
1Scientific RepoRts | 6:32317 | DOI: 10.1038/srep32317

www.nature.com/scientificreports

Single Molecule Fluorescence 
Microscopy and Machine Learning 
for Rhesus D Antigen Classification
Daniela M. Borgmann1,*, Sandra Mayr2,*, Helene Polin3, Susanne Schaller1, Viktoria Dorfer1, 
Lisa Obritzberger1, Tanja Endmayr2, Christian Gabriel3, Stephan M. Winkler1 & Jaroslaw Jacak2

In transfusion medicine, the identification of the Rhesus D type is important to prevent anti-D 
immunisation in Rhesus D negative recipients. In particular, the detection of the very low expressed 
DEL phenotype is crucial and hence constitutes the bottleneck of standard immunohaematology. 
The current method of choice, adsorption-elution, does not provide unambiguous results. We have 
developed a complementary method of high sensitivity that allows reliable identification of D antigen 
expression. Here, we present a workflow composed of high-resolution fluorescence microscopy, image 
processing, and machine learning that - for the first time - enables the identification of even small 
amounts of D antigen on the cellular level. The high sensitivity of our technique captures the full range 
of D antigen expression (including D+, weak D, DEL, D−), allows automated population analyses, and 
results in classification test accuracies of up to 96%, even for very low expressed phenotypes.

The high immunogenicity of the Rhesus factor1 renders it one of the most relevant blood markers in transfu-
sion medicine next to the factors of the AB0 system2. The Rhesus antigens are encoded by two homologous 
genes, RHCE and the clinically more relevant RHD3. Currently, more than 280 RHD alleles4 and approximately 
30 Rhesus D (RhD) epitopes are known and account for the strong immunogenicity and the huge complexity of 
the RhD blood group assignment. Accurate classification of blood samples, however, is of utmost importance 
as a false assignment can cause dangerous anti-D immunisations potentially leading to haemolytic transfusion 
incidents or maternal alloimmunisation inducing haemolytic disease of the newborn5,6.

The RHD gene encodes the Rhesus D protein expressed on erythrocyte membranes (Supplementary Fig. 1). 
Based on the molecular background, the D antigen expression level, and the presence of epitopes, the following 
five types are defined7,8 (Table 1): D-positive (D+ ; high expression), D-negative (D− ; no expression due to gene 
deletion), partial D (extracellular mutations that do not affect the expression level but the existence of certain 
epitopes), weak D (intracellular or transmembrane mutations causing reduced expression), and DEL (D-elute; 
intracellular or transmembrane mutations leading to very low expression). The DEL variant9 primarily occurs in 
Eastern Asia (up to 10–30% of all seemingly D−  typed individuals10,11). DEL phenotypes are caused by different 
RHD missense mutations, splice site mutations, or RHD-CE hybrid genes12,13. To date, 32 DEL types are listed in 
the RhesusBase Site and unidentified ones are still emerging14–16 (http://www.rhesusbase.info17).

Rhesus D phenotyping of blood donors is routinely performed by incubation of blood samples with anti-D 
antibodies and visual observation of haemagglutination. This method, however, does not identify all D pheno-
types due to a lack of sensitivity. Therefore, very low expressed D variants are frequently misclassified as D--15,18,19. 
Numerous studies report primary and secondary anti-D immunisation of D−  recipients after transfusion of weak 
D and DEL products12,19,20. Recently, population surveys, lookbacks, and multi-centre studies were performed 
worldwide revealing the presence of weak D and DEL samples in the seemingly D−  donor pool by performing 
PCR and sequencing. Thus, 0.1% of Caucasians and almost half of Asians (46%) with D−  phenotype were reclas-
sified as DEL6,11,15,21. While more precise D−  characterisation constitutes a loophole in the legislation of most 
countries, regulations that dictate a more detailed analysis of D−  donors were recently introduced in the United 
States18 and Switzerland22. RHD genotyping of D−  samples is performed by molecular biology. Information about 
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protein abundance of known alleles is given by the RhesusBase. In case of novel alleles the D antigen expression 
level has to be quantified, commonly by flow cytometry23: Using flow cytometry, the D antigen is detected by flu-
orescently labelled standard antibodies24–26. This technique, however, exhibits huge inter-laboratory variability27, 
lacks standardised reagents28, and frequently fails to detect D variants with low expression due to an inherent lack 
of sensitivity (limit of detection: 22 antigens/cell)13,14,19. Identification of very low expressed D variants is com-
monly performed by adsorption-elution assay9,26,29–32. This laborious technique, however, requires experience, is 
time-consuming, and lacks standardised protocols. Varying numbers of washing steps and/or different incuba-
tion times may lead to contradictory results. DEL samples yielding inconsistent results, as well as DEL samples 
without detectable D antigen expression, were reported in the literature3,14,15,33.

We present a method that allows reproducible classification of all known D types in particular potentially 
immunogenic, very low expressed D variants. The workflow combines high-resolution fluorescence microscopy 
and bioinformatic algorithms. The D antigen is labelled with three fluorescent antibodies that are also used in 
standard immunohaematology. Sequentially, three replicas of each specimen are marked with antibodies binding 
to different D antigen epitopes. Samples are analysed by high-resolution fluorescence microscopy allowing single 
molecule sensitive detection. The high sensitivity of our technique captures the D antigen expression of D+ , weak 
D, DEL, and D−  phenotypes. Protein expression levels are observed directly at single cell level and reveal huge 
variations within and between each population. These variations in RhD expression are caused by the stochastic 
nature of protein expression attributable to the statistical behaviour of chemical systems34–36. Image processing 
and feature extraction are used for cell recognition and automatic determination of characteristics (features) that 
describe the D antigen occurrence in cell populations. Based on the feature values non-linear machine learning 
algorithms are applied and result in the final Rhesus D type classification. Thus, this straightforward method 
holds great promise for reliable D antigen classification.

Results
We have established an effective combinatory workflow (depicted in Fig. 1) consisting of high-resolution flu-
orescence microscopy, image processing, and machine learning techniques. For Rhesus D type classification, 
51 human blood test samples of already known Rhesus D types (namely D+ , weak D, DEL, and D− ; listed in 
Table 1) were measured and more than 2000 microscopy images (image size ~82*82 μ m2) were analysed at single 
molecule and single cell level.

High-resolution fluorescence microscopy of Rhesus D phenotypes. Three replicas of each sample were 
independently marked with Atto655-labelled antibodies H41 (Atto655-H41-Ab), BRAD3 (Atto655-BRAD3-Ab), 
and BIRMA-D6 (Atto655-BIRMA-D6-Ab) binding D antigen epitopes not affected in the analysed weak D and DEL 
types. Their use in immunohaematological routine anticipates that they have good binding affinities and accessibil-
ity to the corresponding epitopes. Fluorophore Atto655 was covalently attached to the antibodies (average degree 
of labelling of 1.8) and marked antibodies were applied in amounts to ensure saturation of all RhD molecules. In 
order to avoid false positive signals from antibodies sticking to the bottom and RhD immobilization caused by pro-
tein adhesion to the glass, the apical side of the erythrocytes was imaged. One-colour imaging using red-absorbing 
fluorophore Atto655 was applied in order to reduce autofluorescence and cytotoxic photodamage. Positive  
(D+  blood samples) and negative controls (D−  blood samples) were carried along during each experiment. All 
amino acids changed in the weak D and DEL types analysed within this study are located in the intracellular or 
transmembrane part of the protein (Supplementary Fig. 1) and do not interfere with antibody-antigen interaction.

Cell contours of erythrocytes and intensity peaks corresponding to the RhD antigen were detected and ana-
lysed using the implemented automated image processing techniques. Parametrisation was done in a user-assisted 
fashion but was not changed during the experiments (see Methods for further details). Figure 2b.I. depicts the 

D phenotype Allele Name Expression Level Molecular Information
Number of 

Analysed Samples

D+ RHD*01 High expression Reference sequence 12

weak D

RHD*weak D type 1

Low expression

Single missense mutation  
c.809T> G (V270G) 6

RHD*weak D type 2 Missense mutation (splice site affected  
c.1154G> C (G385A)) 3

RHD*weak D type 3 Single missense mutation  
c.8C> G (S3C) 5

DEL

RHD*09.02  
Weak D type 4.3 Very low 

expression

multiple missense mutations  
c.602C> G (T201R),  
c.667T> G (F223V),  

c.819G> A,  
c.872C> G (P291R)

6

RHD*DEL8  
(IVS3+1G>A) Splice site mutation 6

D− RHD*01N.01 No expression Complete RHD gene deletion 13

Partial D / Type dependent Mutations in the extracellular part, gene 
conversion (hybrid alleles) 0

Table 1.  Overview of analysed RHD types. Their allele name, molecular information, and the number of 
analysed samples (n = 51).
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automatically detected contours of all erythrocytes from a bright-field image. Atto655-H41-Ab labelled D anti-
gens correspond to the intensity peaks on the cells with intensities proportional to the count rates of fluorescence 
emission. The yellow dots in Fig. 2b.II mark the centres of the automatically detected peaks. All imaged cells are 
detected, regardless of their size and shape. Incompletely imaged cells, however, as for instance chopped cells on 
the edge of the images, are not considered in the subsequent analysis steps, as incomplete information about cells 
would bias all further statistical results and implications.

Figure 1. Schematic representation of the analysis workflow for the classification of Rhesus D types. 
(I). Blood samples are labelled with fluorescently marked antibodies and (II.) imaged by high-resolution 
fluorescence microscopy. (III.) Automatic cell detection and single molecule analysis is performed on acquired 
images. (IV.) Features are extracted and used for machine learning (V.) and the subsequent calculations of 
mathematical models, yielding a final Rhesus D type assignment.

Figure 2. Exemplary microscopy images from four Rhesus D type populations differing in the amount of 
RhD protein incorporated into the upper erythrocyte cell membrane (a) and examples of erythrocyte and 
fluorescence peak detection (b). (a) (a.I.) D+  sample (RHD*01), (a.II.) weak D sample (RHD*weak D type 
3), (a.III.) DEL sample (RHD*DEL8), (a.IV.) D−  sample (RHD*01N.01). Atto655-H41 labelled D antigens 
correspond to the bright dots on the cells. Insets show individual fluorescence peaks. Images were recorded with 
10 ms illumination time. (b) (b.I.) shows detected cell contours on a bright-field image and the used ring kernel. 
(b.II.) depicts all detected fluorescence peaks on the image and the used structuring element for detecting 
sphere structures in the image.
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Descriptive statistical analysis of fluorescence peak intensities. High-resolution fluorescence 
microscopy of blood samples revealed differences in the peak intensities between the four different RhD popu-
lations, namely D+ , weak D, DEL, and D−  (Fig. 2a). Figure 2a.I. shows a typical image of a cell obtained from 
a D+  sample, representative for all analysed samples (number of samples n =  12). Here, we use the peak inten-
sities as a parameter that describes the cell populations and hints at the RhD clustering behaviour of different 
samples. Each peak intensity value has been calculated as the sum of intensities in a 3 ×  3 pixel area around 
the peak maximum (Table 2). Analysis revealed average peak intensities (μ  ±  σ ) of the D+  cell populations 
in the range of 11.7 ±  4.0*103 counts/peak using Atto655-H41-Ab labelling, 7.6 ±  2.4*103 counts/peak using 
Atto655-BRAD3-Ab labelling, and 7.0 ±  1.4*103 counts/peak using Atto655-BIRMA-D6-Ab labelling. All D+  
cells showed a fluorescence signal.

In total, we analysed 5894 cells using Atto655-H41-Ab (average cell count per sample 115), 5826 cells 
using Atto655-BRAD3-Ab (average cell count per sample 110), and 5731 cells using Atto655-BIRMA-D6-AB 
(average cell count per sample 111). Figure 2a.II. depicts a cell representative for a weak D sample (n =  14), 
in this case RHD*weak D type 3. All analysed cells in this population were labelled with at least one fluores-
cent antibody. Average peak intensities of all weak D cell populations are in the range of 7.4 ±  1.4*103 counts/
peak using Atto655-H41-Ab labelling, 6.3 ±  0.8*103 counts/peak labelled with Atto655-BRAD3-Ab labelling, 
and 6.2 ±  0.6*103 counts/peak using Atto655-BIRMA-D6-Ab labelling. Analysis of DEL cell populations (n =  12, 
Fig. 2a.III.), with only ~10% of all cells labelled, revealed average peak intensities in the range of 6.2 ±  1.0*103 
counts/peak using Atto655-H41-Ab labelling, 6.4 ±  0.7*103 counts/peak labelled with Atto655-BRAD3-Ab label-
ling, and 6.2 ±  0.7*103 counts/peak using Atto655-BIRMA-D6-Ab labelling. Figure 2a.IV. shows a cell repre-
sentative for the D−  cell population; for ~1% of the cells, sparsely distributed peaks were detected. The average 
peak intensities of all D−  cell populations are in the range of 6.7 ±  2.0*103 counts/peak using Atto655-H41-Ab 
labelling, 6.0 ±  0.7*103 counts/peak using Atto655-BRAD3 labelling, and 6.0 ±  0.7*103 counts/peak using 
Atto655-BIRMA-D6-Ab labelling.

In a separate experimental setting, we performed a statistical comparison of the distributions of individual 
Atto655 and single Atto655-marked antibodies on protein G coated glass to the very sparse signal occurrences on 
D−  and DEL cells (Supp. Note including Supp. Figs 8 and 937,38). Statistical analyses revealed that the distribution 
of individual, Atto655 marked antibodies on coated glass and that of sparsely distributed antibodies on D−  as 
well as on DEL cells have a high similarity. High average peak intensities of the fluorescently labelled D+  popula-
tion indicate that a part of the signals originate from several fluorescent antibodies.

A simple comparison of the peak intensity distributions of different populations may lead to the incorrect con-
clusion that a Rhesus D type classification can be achieved using just a single parameter. The analysis of the inten-
sity distributions shows large overlaps between individual populations, as for instance a 68% overlap between 
D−  and DEL samples for Atto655-H41-Ab labelling or 70% for Atto655-BRAD3-Ab and Atto655-BIRMA-D6-Ab 
labelling. All calculated percentages of overlaps between the four populations are summarised in Fig. 3b and 
Supplementary Figs 2 and 3.

Population differentiation by machine learning. Machine learning supported algorithms, however, are 
capable of automatic classification of such overlapping populations. Hence, Rhesus D blood group assignment 
can only be fulfilled by using more comprehensive information about the D antigen abundance on individual cells 
and cell populations. Therefore, several features based on single molecule information were used for machine 
learning. The following features were extracted: number of peaks, cell intensity, standard deviation of cell inten-
sity, peak density, distance complete and nearest, and intensity ratio (Table 3). The feature cell intensity is of spe-
cial interest, as this parameter is comparable to the parameters used in flow cytometry.

Atto655-BRAD3-Ab μ σ

D+ 7.6*103 2.4*103

D− 6.0*103 0.7*103

DEL 6.4*103 0.7*103

Weak D 6.3*103 0.8*103

Atto655-BIRMA-D6-Ab

D+ 7.0*103 1.4*103

D− 6.5*103 0.6*103

DEL 6.2*103 0.7*103

Weak D 6.2*103 0.6*103

Atto655-H41-Ab

D+ 11.7*103 4.0*103

D− 6.7*103 2.0*103

DEL 6.2*103 1.0*103

Weak D 7.4*103 1.4*103

Table 2.  Statistics of the average peak intensities. (μ and σ, assigned as counts per peak) of all Rhesus D types 
using Atto655-BRAD3-Ab, Atto655-BIRMA-D6-Ab, and Atto655-H41-Ab labelling.
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Subsequently, we applied machine learning on the extracted features in order to determine the Rhesus D type 
assignment of the sample. A schematic representation of the machine learning workflow is shown in Fig. 4a. A 
cross validation approach was used to ensure the reliability and accuracy of our results. The used dataset was split 
multiple times into training and testing partitions. The training subset was used to create mathematical models 
that can be considered as functions used to generate a classification vote out of given input parameters. The testing 
subset was used to test the previously created mathematical models on new data, as well as to assess the classifi-
cation performance.

The classification task of the here analysed Rhesus D types is rather challenging, because large peak intensity 
overlaps between each population and a high heterogeneity within each population are present. In order to obtain 
a final Rhesus D type assignment, a combined classification method (see Methods) was implemented. This com-
binatory classification method comprises two different approaches, namely image level classification (method 1)  
and sample level classification (method 2).

Image level classification performed well for classification of weak D and DEL samples with accuracies of 
up to 92% for DEL and 83% for weak D using Atto655-BRAD3-Ab labelling, 75% for DEL and 92% for weak D 
using Atto655-BIRMA-D6-Ab labelling, and 100% for DEL and 92% for weak D using Atto655-H41-Ab labelling. 
However, the classification results for D+  and D−  samples are not sufficient, as for instance none of the D−  and 
only 33% of all D+  samples using Atto655-BRAD3-Ab labelling were correctly identified (Supplementary Tables 
1, 2 and 3).

Figure 3. Distributions of peak intensity of each Rhesus D type using Atto655-H41-Ab labelling (a) and 
analysis of distribution overlaps (b). (a) A large overlap between all distributions of analysed RhD types is 
noticeable, especially for the D−  (red) and DEL (blue) samples, but also for weak D (orange) and D+  (green) 
samples. (b) Results of the analysis of the distribution overlaps on acquired Atto655-H41-Ab dataset with 
respect to peak intensities; overlap percentages are calculated as the overlapping histogram area using a bin-size 
of 50. Large overlaps are observed between the Rhesus D types DEL and D− , weak D and D− , and weak D and 
DEL.

Feature Explanation

number of peaks average number of detected peaks on each image

cell intensity average intensity of all detected peaks per cell

standard deviation of cell intensity variability between average intensities of all detected peaks per cell

peak density average density of detected peaks per cell

distance complete average distance between all peaks within a cell

distance nearest average distance between nearest peaks within a cell

intensity ratio average intensity ratio between intra-cell and inter-cell areas

Table 3.  Detailed list of features used for machine learning in order to assign Rhesus D types to human 
blood samples.
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Sample level classification provides a higher overall classification accuracy compared to image level classification: 
58% of all D+  and 53% of all D−  samples were classified correctly using Atto655-Brad3-Ab labelling, 75% and 84% 
using Atto655-BIRMA-D6-Ab labelling, and 83% and 76% using Atto655-H41-Ab labelling. In contrast, sample 
level classification results for low expressed RhD types are worse compared to image level classification results.

Method 3 combines the advantages of method 1 (high classification accuracies for low expressed and highly 
heterogeneous cell population) and method 2 (high classification accuracies for common and rather homogenous 
cell population). Furthermore, classification rules are defined to determine the final Rhesus D type assignment by 
choosing between image and sample level classification results (see Methods, Fig. 4b).

This new method achieves higher classification accuracies, as for instance an overall test classification accuracy 
of 64% using Atto655-BRAD3-Ab labelling has been obtained. Hence, ten out of twelve (83%) DEL samples are clas-
sified correctly. Using Atto655-BIRMA-D6-Ab labelling, the majority of DEL samples are classified properly (83%) 
with an overall test classification accuracy of 78%. Best results are obtained using Atto655-H41-Ab labelling: A test 
classification accuracy of 96% has been observed. All D+  samples and all weak D samples are classified correctly. 
Furthermore, very low expressed DEL samples are all but one correctly classified; only one out of 13 D−  samples 
is classified as DEL. A comprehensive result listing can be found in Table 4 and Supplementary Tables 1, 2, and 3.

Figure 4. Workflow of a generic machine learning approach using k-fold cross validation (a) and workflow 
of the proposed combinatory classification method (b). (a) The used dataset is divided into k subsets; in 
each run one subset is reserved for testing purposes, all other subsets are used for training. After this process is 
repeated k-times, all results are gathered as the final classification result. (b) All classification results are based 
on image or on sample level in order to yield a final Rhesus D type assignment. The final assignment is made by 
processing all classification rules.
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Discussion
We provide a comprehensive workflow for improved Rhesus D type classification. This classification is 
achieved by acquiring high-resolution fluorescence microscopy images, detecting single cells and fluores-
cence signals, extracting and calculating features from the given information, creating mathematical mod-
els, and finally applying the latter ones in order to get a final Rhesus D type assignment. We have developed 
multiple classification rules that enable a more accurate and sensitive Rhesus D type classification compared 
to commonly used laboratory methods by taking into account information on protein expression at single 
cell level.

Most accurate results for automatic Rhesus D type assignment were obtained using method 3 and 
Atto655-H41-Ab labelling. Here, 49 out of 51 human blood samples were classified correctly. Only one D−  and 
one DEL sample were classified incorrectly, which yields an overall classification accuracy of 96%. In both cases 
only one method of the combinatory classification approach failed in correct assignment.

Comparison of the peak intensity distributions of Atto655-BIRMA-D6-Ab and Atto655-BRAD3-Ab labelled 
D+  and weak D samples reveals a larger overlap compared to Atto655-H41-Ab labelled samples (Supplementary 
Figs 2 and 3 compared to Fig. 3a). Consequently, the accuracy of Rhesus D type classification for D+  and weak D 
with Atto655-BIRMA-D6-Ab and Atto655-BRAD3-Ab labelling is reduced. In the case of Atto655-BRAD3-Ab 
and Atto655-BIRMA-D6-Ab labelled samples, the peak intensity distributions of all four RhD populations over-
lap, aggravating correct classification. The large overlaps of the peak intensity distributions lead to the assumption 
that the misassignment is of biochemical origin caused by differences in the accessibility of extracellular epitopes 
of the D antigen as well as diversity in antibody affinity to related protein motives36.

The analysis of the DEL type RHD*DEL8 (RHD IVS3+1 G>A) shows a surprising result: Körmöczi et al.13 
briefly mentioned that binding of antibodies BRAD3 and BIRMA-D6 in this DEL variant has not been detected by 
adsorption-elution technique. This observation is not fully consistent with our results, since we observed signals 
for a part of the DEL population using the same antibody. We assume that this discrepancy can be explained by 
the higher sensitivity of our method. However, a more detailed analysis is beyond the scope of this contribution.

Our workflow can be used as a complementary method to standard immunohaematological techniques 
to reveal otherwise undetected very low expressed Rhesus D types, which have a prevalence of up to 30% in 
Asian D−  population11. Whereas commonly used adsorption-elution technique lacks standardised protocols, is 
time-consuming and requires an experienced technician, our method is less laborious. The substantially shorter 
incubation time (30 minutes compared to several hours) of blood cells with a high concentration of antibodies 
and the shorter washing procedure both save time. Moreover, less experience is required for sample preparation 
as well as fluorescence microscopy. The developed machine learning based analysis software performs feature 
calculation and RhD phenotype classification automatically. Of additional advantage are the visualisation of indi-
vidual antigens on cells without limitations on sample size and the visual control of detected antigens used for 
analysis. Actually, the quality of separation of the cell populations of different Rhesus D types is in our case only 
limited by the biochemistry of the applied antibodies.

Here, we have shown that our method achieves a reliable discrimination of well described RhD subpopula-
tions. The high sensitivity of our method revealed intra-population variability, which has yet not been observed 
and hence represents a new form of blood group typing. The application of standard antibodies facilitates the 

Atto655-BRAD3-Ab

Actual

D+ D− DEL Weak D

Predicted

D+ 50% 0 0 0

D− 0 38.46% 8.34% 0

DEL 8.33% 61.54% 83.33% 14.29%

Weak D 41.67% 0 8.33% 85.71%

64%

Atto655-BIRMA-D6-Ab

Actual

D+ D− DEL Weak D

Predicted

D+ 50% 0 0 0

D− 0 84.62% 0 0

DEL 0 15.38% 83.33% 7.14%

Weak D 50% 0 16.67% 92.86%

78%

Atto655-H41-Ab
Actual

D+ D− DEL Weak D

Predicted

D+ 100% 0 0 0

D− 0 92.31% 0 0

DEL 0 7.69% 91.67% 0

Weak D 0 0 8.33% 100%

96%

Table 4.  Classification results based on method 3. Overall test classification accuracies of 64% for Atto655-
BRAD3-Ab, 78% for Atto655-BIRMA-D6-Ab, and 96% for Atto655-H41-Ab labelling are achieved.



www.nature.com/scientificreports/

8Scientific RepoRts | 6:32317 | DOI: 10.1038/srep32317

straightforward implementation of our technique in immunohaematological routine. Since high throughput 
methods for expression level analyses (e.g. RHD typing) are gaining in importance18,22, we also suggest the use of 
multi-colour labelling and implementation of a high speed imaging system (e.g. a nanoreader39,40) to accelerate 
RhD type classification.

The presented method can be used to characterise the expression level of novel RHD alleles or to validate new 
methods in which determination of very low levels of protein expression is essential41. This technique holds great 
promise to improve the safety of red blood cell units and to prevent dangerous transfusion incidents. Moreover, 
this workflow is broadly applicable in a variety of scientific fields, such as in molecular biology and medicine 
(in cases of cell population classification by rarely expressed cell markers) as well as in biophysics and material 
science.

Methods
Blood samples. Ethylendiaminetetraacetate (EDTA)-anticoagulated blood samples were provided by 
the Red Cross Transfusion Service (Linz, Upper Austria, Austria). RhD assignment was done by standard  
serology24 and RHD gene sequencing was performed on samples with weak D and DEL phenotypical expression. 
The sample cohort (Table 1) consisted of the most common weak D types in Europe, RHD*weak D type 1 (n =  6), 
RHD*weak D type 2 (n =  3), and RHD*weak D type 3 (n =  5), two RHD alleles causing DEL phenotypical expres-
sion, RHD*DEL8 (n =  6), and RHD*09.05 (n =  6). D+  (n =  12) and D−  control samples (n =  13) were provided 
for each analysis. Red blood cells were prepared within 7 days of sampling.

Statement on the use of human blood samples. All human blood samples were kindly provided by 
the Red Cross Transfusion Service (Linz, Upper Austria, Austria) and were collected during routine blood dona-
tions in accordance with the strict policies of the Red Cross Transfusion Service Linz. The usage of residual blood 
material from blood donations is, as captured in a written consent of the Upper Austrian Ethic Commission, 
not subject of the Austrian Tissue Safety Act. Nevertheless, all blood donors signed their informed consents that 
potential residual blood material can be used for research and development purposes. All experimental protocols 
were approved by and carried out in collaboration with the Red Cross Transfusion Service Linz.

Immunohaematology. All samples were incubated using monoclonal antibodies targeting different 
epitopes of the D antigen: Atto655-H41-Ab (binds to epitope 3.1), Atto655-BRAD3-Ab (binds to epitope 6.2), and 
Atto655-BIRMA-D6-Ab (binds to epitope 9.1). Atto655-H41-Ab was generously supplied by Bio-Rad (Dreieich, 
Germany). Atto655-BRAD3-Ab and Atto655-BIRMA-D6-Ab were obtained from the International Blood Group 
Reference Laboratory (Bristol, UK).

Antibody labelling. The primary antibodies were labelled independently via an N-hydroxysuccinimid 
(NHS)-ester with Atto655 (ATTO-TEC, Siegen, Germany): Atto655 was dissolved in anhydrous dimethylsul-
foxid to yield a final concentration of 1 mg/mL. Monoclonal antibodies were mixed with Atto655 in 0.2 M sodium 
bicarbonate buffer at pH 8.4. An average degree of labelling of 1.8 ensures a high amount of antibodies with a sin-
gle fluorophore molecule attached. The reaction mixture was incubated for 1 hour at room temperature. In order 
to remove unbound dye, gel filtration was applied using PD-10 SephadexTM G-25M columns (GE Healthcare, 
Buckinghamshire, UK). Fluorescently labelled antibodies were concentrated by cut-off filters (several centrif-
ugation steps at 1500 g for 3 minutes with Vivaspin 6, MWCO: 10,000, Sartorius Stedim Biotech, Goettingen, 
Germany), aliquoted and stored at − 20 °C.

Sample preparation. 100 μ L EDTA-anticoagulated blood samples were washed with sodium chloride 
(0.9%, Fresenius Kabi Austria, Linz, Austria) at 79 g for 3 minutes. Erythrocytes were incubated for 30 minutes at 
37 °C with antibodies in ID-CellStab (buffer specially formulated for erythrocytes; Bio-Rad Laboratories, Cressier, 
Switzerland). Unbound antibodies were removed by washing three times with sodium chloride. Subsequently, 
cells were resuspended in ID-CellStab.

Fluorescence microscopy and image acquisition. Images were acquired with a modified Olympus 
IX81 inverted epifluorescence microscope, using a two axis scanning stage and an Olympus UAPON 
100x/1.49 NA oil objective. Blood samples were illuminated with a diode laser at 642 nm (Omicron-laserage 
Laserprodukte GmbH, Phoxx 642, Rodgau-Dudenhofen, Germany). The signal was acquired using an Andor 
iXonEM+  897 (back-illuminated) EMCCD (16 μ m pixel size). The following filter sets were used: Dichroic filter 
(ZT405/488/561/640rpc, Chroma, Olchin, Germany), emission filter (446/523/600/677 nm BrightLine quad-band 
band-pass filter, Semrock, Rochester), and an additional emission filter (HQ 700/75 M, NC209774, Chroma 
Technology GmbH, Olching, Germany). The signal was acquired for 10 ms with 50 ms delay at 0.75 kW/cm2  
excitation power. Conversion of fluorescence intensities into photon counts is given by: 1 count/pixel =  0.3 
photons/pixel.

The signal-to-noise ratio was 31 ±  9. An image sequence of 150 images was recorded. The first ten images were 
acquired using bright field microscopy to enable assignment of fluorescence signals to distinct cells. The illumina-
tion protocols were performed with custom-made LabView-based control software. All samples were measured 
within 24 hours since results of test experiments (data not shown) proved that fluorescence intensities remained 
constant within this time period: For D+  samples the peak intensity variation between measurements at days 1 
and 2 was 2 ±  10%, for DEL samples 1 ±  19%, and for weak D samples 6 ±  17%; for D−  samples no change was 
measured. A sketch of the fluorescence microscopy setup can be found in Fig. 5.
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Data analysis – cell and single molecule detection. All data analysis tasks were performed using 
implemented and adapted image processing techniques. For cell detection tasks we applied thresholding, mean 
filtering, convolution, evolution strategies, and an active contour method42–46. Those methods allow detection of 
all erythrocytes in each image, regardless of their shape or size. For molecule detection (D antigen occurrences on 
the cell membrane) conservative smoothing, top-hat filtering, thresholding, and region growing were applied47,48. 
Details on the used image processing methods and the used parameterisations can be found in the Supplementary 
Material. The so developed analysis framework, a short documentation, and exemplary microscopy images can 
be found on the Bioinformatics Research Group homepage (http://bioinformatics.fh-hagenberg.at/site/index.
php?id= 16).

Feature definition and extraction. The identification of cell contours enables the assignment of fluo-
rescence signals to the corresponding erythrocyte. Based on this assignment, further statistical analyses at the 
cell level (considering data of individual cells) as well as at the image level (considering all cells per image) were 
performed. Features that include information obtained at the cellular and molecular level were used to distinguish 
between different D antigen types. In Table 3 all extracted features and their short explanations are listed in detail. 
A detailed explanation and calculation formulas can be found in the Supplementary Information.

These features further serve as input for machine learning methods that are used to learn models which clas-
sify samples according to their Rhesus D type. Boxplots for each feature, showing their distributions and mean 
values among the analysed Rhesus D types, are depicted in Supplementary Fig. 7.

Statistical analyses. Statistical analyses were carried out using R49 and the main implemented statistical 
functionalities. Data sorting and filtering was done using Microsoft Excel. Distribution plots were generated using 
the R ggplot package. If not stated otherwise all data is expressed as the mean ±  SD.

Peak intensity distribution overlap. For each RhD type we calculated the average peak intensity distri-
butions of all analysed samples. The peak intensity has been calculated as the sum of intensities in a 3 ×  3 pixel 
area around the peak maximum. Figure 3a and Supplementary Figs 2 and 3 show the peak intensity distributions 
for samples labelled with Atto655-H41-Ab, Atto655-BIRMA-D6-Ab, and Atto655-BRAD3-Ab. If the distribu-
tions were clearly separated from each other, then this feature would be sufficient for a clear Rhesus D type 
identification.

For calculating the overlap of distributions we split the intensity range into bins of size 50. For each pair of 
Rhesus D types we extracted the overlapping area of each bin by extracting the minimum of the two values. The 
sum of all detected minima of each bin reflects the overlapping percentages of these two Rhesus D types.

Machine learning algorithms. In general, data mining is understood as the practice of automatically 
searching for patterns in large stores of data. In order to do so, a set of input parameters and a set of target var-
iables are defined and further used to create a mathematical model. The generation of a mathematical model is 

Figure 5. Sketch of the fluorescence microscope used for analysis of Rhesus D protein abundance on 
erythrocytes. The laser beam produced by a diode laser (642 nm) is expanded 4:1 via a telescope and focused 
into the focal plane by an oil-immersion, infinity corrected objective (100x magnification with a high numerical 
aperture). In the detection path, fluorescence light is focused via a tube lens (TL) on an EMCCD camera. Images 
were recorded with 10 ms illumination time.

http://bioinformatics.fh-hagenberg.at/site/index.php?id=16
http://bioinformatics.fh-hagenberg.at/site/index.php?id=16
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done by machine learning algorithms. In the here presented study classification algorithms were used to generate 
mathematical models that are able to classify samples on the basis of their features50.

Here, all tasks were performed as classification tasks using the implementation in the HeuristicLab  
framework51. The following classification algorithms were applied: random forests (RFs52,53), support vector 
machines (SVMs54), genetic programming with offspring selection (GP50,55,56), and k-nearest neighbour 
classification (kNN57). Further details can be found in the Supplementary Materials.

Each algorithm was performed using 5-fold cross validation and was repeated multiple times (n =  40), which 
results in multiple classification models that are combined via majority voting. The majority voting was per-
formed by counting the votes of all mathematical models for each Rhesus D type separately. Afterwards, the final 
assignment was made by selecting the class with the majority of votes58. Thus, images or cells without signals had 
a lower impact on the overall classification result.

Method 1: Image level classification. Classification method 1 implemented image level based classi-
fication by classifying all images separately according to their Rhesus D type assignment. All images and the 
corresponding extracted features were used as input. For each image 160 (each algorithm is repeated 40 times for 
each image) mathematical models (classifiers) were created, and each model votes for a certain Rhesus D type. 
Subsequently, we used a majority voting step which collects all classification statements (votes) of all images 
from each sample. A final classification for each sample was made via the majority of votes. This method renders 
a robust class assignment for low expressed Rhesus D phenotypes, since more information on cell population 
heterogeneity is captured.

Method 2: Sample level classification. Sample level classification was based on the averages of the fea-
ture values of all images from one sample. This new dataset was used to create 160 mathematical models that vote 
for certain Rhesus D types. The final assignment for each sample was made by choosing the Rhesus D type with 
the majority of votes. The sample level classification allowed distinguishing RhD types with homogenous cell 
populations.

Method 3: Combinatory classification based on sample and image level information. Method 
3 is based on sample and image level information and combines the advantages of method 1 and 2. Method 1 
performs best for heterogeneous cell populations; method 2 enables a robust classification for homogenous cell 
populations. For this purpose, method 1 and method 2 were applied (independently from each other) and all 
classification results were stored. Subsequently, classification rules were defined to regulate the class assignment 
process between the classification results of methods 1 and 2:

•	 First the concordance of both classification methods had to be examined. If both classification results were 
concordant, the sample was assigned to this class.

•	 Otherwise the involved classes were further analysed:

 If the decision had to be made between D−  and DEL samples, the two most similar classes, the decision was 
based on the number of images acquired for the specific sample. 

■ If there were at least 11 images, the image classification result was chosen as we considered this infor-
mation enough for a reliable class assignment.

■ If there were fewer images, it was more reliable to choose the classification result at the sample level.

 Additional rule for weak D and DEL classification:

■ For differentiation between weak D and DEL, the classification result of method 1 was chosen, as here 
more information about cell heterogeneity and image heterogeneity is included.

In any other case, the result of method 2 was the assignment of choice.
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