorithm and the biophysical

one for the site sampling [29,30] which is quite small at the value

of m used. The second mode of motif finding (runtime parameter -

c2) allows every individual site to be selected in either of its two

possible orientations. If the true motif is asymmetric this mode will

rarely choose the wrong orientation so the result should be nearly

identical with mode -c0. But if the site is symmetric it has the risk

of creating an incorrect motif as shown for HincII sites in the

Introduction (Figure 1). The third mode allowed by Consensus

Figure 1. Logos for HincII restriction enzyme. Top, the Logo for
the true specificity of the HincII restriction enzyme. Bottom, the Logo
for an incorrect motif in which one of the asymmetric sites (GTTGAC)
has been selected in the opposite orientation (GTCAAC) to create an
asymmetric motif.
doi:10.1371/journal.pone.0024908.g001
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(runtime parameter -c3) assumes that the binding motif is

symmetric and therefore every site is really two sites, one in each

orientation, which are combined to derive the motif model. In this

case the sample size is doubled to 1000 sites and the

complementary parameters in the symmetric positions of the

model are constrained to be identical.

Assessment of motif accuracy
Since we know the correct motif for each of the samples, we can

assess which method of predicting the motif, by assuming

asymmetry or assuming symmetry, works best for each sample.

We can compare the resulting motifs visually by creating Logos

from the aligned binding sites [35,36]. We can also measure the

information content of the aligned binding sites [16,37].

Information content, or a very similar measure, is used in many

motif discovery algorithms, such as Consensus, EM, and Gibbs’

sampler [16,25,33,34] as the criterion to select the most significant

alignment. We can also determine an E-value for each of the

discovered motifs, which is the number of motifs expected by

chance with an information as high, or higher, than that found

given the number of sequences and the number of possible

alignments (and taking the background base probabilities into

account, which in this case are set to 0.25 for each base). The E-

value reported by the Consensus program is based on the

combination of two types of information. One is the p-value of

obtaining a PWM with the information content equal to, or higher

than, that observed from a random alignment of sequences with

the background composition, determined from an extreme value

distribution analysis [32,38,39]. That p-value for the PWM is then

converted to a E-value by taking into account the number of

possible alignments of the of the input dataset [32]. In every case

the motifs are extremely significant and we report the 2ln(E-value)

so that larger values are more significant.

Finally, since we know the true motif we can calculate the true

binding energy for all possible sequences (there are 4096 6-long

sequences and 16,384 7-long sequences) and compare those to the

predicted binding energies from each of the discovered motifs. For

the probability of the factor binding to a site Si we used the sum of

Figure 2. The energy matrices for true binding site models. Each position has a single base with 0 energy which is the preferred base, and all
of the other bases increase the binding energy by the amount shown. The top four matrices are for 7-long binding sites and the bottom four are for
6-long matrices. The left column are all asymmetric matrices and the right column are all symmetric. The parameters in each pair (row) of matrices are
the same, but two of the position (column) orders are changed between the left and right matrix.
doi:10.1371/journal.pone.0024908.g002
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it binding in either orientation, then we compared, using R2 (the

square of the Pearson correlation coefficient), the logarithm of that

sum for the true binding energies and the predicted binding

energies for each model. If instead of using the sum we used the

maximum of the two orientations, the R2 values in general were

decreased by 0.01 to 0.1 (data not shown).

Figure 3. The Logos for each of the asymmetric motifs. True asymmetric motifs (top one in each set) and the Logos for the motifs discovered
using either the asymmetric model (middle one in each set) or the symmetric model (bottom one in each set).
doi:10.1371/journal.pone.0024908.g003
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Results

Figures 3 and 4 compares the logos for the true motifs and the

motifs generated by the asymmetric model and symmetric model,

respectively, for each data set (the motif generated by the correct

alignment of sites is nearly identical to the true motif in every case

and is not shown). Table 1 provides the information content for

each motif as well as the 2ln(E-value). It can be seen that if the true

motif is asymmetric the motif obtained from the asymmetric mode

of the program is very accurate; sometimes it has slightly more

information content than the true model just because the true motif

is approximately symmetric and occasionally a site will score slightly

higher in the reverse orientation from how it was generated. The

symmetric models, when the true motif is asymmetric, are quite

poor and have much lower information content and 2ln(E-value)

than the asymmetric models for the same datasets.

Figure 4. The Logos for each of the symmetric motifs. True symmetric motifs (top one in each set) and the Logos for the motifs discovered
using either the asymmetric model (middle one in each set) or the symmetric model (bottom one in each set).
doi:10.1371/journal.pone.0024908.g004
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When the true model is symmetric the results are quite different

and highlight the problem of analyzing symmetric sites under the

assumption of asymmetry. The logos clearly show that the

symmetric models are quite accurate whereas the asymmetric

ones are not. But the information content of the asymmetric model

is higher, similar to the HincII example of Figure 1 but now shown

for a realistic binding site model with variable affinities for

different sequences. Since one applies motif finding algorithms to

datasets with unknown motifs one cannot evaluate which is correct

simply by comparing the logos, and in this case the information

content gives a misleading conclusion. Since most motif discovery

programs define the most significant motif as the one with the

highest information content, or some related likelihood ratio

statistic, they would get the wrong answer on all of these

symmetric motifs. However, by comparing E-values one can

obtain the correct answer. The E-value depends on both the

significance of the alignment, as measured by the information

content of the sites, as well as the number of possible alignments.

In the case of the symmetric model each site has only one

alignment (because both orientations are used simultaneously for

that alignment), whereas the asymmetric model allows each site to

occur in either of two orientations, therefore there are 2N possible

choices for N sequences. By correcting for that much larger set of

possible alignments, the E-value ranking is a more accurate

measure of the statistical significance and can obtain the correct

model even in cases where it has lower information content.

Given a matrix for a transcription factor one can predict

binding sites in a genome by scoring each possible site. One may

use a threshold and predict as binding sites those whose score

exceeds the cutoff, or one can use a quantitative prediction of the

probability of binding based on the score. Quantitative scores are

especially useful when one expects there are multiple binding sites

close together because one can sum the predicted probabilities to

get an ‘‘occupancy’’ score for the region being considered [40]. In

either case, the accuracy of the predicted motif will affect the false

positive and false negative predictions of regulatory regions. To

determine the accuracy of each model we calculated the binding

energy for all possible binding sites based on the true energy model

and compared those to the binding energies predicted by each

model. We use R2, the square of the Pearson correlation

coefficient which indicates what fraction of the true variance in

binding energy is captured by the model, as the measure of

accuracy. Table 2 shows the R2 values for each predicted matrix

for each dataset. The control matrix, in which the correct

orientations of each binding site are known, indicates the best

expected accuracy given the sample size of 500 sites and the fact

that the log-odds probability model does not match the biophysical

model exactly. In general these R2 values are quite high, all but

one being over 0.93 and those for the symmetric sites being

between 0.96 and 0.99. When the sites are asymmetric the

asymmetric model does essentially as well as could be expected

(values in bold), but the symmetric model is quite poor. When the

true motif is symmetric, the predicted model based on the

assumption of symmetry is very accurate (values in bold),

sometimes even better than the control model because the sample

size is twice as large (each site contributes to the model in both

orientations). The model based on the asymmetric assumption is

highly variable; with the 7-long motifs in these examples it is not

much worse than the symmetric model but for the 6-long motifs it

is significantly worse. These results are consistent with the E-value

analysis presented above and show that the assumption of

asymmetry when sites are truly symmetric can be misleading

and decrease the accuracy of binding site predictions considerably.

Discussion

There are now many different approaches to study DNA-

protein interactions and the specificity of transcription factors,

both using in vivo location analysis (such as ChIP-chip and ChIP-

Seq) and several different types of high-throughput in vitro binding

assays [7,8,9,10,11,41]. Most of those data sources do not identify

the binding sites or recognition motifs directly, but rely on some

type of motif discovery program to determine the specificity of the

transcription factor. In several recent studies we demonstrated that

the accuracy of the discovered motif can vary considerably

Table 1. Information content and 2ln(E-value) for predicted matrices.

M7A-1 M7A-2 M6A-1 M6A-2 M7S-1 M7S-2 M6S-1 M6S-2

Info Content

True 3.2 3.1 3.1 3.1 3.2 3.1 3.1 3.1

Asym 3.3 3.1 3.2 3.1 3.9 3.8 3.4 3.4

Sym 2.1 1.7 2.1 1.7 3.2 3.1 3.1 3.1

2ln(E-value)

Asym 1227 1163 1189 1161 1536 1510 1326 1313

Sym 1015 830 1018 849 1560 1534 1520 1510

doi:10.1371/journal.pone.0024908.t001

Table 2. R2 between predicted energies and true energies.

M7A-1 M7A-2 M6A-1 M6A-2 M7S-1 M7S-2 M6S-1 M6S-2

Control 0.93 0.88 0.94 0.94 0.98 0.98 0.99 0.96

Asym 0.92 0.89 0.94 0.93 0.97 0.97 0.80 0.80

Sym 0.36 0.31 0.34 0.33 0.99 0.98 0.99 0.97

doi:10.1371/journal.pone.0024908.t002
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depending on the type of discovery algorithm used, and that

different data types may require specialized analysis methods to

maximize the accuracy [27,30,31,42]. But an over-riding issue that

affects every motif discovery method, even those that use more

complex models than PWMs, is whether the specificity is

symmetric. Many transcription factors bind as homo-dimers and

in such cases one expects the binding sites may be symmetric. But

if the program employed does not specifically assume symmetry it

can (nearly) always find an alignment of the sites that is nearly

symmetric but has slightly more information content than the

completely symmetric motif. It is quite common in publications to

see Logos of motifs that appear approximately symmetric, and

even for the text to say something like ‘the discovered motif is

nearly symmetric but the left half is somewhat more conserved

than the right half’. We suspect that most, or all, of those cases are

artifacts of the motif discovery algorithm and that the true motif is

likely to be symmetric. We encourage the database curators to take

this issue seriously and to assess whether the asymmetric model is

more significant than the symmetric one, which requires more

than just a comparison of their information contents or similar

likelihood ratio statistics. The users of transcription factor motif

databases can perform such assessments themselves if the raw data

are made available. We presented an E-value based method that

takes into account the number of possible alignments as one way to

estimate the relative statistical significance of the two models. An

easier approach that can also work is to simply take into account

that the symmetric model has only half as many free parameters as

the asymmetric one (for the same length motif) because of the

constraints imposed by the symmetry, and to estimate the

statistical significance taking into account the number of

parameters being fit.

The accuracy of the motif for transcription factor specificities is

not a trivial problem. Even small differences in the models can

lead to large differences in the sensitivities and specificities, the

false positive and negative rates, when predicting sites in a genome

[29,30]. Therefore we recommend that motif discovery algorithms

be applied in both asymmetric and symmetric discovery modes

and that the conclusions be based on sound statistical evaluations

of their relative significance.

Supporting Information

Table S1 Selected sites and their energies from each of
the eight binding site models.
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