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ABSTRACT
To develop a short-term follow-up CT-based radiomics approach to predict response to immunotherapy 
in advanced non-small-cell lung cancer (NSCLC) and investigate the prognostic value of radiomics features 
in predicting progression-free survival (PFS) and overall survival (OS). We first retrospectively collected 224 
advanced NSCLC patients from two centers, and divided them into a primary cohort and two validation 
cohorts respectively. Then, we processed CT scans with a series of image preprocessing techniques 
namely, tumor segmentation, image resampling, feature extraction and normalization. To select the 
optimal features, we applied the feature ranking with recursive feature elimination method. After 
resampling the training dataset with a synthetic minority oversampling technique, we applied the support 
vector machine classifier to build a machine-learning-based classification model to predict response to 
immunotherapy. Finally, we used Kaplan-Meier (KM) survival analysis method to evaluate prognostic value 
of rad-score generated by CT-radiomics model. In two validation cohorts, the delta-radiomics model 
significantly improved the area under receiver operating characteristic curve from 0.64 and 0.52 to 0.82 
and 0.87, respectively (P < .05). In sub-group analysis, pre- and delta-radiomics model yielded higher 
performance for adenocarcinoma (ADC) patients than squamous cell carcinoma (SCC) patients. Through 
the KM survival analysis, the rad-score of delta-radiomics model had a significant prognostic for PFS and 
OS in validation cohorts (P < .05). Our results demonstrated that (1) delta-radiomics model could improve 
the prediction performance, (2) radiomics model performed better on ADC patients than SCC patients, (3) 
delta-radiomics model had prognostic values in predicting PFS and OS of NSCLC patients.
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1. Introduction

Lung cancer remains the leading cause of cancer-related death, 
despite continuous progresses in diagnosis and therapy1. 
Inhibitors of programmed death 1 (PD-1) and its ligand PD- 
L1 have emerged as a new standard of care for the first-line 
treatment of patients with advanced non–small-cell lung can
cer (NSCLC).2,3 According to KEYNOTE-042 trial, 
Pembrolizumab has given the significant increase in both pro
gression free survival (PFS) (10.3 versus 6 months) and OS (30 
vs. 14.2 months) compared to chemotherapy, in advanced 
NSCLC with PD-L1 higher than 50%.4 However, the benefit 
with immunotherapy is not seen for the entire population, the 
response rate of unselected NSCLC patients is approximately 
20%.5 Therefore, patient stratification and selection are crucial 
to optimize the survival benefit of PD-1/PD-L1 inhibitors. PD- 
L1 protein expression, as evaluated by immunohistochemistry 
(IHC), has been approved as a predictive biomarker for immu
notherapy for NSCLC patients.6 However, the relationship 
between PD-L1 expression and response to PD-1/PD-L1 inhi
bitors is complex, and the selection of PD-L1 cut points to 
select populations with a high likelihood of therapeutic 

response is controversial. Tumor heterogeneity and dynamic 
changes in PD-L1 expression during treatment process may all 
contribute to clinical responses to PD-1/PD-L1 inhibitors.7

Computed tomography (CT) is the most common nonin
vasive medical facility in the diagnosis and treatment of lung 
cancer. To evaluate the clinical efficacy of anti-cancer therapy, 
CT image is applied to measure the tumor response based on 
the response evaluation criteria in solid tumors (RECIST) 
criterion.8 According to RECIST guidelines, the changes in 
tumor size is the only factor taken into account, but the 
tumor heterogeneity which may be more indicative of tumor 
biology and evolution during therapy is not evaluated.

With the emergence of radiomics, thousands of quantitative 
CT imaging features can be extracted to decode the tumor 
phenotypes to assess tumor heterogeneity.9 By using high- 
throughput data mining approach of CT images, radiomics 
features of intra-tumoral and peri-tumoral regions might 
reflect the immune response and chemotherapy response in 
lung cancer.10 Several studies investigated the pre-therapy CT 
radiomics feature based machine learning model to predict the 
CD8 cell tumor infiltration, tumor mutational burden, tumor- 
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infiltrating lymphocytes, and immunotherapy response.11–14 

Since the lung tumor evolution during immunotherapy reflects 
the efficacy of immune-related drugs, the changes of intra- 
tumoral CT radiomics features during short-term immu
notherapy may improve the prediction performance.15 Thus, 
we hypothesized that the changes of short-term follow-up 
(before and after immunotherapy) CT based radiomics fea
tures could predict the response to immunotherapy and survi
val in advanced NSCLC patients, which may contribute to 
curtail ineffective and potentially toxic therapy and reduce 
unnecessary costs.

In this study, we develop a short-term follow-up CT based 
radiomics approach to predict the response to immunotherapy 
in advanced NSCLC by using datasets collected from two 
centers. Then, we also evaluate the progression-free survival 
(PFS) and overall survival (OS) of patients in high- and low- 
risk groups classified by the radiomics model. To observe the 
model performance changes with histopathology, we also com
pare the patients with different histopathological types, i.e., 
adenocarcinoma and squamous cell carcinoma. Figure 1 
shows the workflow of model development and survival ana
lysis procedure in this study.

2. Materials and methods

2.1. Patients

In this study, we retrospectively collected 224 advanced 
NSCLC patients from two centers. All the enrolled patients 
were diagnosed with clinical stage III or IV according to the 8th 
edition of the TNM staging system and treated with immu
notherapy alone. Most of patients were treated with immu
notherapy alone after chemotherapy as second-line or further 
lines treatment (third-line, fourth-line, etc.). The whole ther
apeutic process of each patient was reviewed through the 
electronic medical records system in each center. Each patient 
has CT scans at two time points involving pre-treatment and 
post-treatment at 6 ~ 8 weeks after immunotherapy. All CT 
images were acquired from picture archiving and communica
tion systems in each center. The primary endpoint of this study 
was the response to treatment evaluated by RECIST 1.1 criter
ion. The RECIST 1.1 defines categories of response, which 
included complete response (CR), partial response (PR), stable 
disease (SD) and progressive disease (PD), according to 

whether the tumor disappears, shrinks, stays the same or gets 
bigger after the start of treatment. Patients with PR and CR 
were categorized as the “responder group”, while patients with 
SD and PD were considered as “non-responders”. The second
ary endpoint was PFS, which measured the time from initiation 
of immunotherapy until disease progression or worsening. The 
tertiary endpoint was OS that was measured from the date of 
immunotherapy initiation to the date of death and censored at 
the date of last follow-up for survivors.

The involved patients were divided into a primary cohort, 
which consists of 93 patients (34 responders and 59 non- 
responders) treated with PD-1/PD-L1 immune Checkpoint 
Inhibitor between July 2015 and May 2018 in Shanghai 
Pulmonary Hospital, and two validation cohorts, which 
involves validation cohort 1 comprising 68 patients (15 respon
ders and 53 non-responders) treated with immunotherapy 
between January 2016 and July 2020 in Fudan University 
Shanghai Cancer Center, and validation cohort 2 comprising 
63 patients (24 responders and 39 non-responders) treated 
with immunotherapy between June 2018 and December 2020 
in Shanghai Pulmonary Hospital. The patients in primary 
cohort were used to train and develop the prediction models. 
And remaining 131 patients in two validation cohorts were 
used to evaluate the prediction models independently.

The institutional review boards (IRBs) in two centers 
approved this multi-center study, and the requirements for 
informed consent forms were waived due to its retrospective 
nature. This study was conducted in accordance with the 
Declaration of Helsinki.

2.2. CT image acquisitions and tumor segmentation

The CT images of each patient were acquired at pre-treatment 
and the first follow-up (6 ~ 8 weeks) after immunotherapy. The 
pre-treatment CT images were acquired within one week 
before immunotherapy. All CT scans were acquired by using 
a multi-slice CT system (manufacturer: Philips Healthcare, 
General Electric Health Care, Siemens Healthcare, United 
Imaging Healthcare, Toshiba Medical Systems, etc.) with 
a tube voltage of 120 kVp, and an automatic tube current 
modulation technique. Each CT image was reconstructed 
with an image matrix of 512 × 512 pixels. For primary cohort, 
the in-plane pixel spacing of image slices ranged from 0.59 to 

Figure 1. The workflow of model development and survival analysis procedure.
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0.98 mm (mean: 0.74, SD: 0.07), and slice thickness of CT scans 
ranged from 0.6 to 2.0 mm (mean: 1.03, SD: 0.18). In validation 
cohort 1, the in-plane pixel spacing of image slices was 0.64 to 
0.93 mm (mean: 0.77, SD: 0.05), and slice thickness of CT scans 
was 1.0 to 1.5 mm (mean: 1.05, SD: 0.15). For validation cohort 
2, the in-plane pixel spacing of image slices was 0.62 to 
0.96 mm (mean: 0.76, SD: 0.07), and slice thickness of CT 
scans was 0.6 to 3.0 mm (mean: 1.03, SD: 0.27).

For each case, we selected the tumor with largest diameter as 
the targeted lesion. The 3D targeted tumors on pre- and post- 
treatment CT images were delineated by a radiologist (X.B., 
10 years’ experience) with the ITK-SNAP software (version 
3.8.0, http://www.itksnap.org/) in a slice-by-slice fashion.

2.3. Radiomics feature extraction and selection

To eliminate the radiographic difference between images 
acquired from different scanners, all the CT images were 
first resampled to a same image spacing of 1 mm × 1 mm × 
1 mm by using a cubic spline interpolation algorithm. 
Then, 1118 CT-radiomics features were computed to 
decode the imaging phenotypes of each targeted tumor on 
pre- and post-treatment CT images, respectively. These 
quantitative image features were extracted on original CT 
image and two transform images involving LoG (Laplacian 
of Gaussian) image and wavelet image. The initial feature 
pool consisted of 106 original features, 276 LoG features 
and 736 wavelet features. The original feature involved 14 
shape features, 18 histogram features and 74 texture fea
tures. Among these texture features, 23 were gray level co- 
occurrence matrix (GLCM) texture features, 16 were gray- 
level run length matrix (GLRLM) texture features, 16 were 
gray level size zone matrix (GLSZM) texture features, 14 
were gray level difference matrix (GLDM) texture features, 
and five were neighborhood gray-tone difference matrix 
(NGTDM) texture features. The LoG and wavelet features 
were composed of histogram features and texture features. 
LoG features were extracted by applying LoG filter config
ured with σ of 1, 2, 3. Wavelet features were computed by 
using wavelet filter configured with coif1 wavelet and eight 
decompositions per level in each of the three dimensions.

After extracting CT-radiomics features, we calculated the 
delta radiomics features by subtracting the pre-treatment 
radiomics features from post-treatment radiomics features. 
The delta radiomics features represented the changes between 
pre- and post-treatment CT radiomics features. Before devel
oping prediction model, we used a series of feature engineering 
techniques to process the radiomics features. We first used 
a feature standard scaler to normalize each radiomics feature 
by removing the mean and scaling to unit variance. The nor
malized feature could be calculated as Fnorm ¼

F� UF
SF

, where 
Fnorm was the normalized feature, UF was the mean value of 
the feature, SF was the standard deviation of the feature. Then, 
we applied the feature ranking with recursive feature elimina
tion (RFE) method to select the optimal features and reduce the 
dimensionality of radiomics features. The RFE feature selector 
was configured with a ridge regression linear model.

2.4. Classification model development

Since the training dataset was imbalanced, we used a synthetic 
minority oversampling technique (SMOTE) to resample the 
minority samples (“responder” sample) in primary cohort. The 
SMOTE was configured with five nearest neighbors algorithm 
to generate synthetic samples in training dataset.16 In specific, 
we applied the SMOTE method to generate a balanced training 
data set in primary cohort by creating synthetic instances of 
“responder” samples with an oversampling rate of 
α = Nnon-responder/Nresponder to resample the samples. 
Nnon-responder was the number of “non-responder” samples and 
Nresponder was the number of “responder” samples in primary 
cohort. As a result, we expanded the number of “responder” 
samples from 34 to 59, which increases the balance ratio 
between cases in two classes in training dataset. Then, we 
applied the support vector machine (SVM) classifier to build 
a machine-learning based classification model to predict the 
response to immunotherapy in advanced NSCLC. The linear 
kernel was used in SVM classifier. Finally, we used the pre- 
treatment and delta CT-radiomics features to train the SVM 
classifiers to develop the pre-radiomics and delta-radiomics 
feature based model, respectively.

2.5. Survival analysis

The risk scores generated by two classification models were 
used as the rad-scores to predict the advanced NSCLC patient’s 
prognosis. We applied a default cutoff threshold of 0.5 to the 
rad-score of CT-radiomics model to divide the patients into 
low- and high-risk group. Then, the Kaplan-Meier (KM) sur
vival analysis method was used to evaluate the prognostic value 
of rad-score generated by CT-radiomics model. The Harrell’s 
concordance index (C-index) and hazard ratio (HR) were used 
to evaluate the value of rad-score in estimating PFS and OS.

2.6. Statistical analysis

To evaluate the classification model performance, we com
puted the area under receiver operating characteristic (ROC) 
curve (AUC) and the corresponding 95% confidence interval 
(CI). We used the bootstrap resampling procedures with 1000 
iterations to estimate the 95% CI. Delong test was used to 
compare the ROCs of different radiomics models. To further 
assess the model performance, we also calculated a series of 
quantitative metrics namely, accuracy (ACC), sensitivity, spe
cificity, positive predictive value (PPV), negative predictive 
value (NPV), odds ratio (OR), F1 score, F1 weighted score 
and Matthews correlation coefficient (MCC), respectively. We 
used a cutoff threshold of 0.5 to the prediction probabilities 
generated by radiomics models to obtain the binary classifica
tion results. In survival analysis process, we used the Log-Rank 
test to compare the difference between KM curves. For all 
results of statistical analysis, P < .05 (two-sided tests) was 
considered significant.

We used Python software (version 3.9) to develop the radio
mics model and R software (version 4.1.1) to implement the 
survival analysis. In the model development, we applied several 
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publicly available python libraries, i.e., Pyradiomics,17 

SimpleITK, Scikit-learn, SciPy, Matplotlib, NumPy, and 
Pandas.

3. Results

3.1. Patient demographics and clinical characteristics

Table 1 summarizes the demographics and clinical character
istics of patients in primary and validation cohorts. Responders 
to immunotherapy were 36.5% (34/93), 22.1% (15/68) and 
38.1% (24/63) in primary cohort, validation cohort 1 and 
validation cohort 2, respectively. Among all 224 patients, 
there were 184 men (82.1%) and 40 women (17.9%), 107 
(47.8%) patients have a smoke history, and the average age of 
all patients was 65 (27–86). The histologic variants of advanced 
NSCLC included adenocarcinoma (ADC) and squamous cell 
carcinoma (SCC). Among them, there were 57 (61.3%) cases of 
ADC and 36 (38.7%) cases of SCC in primary cohort, 54 
(79.4%) cases of ADC and 14 (20.6%) cases of SCC in valida
tion cohort 1, and 38 (60.3%) cases of ADC and 25 (39.7%) 
cases of SCC in validation cohort 2.

3.2. Optimal radiomics features selected in prediction 
model development

Figure 2 illustrates the boxplot of the selected radiomics fea
tures in pre- and delta-radiomics models. Figure 2(a) lists 
seven radiomics features selected in pre-radiomics model, 
which involves two original image features, one LoG image 
features and four wavelet image features. The delta-radiomics 
model selected four wavelet image features (Figure 2(b)).

3.3. Response prediction performance of CT-radiomics 
model

To evaluate and compare the radiomics model performance, 
we used the tumor maximal diameter according to RECIST to 
build a RECIST model. Figure 3 compares the ROC curves of 
pre-radiomics model, delta-radiomics model and RECIST 

model by using primary and validation cohorts. In primary 
cohort, delta-radiomics model yielded an AUC value of 
0.87 ± 0.04 (95% CI: 0.80–0.92), which was higher than that 
of pre-radiomics model (0.84 ± 0.04, 95% CI: 0.76–0.90) and 
RECIST model (0.68 ± 0.06, 95% CI: 0.58–0.78). In validation 
cohort 1, the delta-radiomics model significantly improved the 
AUC value from 0.64 ± 0.08 (95% CI: 0.48–0.76) to 0.82 ± 0.05 
(95% CI: 0.73–0.90) (P = .04, Delong test). In validation cohort 
2, the delta-radiomics model significantly improved the AUC 
value from 0.52 ± 0.08 (95% CI: 0.39–0.65) to 0.87 ± 0.05 (95% 
CI: 0.78–0.94) (P = 1e-5, Delong test). Table 2 compares and 
illustrates ACC, sensitivity, specificity, PPV, NPV, OR, F1 
score, F1 weighted score and MCC of pre-radiomics, delta- 
radiomics and RECIST models in primary and validation 
cohorts. These quantitative evaluation metrics showed the 
same trend that delta-radiomics model yielded higher perfor
mance than pre-radiomics model and RECIST model in pre
dicting between responder and non-responder of 
immunotherapy.

To further explore the effects of histologic types on radio
mics model performance, we evaluated and computed the 
performance of radiomics models in ADC and SCC patients. 
Figure 4 shows the ROC curves of pre-radiomics model and 
delta-radiomics model for overall, ADC and SCC patients in 
validation cohorts. The results demonstrated that both pre- 
and delta-radiomics model generated higher AUC values for 
ADC patients than SCC patients. Table 3 lists and compares 
the quantitative metrics of pre- and delta-radiomics model for 
overall, ADC and SCC patients in validation cohorts. It 
depicted that pre- and delta-radiomics model yielded higher 
performance for ADC patients than SCC patients.

3.4. Prognostic evaluation of patients with different 
response to immunotherapy based on radiomics model

Table 4 lists the C-indexes and 95% CIs of pre-radiomics 
model, delta-radiomics model and RECIST model in pre
dicting PFS and OS in primary and validation cohorts. It 
showed that signatures constructed based on binary 

Table 1. Demographics and clinical characteristics of patients in the primary and validation cohorts.

Characteristic
All Patients 
(N = 224)

Primary Cohort 
(N = 93)

Validation Cohort 1 
(N = 68)

Validation Cohort 2 
(N = 63)

Sex
Male 184 (82.1%) 80 (86.0%) 52 (76.5%) 52 (82.5%)
Female 40 (17.9%) 13 (14.0%) 16 (23.5%) 11 (17.5%)
Smoking
Current or Former 107 (47.8%) 42 (45.2%) 46 (67.6%) 19 (30.2%)
Never 117 (52.2%) 51 (54.8%) 22 (32.4%) 44 (69.8%)
Age
Mean (range) 65 (27–86) 67 (31–85) 61 (27–76) 66 (29–86)
Pathology
Adenocarcinoma 149 (66.5%) 57 (61.3%) 54 (79.4%) 38 (60.3%)
Squamous Cell Carcinoma 75 (33.5%) 36 (38.7%) 14 (20.6%) 25 (39.7%)
Clinical Stage
III 36 (16.1%) 13 (14.0%) 4 (5.9%) 19 (30.2%)
IV 188 (83.9%) 80 (86.0%) 64 (94.1%) 44 (69.8%)
Response
CR - - - -
PR 73 (32.6%) 34 (36.5%) 15 (22.1%) 24 (38.1%)
SD 78 (34.8%) 42 (45.2%) 13 (19.1%) 23 (36.5%)
PD 73 (32.6%) 17 (18.3%) 40 (58.8%) 16 (25.4%)
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classification rad-scores of delta-radiomics model had bet
ter prognostic predictive performance than pre-radiomics 
model and RECIST model. Figures 5 and 6 show the PFS 
and OS KM survival curves on primary and validation 

cohorts for rad-scores generated by pre-radiomics model, 
delta-radiomics model and RECIST model. Through the 
KM survival analysis, the stratification effects of rad-scores 
were significant in primary cohort for estimating the PFS 

Figure 2. Boxplot of the selected radiomics features in pre- and delta-radiomics models. (a) the radiomics features selected in pre-radiomics model, (b) the radiomics 
features selected in delta-radiomics model.

Figure 3. ROC comparisons of pre-radiomics model, delta-radiomics model and RECIST model by using primary and validation cohorts. (a) ROC curves of primary cohort, 
(b) ROC curves of validation cohort 1, (c) ROC curves of validation cohort 2.
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and OS (all P < .05, Log-Rank test). For validation 
cohorts, the rad-score of delta-radiomics model had 
a significant prognostic for PFS and OS, and the variable 
of RECIST model had a significant prognostic for PFS 
(P < .05, Log-Rank test). Table 5 summarizes the relative 
HRs with 95% CIs of pre-radiomics model, delta- 
radiomics model and RECIST model in predicting PFS 
and OS for primary and validation cohorts. Through 
Cox proportional hazards regression analysis, rad-score 
of delta-radiomics model showed its great prognostic 
value in predicting PFS and OS for validation cohort 1 
(PFS, HR: 6.10, 95% CI: 2.12–17.56, P < .001, likelihood 
ratio test; OS, HR: 3.17, 95% CI: 1.19–8.41, P < .05) and 
validation cohort 2 (PFS, HR: 4.55, 95% CI: 1.89–10.92, 

P < .001, likelihood ratio test; OS, HR: 2.95, 95% CI: 1.11– 
7.84, P < .05), which was better than rad-score of pre- 
radiomics model.

4. Discussion

Accurate treatment response prediction is very important to 
stratify and select patients who can benefit from the immu
notherapy. In this two-center study, we developed and vali
dated a delta-radiomics model to predict treatment response to 
immunotherapy in advanced NSCLC. By extracting thousands 
of quantitative image features to decode the imaging pheno
types of lung tumor, the results demonstrated the feasibility of 
applying short-term follow-up CT-based radiomics to predict 

Table 2. Performance comparisons of pre-radiomics and delta-radiomics models in primary and validation cohorts in terms of ACC, sensitivity, specificity, PPV, NPV, OR, 
F1 score, F1 weighted score and MCC, respectively.

Model ACC (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) OR F1 Score F1-Weighted MCC

Primary Dataset preRadiomics Model 77.42 82.35 74.58 65.12 88.00 13.69 0.73 0.78 0.55
∆Radiomics Model 78.49 61.76 88.14 75.00 80.00 12.00 0.68 0.78 0.52
RECIST Model 72.04 35.29 93.22 75.00 71.43 7.50 0.48 0.69 0.36

Validation Dataset 1 preRadiomics Model 52.94 73.33 47.17 28.21 86.21 2.46 0.41 0.57 0.17
∆Radiomics Model 76.47 66.67 79.25 47.62 89.36 7.64 0.56 0.78 0.41
RECIST Model 76.47 20.00 92.45 42.86 80.33 3.06 0.27 0.73 0.17

Validation Dataset 2 preRadiomics Model 50.79 41.67 56.41 37.04 61.11 0.92 0.39 0.51 0.02
∆Radiomics Model 80.95 79.17 82.05 73.08 86.49 17.37 0.76 0.81 0.60
RECIST Model 80.95 66.67 89.74 80.00 81.40 17.50 0.73 0.81 0.59

Figure 4. ROC curves of pre-radiomics and delta-radiomics models for overall, ADC and SCC patients in validation cohorts. (a) and (b) are ROC curves for pre-radiomics 
model and delta-radiomics model of validation cohort 1. (c) and (d) are ROC curves for pre-radiomics model and delta-radiomics model of validation cohort 2.
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the response of immunotherapy in advanced NSCLC. As an 
immunotherapy response predictive factor, the rad-score of 
delta-radiomics model performed well in survival prediction 
and high- and low-risk stratification of patients, which 

indicated the value of short-term CT-radiomics in prognosis 
prediction. To evaluate our proposed model performance, we 
compared the AUC, PFS-HR and OS-HR values reported in 
previously reported literatures. Table 6 listed and compared the 

Figure 5. PFS KM survival curves on primary and validation cohorts for rad-scores generated by pre-radiomics model, delta-radiomics model and RECIST model, 
respectively. (a) ~ (c) PFS KM survival curves of pre-radiomics models, (d) ~ (f) PFS KM survival curves of delta-radiomics model, (g) ~ (i) PFS KM survival curves of RECIST 
model.

Table 3. Comparisons of pre- and delta-radiomics models for overall, ADC and SCC patients in validation cohort 1 and 2 by evaluating on metrics of ACC, sensitivity, 
specificity, PPV, NPV, OR, F1 score, F1 weighted score and MCC, respectively.

Model ACC (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) OR F1 Score F1-Weighted MCC

Validation Dataset 1 preRadiomics Model Overall 52.94 73.33 47.17 28.21 86.21 2.46 0.41 0.57 0.17
ADC 53.70 72.72 48.84 26.67 87.50 2.55 0.39 0.58 0.17
SCC 50.00 75.00 40.00 33.33 80.00 2.00 0.46 0.51 0.14

∆Radiomics Model Overall 76.47 66.67 79.25 47.62 89.36 7.64 0.56 0.78 0.41
ADC 77.78 72.73 79.07 47.06 91.89 10.07 0.57 0.79 0.45
SCC 71.43 50.00 80.00 50.00 80.00 4.00 0.50 0.71 0.30

Validation Dataset 2 preRadiomics Model Overall 50.79 41.67 56.41 37.04 61.11 0.92 0.39 0.51 −0.02
ADC 55.26 46.67 60.87 43.75 63.64 1.36 0.45 0.55 0.07
SCC 44.00 33.33 50.00 27.27 57.14 0.5 0.30 0.45 −0.16

∆Radiomics Model Overall 80.95 79.17 82.05 73.08 86.49 17.37 0.76 0.81 0.60
ADC 89.47 86.67 91.30 86.67 0.91 68.25 0.87 0.89 0.78
SCC 68.00 66.67 68.75 54.55 78.57 4.4 0.60 0.69 0.34
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performance of different models. Comparing with other 
reported studies, our proposed method yielded a relative 
higher performance by evaluating on the largest dataset.

In this study, the information of short-term follow-up CT 
scans were used to extract delta-radiomics features. Previous 
studies have shown that pre-treatment CT radiomics was asso
ciated with the CD8 cell tumor infiltration and objective 
response to anti-PD-1 and PD-L1 monotherapy.18 Thus, the 
pre-treatment CT scan contained the information of tumor 
phenotypes, which reflected the intratumor spatial variation. 
As tumor evolution through immunotherapy, another study 
investigated the efficiency of dynamic changes of serum bio
markers in predicting response to immunotherapy and prog
nosis of advanced NSCLC patient.20 Monitoring changes of 
tumor serum biomarkers may serve as a promising response 
predictive and prognostic factor. It could be inferred that 
tumor heterogenous changed in immunotherapy and monitor
ing the changes in early period contributed to predict the long- 

Table 4. C-indexes and corresponding 95% CIs of pre-radiomics model, delta- 
radiomics model and RECIST model in predicting PFS and OS for primary and 
validation cohorts.

Model

PFS Prediction OS Prediction

C-index 95% CI C-index 95% CI

Primary 
Dataset

preRadiomics 
Model

0.61 ± 0.03 [0.55, 
0.67]

0.60 ± 0.04 [0.52, 
0.67]

∆Radiomics 
Model

0.62 ± 0.03 [0.57, 
0.67]

0.61 ± 0.03 [0.54, 
0.67]

RECIST Model 0.56 ± 0.02 [0.52, 
0.61]

0.57 ± 0.02 [0.52, 
0.62]

Validation 
Dataset 1

preRadiomics 
Model

0.51 ± 0.05 [0.42, 
0.59]

0.59 ± 0.05 [0.50, 
0.69]

∆Radiomics 
Model

0.63 ± 0.04 [0.56, 
0.70]

0.60 ± 0.04 [0.52, 
0.68]

RECIST Model 0.56 ± 0.03 [0.50, 
0.61]

0.54 ± 0.03 [0.49, 
0.59]

Validation 
Dataset 2

preRadiomics 
Model

0.51 ± 0.04 [0.43, 
0.60]

0.61 ± 0.05 [0.52, 
0.69]

∆Radiomics 
Model

0.64 ± 0.04 [0.55, 
0.72]

0.61 ± 0.05 [0.52, 
0.71]

RECIST Model 0.64 ± 0.04 [0.57, 
0.72]

0.53 ± 0.05 [0.42, 
0.63]

Figure 6. OS KM survival curves on primary and validation cohorts for rad-scores generated by pre-radiomics model, delta-radiomics model and RECIST model, 
respectively. (a) ~ (c) OS KM survival curves of pre-radiomics models, (d) ~ (f) OS KM survival curves of delta-radiomics model, (g) ~ (i) OS KM survival curves of RECIST 
model.
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term objective response. So, we developed a short-term follow- 
up CT-based radiomics approach to monitor the changes of 
tumor imaging phenotypes to predict the long-term objective 
response to immunotherapy in advanced NSCLC. Our study 
had a few characteristics.

First, we subtracted pre- and post-treatment CT radiomics 
features to generate delta-radiomics features to develop 
a machine-learning based model to predict overall response to 
immunotherapy. In comparison with pre-radiomics model and 
RECIST model, the delta-radiomics model significantly improved 
the performance in predicting response to immunotherapy 
(P < .05 for validation cohorts, Delong test). It can be seen that 
changes of CT radiomics features add some additional informa
tion to tumor imaging phenotypes for predicting immunotherapy 
response. The selected optimal radiomics features of pre- and 
delta-radiomics models were different (as results shown in 
Figure 2). With the evolution of tumor in immunotherapy process, 
the radiomics feature also changed because of the tumor micro
environment evolving. Previous studies analyzed PD-L1+ and 
CD8+ cell densities of tumor biopsy tissues to predict the immu
notherapy response and prognosis of patients.21–23 Although these 
biopsy biological factors can better decode the tumor microenvir
onment, the invasive obtained biopsied tissues are not suitable for 
monitoring tumor evolution. Since delta-radiomics features can be 
extracted in a noninvasive way, our proposed approach may 
provide a novel method to monitor tumor microenvironment 
and predict immunotherapy response.

Second, we evaluated the model performance with datasets 
involving different histopathological types, i.e., ADC and SCC. 
Comparing with SCC patients, the proposed model yielded higher 
performance on ADC patients (as results showed in Figure 4 and 
Table 3). Subgroup analysis showed that non-squamous cell lung 
cancer patients did benefit from immunotherapy plus conven
tional treatment.24 As the ADC and SCC had different imaging 
phenotypes on CT scans,25 for instance, surrounding ground glass 
opacity was more common in ADC and SCC tend to manifest as 

necrosis, different imaging phenotypes may lead to variant pre
diction performance. Since the immunotherapy response of SCC 
patient was more difficult to predict, we needed to enrolled more 
SCC patients in training dataset to improve the model perfor
mance. Imbalanced distribution of histological subtypes of lung 
cancer (149 ADC vs 75 SCC) may also lead to overfitting problem. 
Due to relatively small proportion of SCC patients in our dataset, it 
should be validated with larger datasets in future study.

Third, we evaluated the prognostic values of rad-scores gener
ated by radiomics models in predicting PFS and OS. There are 
a few studies investigating the application of radiomics analysis 
based on CT images in patients treated with immunotherapy and 
most of them enrolled heterogeneous population with different 
primaries (e.g., lung and melanoma).19,26 Giulia et al. presented 
that radiomics features (volume and heterogeneity) based on 
baseline18 F-FDG PET/CT performed before the start of immu
notherapy were associated with disease progression in NSCLC 
patients, as well metabolic tumor volume and total lesion glycolysis 
were not statistically significantly associated with PFS.27 In our 
study, applying KM survival analysis, the rad-score of delta- 
radiomics model had significant prognostic values for PFS and 
OS in validation cohort. Meanwhile, delta-radiomics model 
showed higher prognostic values than pre-radiomics model by 
using Cox proportional hazards regression analysis (as results 
shown in Tables 4 and 5). Thus, our proposed radiomics model 
may contribute to stratify patients into high- and low-risk groups 
with different PFS and OS.

Despite of the promising results, our study also had some 
limitations. First, this retrospective study involved limited and 
imbalanced dataset. Although we used SMOTE to resample the 
samples in training dataset, imbalanced dataset may lead to over
fitting problem. Thus, we needed to evaluate our proposed model 
with more diverse and larger dataset and validate the robustness 
and effectiveness of our model with prospective studies. Second, 
we only used CT images to predict the immunotherapy response. 
Other potentially useful clinicopathological factors (i.e., serum 

Table 5. The relative HRs with 95% CIs of pre-radiomics model, delta-radiomics model and RECIST model in predicting PFS and OS for primary and validation cohorts.

Model

PFS Prediction OS Prediction

HR 95% CI P Value HR 95% CI P Value

Primary Dataset preRadiomics Model 2.09 [1.31, 3.36] 0.0018 1.92 [1.03, 3.58] 0.037
∆Radiomics Model 2.53 [1.46, 4.36] 0.00058 2.40 [1.11, 5.19] 0.021
RECIST Model 1.80 [0.95, 3.43] 0.069 2.41 [0.86, 6.78] 0.084

Validation Dataset 1 preRadiomics Model 1.28 [0.69, 2.40] 0.40 0.63 [0.30, 1.31] 0.21
∆Radiomics Model 6.10 [2.12, 17.56] 0.00014 3.17 [1.19, 8.41] 0.015
RECIST Model 7.38 [1.01, 54.04] 0.018 2.30 [0.54, 9.72] 0.25

Validation Dataset 2 preRadiomics Model 1.06 [0.55, 2.04] 0.86 1.88 [0.82, 4.33] 0.13
∆Radiomics Model 4.55 [1.89, 10.92] 0.0002 2.95 [1.11, 7.84] 0.023
RECIST Model 5.88 [2.08, 16.65] 0.00015 1.56 [0.62, 3.88] 0.34

Table 6. Comparisons of AUC, PFS-HR and OS-HR values for different studies.

Study Method Patient Number AUC

HR

PFS OS

Sun R (2018)18 Baseline CT radiomics model 137 0.76 NG 0.58
Trebeschi S (2019)19 Pre-treatment CT radiomics model 203 0.83 NG NG
Khorrami M (2020)15 CT radiomics model 139 0.81 ~ 0.85 NG 1.64
Our Method Short-term follow-up CT based radiomics model 224 0.82 ~ 0.87 4.55 ~ 6.10 2.95 ~ 3.17

NG: not given.
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biomarker, densities of tumor infiltrating lymphocyte, PD-1) and 
imaging features (i.e., MR image, PET image) had not been inves
tigated yet.28,29 Third, only the targeted tumors were delineated 
manually and analyzed. The multi-lesions analysis method and 
accurately automatic segmentation method should be explored 
and developed in future study. Fourth, we used RECIST 1.1 
criterion to evaluate the best response of immunotherapy. As 
different evaluation criteria may have different response evalua
tion of immunotherapy, we will compare the effects of evaluation 
criteria for model performance in future study. Last, this was only 
a technique development study. Before the proposed model had 
been applied in clinical practice, we needed to conduct more 
clinical validation experiments to validate the effectiveness of our 
method.

5. Conclusion

In this study, we developed a short-term follow-up CT-based 
radiomics approach to predict response to immunotherapy in 
advanced NSCLC. The results demonstrated that (1) delta- 
radiomics model could improve the prediction performance, 
(2) radiomics model performed better on ADC patients than 
SCC patients, (3) delta-radiomics model had prognostic values 
in predicting PFS and OS of NSCLC patients.
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