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Abstract: Diabetes cardiomyopathy is one of the key factors of mortality among diabetic patients
around the globe. One of the prior contributors to the progression of diabetic cardiomyopathy is car-
diac mitochondrial dysfunction. The cardiac mitochondrial dysfunction can induce oxidative stress in
cardiomyocytes and was found to be the cause of majority of the heart morphological and dynamical
changes in diabetic cardiomyopathy. To slow down the occurrence of diabetic cardiomyopathy, it is
crucial to discover therapeutic agents that target mitochondrial-induced oxidative stress. Flavonoid
is a plentiful phytochemical in plants that shows a wide range of biological actions against human
diseases. Flavonoids have been extensively documented for their ability to protect the heart from dia-
betic cardiomyopathy. Flavonoids’ ability to alleviate diabetic cardiomyopathy is primarily attributed
to their antioxidant properties. In this review, we present the mechanisms involved in flavonoid
therapies in ameliorating mitochondrial-induced oxidative stress in diabetic cardiomyopathy.

Keywords: flavone; flavanone; flavonol; flavanol; isoflavone; anthocyanin; reactive oxygen species

1. Introduction

Diabetes mellitus (DM) is one of the most deadly non-communicable diseases that
leads to extensive impairments of organs and body functions. The increasing incidence of
DM and its related complications have contributed to the surge of morbidity and mortality
rate. DM affects about 463 million people aged between 20 to 79 years in 2019, and this
figure is expected to climb up to 700 million by 2045 [1]. Moreover, DM is also one of the
root causes for the development of cardiovascular diseases (CVD), which further exacerbate
the mortality risk among patients with DM [2]. One of the complications resulting from
chronic DM is diabetic cardiomyopathy (DCM). DCM is a cardiac pathological condition
in patients with DM characterized by the appearance of aberrant myocardial morphology
and cardiac functions in the truancy of other factors, such as coronary artery disease,
hypertension, and prominent valvular disease [3]. Due to DCM, patients with DM are
more likely to suffer from heart failure compared to their healthy counterparts [3]. This is
why DCM is one of the most devastating consequences directly caused by DM.

The heart has a high energy consumption in order to efficiently pump and supply
blood throughout the body. Hence, it has a high density of mitochondria population
to fuel its activities. However, this dependence exposes the heart to deleterious conse-
quences when mitochondrial malfunction occurs. Mitochondria serve a critical part in
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oxygen metabolism, hence it is crucial to understand the effects of their dysfunction in
patients suffering from metabolic disorders, particularly diabetes [4]. In DCM, the minimal
glucose utilization will shift to fatty acid, leading to energetic inefficiency [5]. Since the
mitochondria lost its efficiency in energy production, mitochondrial dysfunction will then
follow. The role of mitochondrial dysfunction in the progression of DCM has been well
established in earlier studies [6–8]. As the heart contains a high amount of mitochondria,
cardiac mitochondrial dysfunction can lead to cardiac oxidative stress which aggravates
the development of DCM. Indeed, the diabetic patients heart mitochondria are typically
found to have deteriorated in number and structure, exhibiting increased reactive oxygen
species (ROS) emission, and compromised mitochondrial respiratory capacity in the mi-
tochondria [9]. Thus, treatment targeting mitochondrial-induced oxidative stress is very
crucial in suppressing DCM.

For more than 40 years, the pathogenesis and mechanisms involved in DCM’s devel-
opment and progression has been well-studied and documented as well as of its preventive
measures and potential therapeutic agents. Despite this, effective remedies for preventing
and treating DCM remains unclear [10]. The need of having a treatment for DCM is of
utmost importance considering that there is no specific treatment targeting DCM up to
the moment [11,12]. Presently, diabetes management is only based on combination of
lifestyle modification and therapeutic medications to regulate blood glucose level through
glucose-lowering agents or insulin replacement therapy as well as with management of
cardiovascular complications [12,13].

Recently, extensive efforts have been invested in studying the use of natural com-
pounds to treat DCM. One of the candidates is flavonoids, which are plant-based polyphe-
nolic compounds found in abundance in some fruits, vegetables, and herbal plants. They
have been reported to exert many therapeutic effects against various pathologic conditions,
such as cancer, muscle atrophy, inflammation, microbial infection, oxidative stress as well
as DM [14–19]. These therapeutic effects are mainly mediated through radical scaveng-
ing, antioxidant, and anti-inflammatory properties [20–22]. Furthermore, flavonoids have
gained recognition for their cardioprotective capabilities. Flavonoids have been proven
to attenuate the progression of DCM via mitochondrial protection, thereby shielding car-
diomyocytes against mitochondrial-induced oxidative stress [23–25]. Since flavonoids
had showed potentials in alleviating cardiac dysfunction, we sought to review the ther-
apeutic approach of flavonoids in ameliorating diabetic cardiomyopathy by targeting
mitochondrial-induced oxidative stress.

2. Diabetic Cardiomyopathy

Rubler et al. [26] was the first to propose the concept of DCM, which has since become
widely used in medicine. For decades, there has been an epidemiological relationship
found between DM and the pathophysiology of heart failure. The prevalence of DCM is
increasing simultaneously with the increased incidence of DM, and it is a main contributing
factor to the pathophysiology of heart failure in DM patients [27]. DCM has a long latent
phase during which the disease develops silently without observable symptoms. Upon
comprehensive clinical investigation, patients may display increased in ventricular mass,
substantial myocardial fibrosis, impaired cardiac cell signaling, and diastolic dysfunction
which all are features of the early stage of DCM [3,5]. Patients with DCM typically start to
exhibit symptoms as systolic function was exacerbated by diabetes-induced uncontrolled
cardiac remodeling, which is usually permanent and irreversible, thus progressing towards
heart failure [28,29].

Both type 1 (insulin dependent) and type 2 (non-insulin dependent) DM share the
same feature, which is hyperglycemia that results from poor insulin action. Chronic hy-
perglycemia is indeed one of the major components that exacerbate the progression of
cardiovascular complications in DM patients. In fact, a study showed that incidence of
heart failure among DM patients rise by 8% with every 1% increase in glycated hemoglobin
(HbA1c) level [30]. Oxidative stress is a contributing factor for DCM progression [31]. Un-
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controlled and persistent hyperglycemia encourage excessive generation of reactive oxygen
species (ROS) via several metabolic pathways; elevated glucose uptake through the polyol
pathway, enhanced advanced glycation end products (AGEs) production, activation of
protein kinase C (PKC) pathway, overactivation of hexosamine pathway and incapacitated
antioxidant defense [32].

The heart’s energy demands are constantly high due to its need to maintain specialized
cellular functions, and cardiomyocytes mitochondria generate more than 95% of their ade-
nine triphosphate (ATP) by oxidative phosphorylation (OXPHOS) [33]. In DM condition,
the insulin impairment and inability to utilize glucose in mitochondria will switch from
glucose to fatty acid oxidation (FAO) to produce ATP in order to maintain sufficient ATP
generation. This process however produces more ROS and causes the OXPHOS process to
be disrupted [34]. The cytosolic ROS produced can promote mitochondrial dysfunction by
attacking mitochondrial structure further. Upon breach in their structure, fragments of mi-
tochondrial deoxyribonucleic acid (DNA) are released into the cytosol and triggers cardiac
inflammation and stimulate the release of pro-inflammatory cytokines which exacerbate the
inflammatory process that lead to more mitochondrial damage and loss of function [35,36].
Impaired mitochondria create more ROS, resulting in even worse oxidative damage [37].
ROS accumulation from both mitochondrial dysfunction and hyperglycemia-induced ac-
tivation of metabolic pathways augments myocardial oxidative stress and aggravates
mitochondrial dysfunction, resulting in cardiomyocyte death and the subsequent remodel-
ing of the heart structure in effort to preserve the heart integrity and function. The heart’s
ability to contract and relax efficiently is further harmed by uncontrolled and excessive
cardiac fibrosis and hypertrophy that lead to irreversible cardiac structural changes, ul-
timately results in diastolic and systolic dysfunction in DCM [29,38]. The relationship
between hyperglycemia and mitochondrial dysfunction towards the progression of DCM
is illustrated in brief in Figure 1.

Figure 1. Prolonged hyperglycemia can produce reactive oxygen species (ROS) via activation
of protein kinase C (PKC) pathways and advanced glycation end products (AGEs) production,
leading to altered metabolism regulation, altered mitochondrial biogenesis, impaired mitochondrial
calcium handling, and impaired electron transport chain. These actions will cause mitochondrial to
deteriorate and generate more ROS. The ROS produced results in oxidative stress, which can initiate
inflammation, fibrosis, and apoptosis, causing diabetic cardiomyopathy (DCM).
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3. Mitochondrial-Induced Oxidative Stress in Diabetic Cardiomyopathy

Mitochondrial dysfunction is the destruction of mitochondrial morphology, respiratory
chain disruption, biogenic dysfunction, gene alterations, mitochondrial population depri-
vation, and alteration in the oxidative protein’s activity in cells [39]. Although ROS is the
main by-product of oxygen metabolism by the mitochondria, hyperglycemic condition may
also induce its excessive production. This results in the accumulation of the ROS, leading
to mitochondrial oxidative damage that attack its protein, DNA, and lipid structures [40].
As mitochondrial DNA are lacking histone protection, it is very susceptible to oxidative
damage which disrupts its respiratory chains and biogenesis [41]. Accumulation of ROS not
only will disrupt the mitochondrial normal functions, but also induces the development of
mitochondrial permeability transition pores (mPTP) that leads to the depolarization of the
mitochondrial membrane and release of factors of cell death into the cytosol [42].

3.1. Altered Metabolic Regulation

Cardiomyocytes are high-energy-consuming cells with mitochondria as their primary
source of energy supply. Mitochondria is a major organelle for glucose and fatty acid
metabolism. Impaired mitochondrial activity can impede insulin signaling by meddling
with acyl-CoA oxidation from fatty acid, diacylglycerol accumulation, PKC stimulation, AGEs
production and ROS formation [43]. Under normal circumstances, β-oxidation accounts for
around 70% of the energy supply in the heart, with the rest coming from the oxidation of
other substances such as glucose, ketone bodies, lactate, and amino acids. [44]. It is worth
bringing up that fatty acids, as energy metabolic sources, require around 12% more oxygen to
generate the same proportion of ATP as glucose. Nevertheless, FAO increases while glucose
oxidation decreases. In DCM patients, FAO is the primary source of ATP generation, which
can result in increased oxygen demand and respiratory dysfunction in mitochondria [45].

In DCM condition, the surge in serum fatty acid promotes an increase in fatty acid
utilization and FAO. Hyperglycemic condition downregulate activation of 5′ adenosine
monophosphate-activated protein kinase (AMPK) and causes reduction in peroxisome
proliferator-activated receptor-gamma coactivator 1 (PGC-1) regulation. The FAO rate
increases in conjunction with the decreased peroxisome proliferator-activated receptors
(PPARs) activity, including PPARα activity where its activation is triggered by PGC-1.
However, acyl-CoA overload generated from excess fatty acid can lead to excessive mito-
chondrial ROS generation [46]. Particularly, the production of byproduct from β-oxidation
such as nicotinamide adenine dinucleotide (NAD) + hydrogen (H) (NADH) and flavin
adenine dinucleotide (FADH2) are both increased in excess, leading to generation of ROS in
the electron transport chain (ETC) [47]. Downregulation of the cardiac-specific manganese
superoxide dismutase (MnSOD) or AMPK activity further elevates ROS production in the
mitochondria, which allows mitochondrial disruptions and FAO [8,48].

Intriguingly, elevated free fatty acid uptake has been linked with the surge of uncoupling
protein 3 (UCP3) in cardiac muscle, whose function is to facilitate anion transfer from inner
to outer membrane of the mitochondria [49,50]. In cardiomyocytes, UCP3 is upregulated
by increase circulating free fatty acids via activation of PPARα activation [51]. Even though
UCP3 appears to specifically involve in encouraging fatty acid oxidation, it is indirectly
influencing glucose homeostasis [52]. Subsequently, UCP3 reduced mitochondrial electro-
chemical gradient which further deprived ATP generation [53]. In addition, proton leak
from the OXPHOS that triggered by increase of FAO also enhance the regulation of UCP3 as
proton leakage is precisely regulated and be catalyzed or suppressed by UCP3 [54].

3.2. Impaired Electron Transport Chain (ETC)

There is tremendous data that mitochondrial ROS generation triggers the develop-
ment of DCM. Indeed, patients with DM possess defective cardiac mitochondria, with
increased hydrogen peroxide outflow, reduced respiratory capability, and elevated levels
of oxidized proteins [9]. One of the primary machineries that produce excessive ROS under
hyperglycemic condition is the ETC itself. ETC is the primary site of mitochondrial ATP
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generation within all cells particularly cardiomyocytes. The ETC is made up of protein
complexes I, II, III, and IV as well as the electron transfer carriers, ubiquinone (Co-enzyme)
and cytochrome C, and is where ATPs are being produced during OXPHOS. At the inner
mitochondrial membrane (IMM), electrons from NADH and FADH2, the byproduct of
β-oxidation, are transferred through the respiratory chain to oxygen, which is then reduced
to water at complex IV [55]. The flow of protons into the intermembrane gap is fueled by
this mechanism, which creates a proton gradient which generate mitochondrial membrane
potential (∆Ψm) that promotes ATP production by the ATP synthase [56]. Due to the
incomplete reduction of oxygen, some electrons (approximately 0.1%) that escape from
ETC can induce superoxide (ROS) generation [57].

Past studies suggested superoxide generation from ETC as the primary event in
hyperglycemia-induced mitochondrial dysfunction [58,59]. High glucose levels in the cell
and glucose-depleted pyruvate boost respiration by raising the ETC’s capacity, leading
to mitochondrial membrane hyperpolarization and superoxide generation [60]. Superox-
ide formation can occur when the electron flow is reduced, especially at the first three
complexes, where flavins or quinones might operate as single electron donors [55]. The
generation of ROS can also be triggered by the reverse electron flow via complex I [61].
Interestingly, the protection exerted when complex I or Il were inhibited implies that ETC
superoxide generation occurs via reverse electron transfer during high glucose exposure.
Furthermore, many treatments, such as inhibiting ETC complex II activity, uncoupling
OXPHOS, upregulation of uncoupling protein-1, or MnSOD, can reduce hyperglycemia-
induced ROS production [59].

Abnormalities in hyperglycemic condition caused by oxidation can escalate methylgly-
oxal adduct production and elevate O-linkedβ-N-acetylglucosaminylation (O-GlcNAcylation).
These are examples of post-translational changes that lead to mitochondrial and systolic
function deterioration [62]. Hyperglycemia disrupts the activity of the respiratory mecha-
nisms in cardiac mitochondria and causes O-GlcNAcylation dysregulation [63]. In normal
circumstances, the O-GlcNAc transferase (OGT) is found in the IMM and interacts with
complex IV of ETC. This enzyme is poorly localized to the mitochondrial matrix in hyper-
glycemic condition, and thus the OGT-complex IV connection is disrupted, resulting in
lowered complex IV activity and reduced ∆Ψm [63]. O-GlcNAcylation of mitochondrial
dynamics proteins, including mitochondrial dynamin-related protein 1 and optic atrophy
gene 1 leads to mitochondrial rupture, perpetuating mitochondrial failure [64,65].

In DCM, ATP synthase activity is typically found to be impaired, which compromises
mitochondrial function. Persistent hyperglycemia induces overexpression of mitochon-
drial calpain-1, a calcium-activated intracellular proteinase [66]. Calpain-1 was found
to cleave ATP synthase, leading to reduced ATP synthase function which triggers exces-
sive mitochondrial superoxide formation [67]. Its activation is thought to be mediated
by nicotinamide adenine dinucleotide phosphate oxidase (NOX) subunit, gp91phox [68].
These findings highlight the relevance of ETC in mitochondria as a significant source in
generating superoxide in DCM.

Apart from that, cardiolipin, a phospholipid in IMM, has been suggested to play
a significant role in controlling energy generation by optimizing the IMM proteins and
complexes activities involved in OXPHOS [69–71]. Hence, deterioration of cardiolipin
structure can affect the ATP production in ETC. According to a study, streptozotocin-
induced diabetic rodents displayed prominent changes in the interfibrillar of mitochondrial
population, including depleted cardiolipin concentration and electron flow capacity [72].
This finding shows that depletion of cardiolipin leads to diminished electron flow capacity
and consequently enhanced superoxide production from ETC. Besides, increased level of
ROS can alter mitochondrial cardiolipin and leads to mitochondrial architecture disruption,
including mitochondrial disintegration, cristae disruption, and swelling which have been
observed in cardiomyocytes from diabetic hearts [73,74]. Figure 2 illustrated impaired ETC
which then enhance oxidative stress in mitochondria.
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Figure 2. In diabetic condition, hyperglycemia causes impairment of electron transport chain (ETC).
Due to incomplete reduction of oxygen, electron (ē) will escape from the ETC and lead to superoxide
(O2*) production. Furthermore, glucose-depletion in the mitochondria boost respiration and enhance
ETC capacity which then enhances production of superoxide that leads to increased consumption of
SOD. Reduction in SOD activity results in the accumulation of superoxides and reduced their conversion
to hydrogen peroxide (H2O2). Moreover, elevated O-GlcNAc was found in hyperglycemic condition
which then reduces the activity of complex IV. The activity of ATP synthase also declines as high glucose
triggers NOX expression and further enhances expression of calpain-1, leading to ATP synthase cleavage
and thus reduces the production of ATP. Red arrow indicates increase/decrease of level/activity; black
arrow indicates flow of mechanisms in ETC; ‘x’ symbol indicates inhibition of H2O2 production.

3.3. Altered Mitochondrial Biogenesis

Mitochondrial biogenesis is a process by which the mitochondrial population in a cell
multiplies. One of the factors that stimulate to the alterations in mitochondrial biogenesis,
respiratory function, and/or lowered ATP production is diabetes. Hence, diabetes-induced
impaired mitochondrial biogenesis will diminish mitochondrial function. In normal physi-
ology, mitochondrial DNA transcription is triggered by AMPK and activated by the family
PGC-1 proteins, where it is considered as the master regulator in mitochondrial biogen-
esis [75]. In contrast, insulin resistant uncoupling protein-diphtheria toxin a (UCP-DTA)
transgenic mice showed elevation in PGC-1 expression consistent with the promotion of
PPARα in the heart, whose function is known to activate metabolic genes in the heart [76].
This further confirms that PGC-1 plays a key role in mitochondrial biogenesis and that
its reduced activity in diabetes condition suppresses mitochondrial biogenesis. In DCM,
preliminary studies exhibited that hypoadiponectinemia impaired AMPK-PGC-1α sig-
naling [77], more recently, in a model for type 2 DM with high fat diet, adiponectin was
found to partial rescue mitochondrial biogenesis in cardiac cells, via PGC-1α-mediated
signaling [78]. When mitochondrial biogenesis is disrupted, mitochondrial biogenesis is
inhibited, hence ATP generation is hampered. As a result, mitochondrial ATP synthesis
will rise, increasing the burden in the mitochondria, resulting in the production of ROS
and oxidative damage.

3.4. Impaired Mitochondrial Calcium Homeostasis

One of the primary drivers for mitochondrial-induced oxidative stress has been
identified to be impairment in mitochondrial calcium handling. Calcium homeostasis is
important in the regulation of cellular metabolism, muscle contraction, and signal transduc-
tion [3]. Furthermore, mitochondria is an important organelle for calcium regulation and
storage [79,80]. For ATP generation in mitochondria, a transmembrane potential gradient,
also known as a proton (Ca2+) gradient, is required. A uniporter transports calcium down
the concentration gradient, while a Na+/Ca2+ exchanger removes the accumulated calcium.
Calcium uptake into a mitochondrion is necessary for Krebs cycle activation and ATP
generation. Furthermore, calcium transport from the cytosol to the mitochondria is also
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responsible for regulating ATP supply and demand for cardiac function [81]. Calcium
uptake in mitochondria may also function as a buffering system, eliminating local cal-
cium and adjusting accumulated cytosolic calcium level, hence controlling the activity of
calcium-dependent mitochondrial enzyme activities [82].

In hyperglycemic condition, excessive calcium loading in mitochondrial matrix can
result in the opening of the mPTP complex with large amounts of Ca2+ released into the
cytoplasm, ultimately leading to activation of apoptotic factors in cardiomyocytes [83,84].
mPTP is a known cause for mitochondrial swelling, equilibration of ionic gradient, and
depletion of ∆Ψm, and thus leading to the impairment of ATP production in ETC. Apart
from that, cardiolipin in IMM is also vulnerable to free radical and has been demonstrated
to play a key role in calcium maneuver and apoptosis [85]. In addition, PGC-1 is known to
be involved in mitochondrial production and respiratory activity regulated by calcium-
dependent mechanisms [86]. It has been shown to have a role in calcium signaling and
calcium-mediated oxidative damage [87]. Therefore, it is plausible that impaired mito-
chondrial calcium handling adds to oxidative stress and disrupt energy homeostasis in
DCM. The overall mechanisms of mitochondrial-induced oxidative stress in DCM were
illustrated in Figure 3.

Figure 3. In hyperglycemic condition, reduction of glucose uptake will suppress glucose oxidation.
Hence, the energy metabolism will shift from glucose to fatty acid utilization. AMPK, regulator
of energy homeostasis, will be downregulated hence suppressing PGC1α expression. PGC1α sup-
pression downregulates PPARα and enhances free fatty acid uptake, acyl CoA as well as escalating
β-oxidation. In parallel with that, the TCA cycle is also deprived. The increase of DAG resulting from
persistent hyperglycemia enhances PKC activation and AGEs formation which then promote ROS
generation. In addition, the surge of β-oxidation produce byproduct, NADH and FADH2 as well as
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enhanced UCP3 expression further cause reduction in electron transport chain activity. Furthermore,
PGC1α suppression also leads to mitochondrial biogenesis impairment via reduction of mitochon-
drial transcription. PGC1α suppression will also cause poor calcium handling which then enhance
mitochondrial permeability transition pore (mPTP) opening and diminishes mitochondrial mem-
brane polarization. Enhanced β-oxidation, impaired of mitochondrial biogenesis and poor calcium
handling will then cause reduction of ETC hence cause overproduction of superoxide and hydrogen
peroxide as well as downregulation of O-GlcNAc. Calpain-1 activity enhancement cleaves and
diminish ATP synthase activity which will cause reduction in ATP production. These mechanisms
of mitochondrial dysfunction are the root to oxidative stress and consequently lead to diabetic car-
diomyopathy development. Black arrow indicates flow of mechanisms involved; red arrow indicates
increase/decrease of level/activity.

4. Therapeutic Role of Flavonoid in Alleviating Mitochondrial Dysfunction-Induced
Oxidative Stress in Diabetic Cardiomyopathy

Flavonoids are one of the most diverse families of bioactive phytochemicals, with
over 9000 different compounds. According to IUPAC Recommendations (2017), the term
“flavonoid” refers to compounds that have the basic structure of phenyl-substituted propy-
lbenzene derivatives with C15 skeleton, C16 skeleton, and flavonolignans with C6–C3
lignan precursors [88]. Flavonoids are divided into six subclasses; isoflavones, flavones, fla-
vanols, flavonols, flavanones, and anthocyanins, are abundant in plants and their metabolic
routes have been thoroughly explored using biochemical and molecular approaches [89,90].
Many plants, including pomelos, blueberries, roselle, oranges, grapefruit, lemons, and
limes, are all rich in flavonoids [91].

Flavonoids have been demonstrated to alleviate pathological disorders, such as dia-
betes, cancer, obesity, and cardiovascular diseases. Flavonoids are abundant plant-based
natural compounds with a good potential for medicinal and biological actions. These
compounds showed the ability to exert anti-oxidative, anti-inflammatory, anti-fibrotic, and
anti-apoptotic activities as reported previously [92–94]. Given the role of mitochondrial-
induced oxidative stress in the progression of DCM, this review aims to summarize mech-
anisms of action of flavonoids in alleviating DCM by targeting mitochondrial-induced
oxidative stress. Figure 4 demonstrated the chemical structure of flavonoid subclasses.

Figure 4. Chemical structures and example of sources where they are found abundant in for each
flavonoid subclasses.
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4.1. Flavones

Flavone is one of the significant flavonoid subclasses. They are found as glycosides in
celery, parsley, red peppers, mint, and ginkgo biloba. This group of flavonoids includes
luteolin, apigenin, and tangeritin [95]. They have a double bond between positions 2 and 3
of the main C ring, as well as a ketone in position 4. The hydroxyl group at position 5 of the
A ring is found in the majority of flavones from vegetables and fruits, but hydroxylation
in other parts, most commonly in position 7 of the A ring or 3′ and 4′ of the B ring, varies
depending on type of the vegetable or fruit [96].

Luteolin is one of the most prevalent flavones that can be found in variety of vegetables,
fruits and herbs such as apple, cabbage, carrot, tea, and celery. A previous study by
Yang and colleagues [97] which utilizes streptozotocin-induced diabetic rodents ischemia
reperfusion model showed that luteolin treatment, at 100 mg/kg dose, was able to increase
cardiac MnSOD and endothelium nitric oxide synthase (eNOS) expression as well as
decrease Ca2+ induced mPTP opening and ∆Ψm.

In addition, myricitrin, a flavone that can be found in abundance in berries and teas,
has been proven to suppress high glucose-induced superoxide production in mitochondria,
depolarization of mitochondrial membrane potential and restored mPTP formation in
diabetic cardiomyopathy via in vitro study [98]. Another study has reported that flavonoid
from Abroma augusta L. (Malvaceae) leaf extract containing predominantly rutin improved
co-enzyme Q9 and Q10 levels in the mitochondria by acting as antioxidants through
scavenging ROS and thereby inhibit lipid peroxidation [99].

4.2. Isoflavones

Isoflavones are phytocompounds with a chemical composition based on the 3-phenyl
chromen-4-one backbone. Isoflavones are secondary plant metabolites extensively studied
for its wide range of therapeutic effects, including antioxidant, chemopreventive, anti-
inflammatory, anti-allergic, antibacterial, and cardioprotective effects [100,101]. The highest
content of isoflavones is identified to be in roots and seeds. Other medicinal plants with
high isoflavones content include red clover, dyer’s broom, lucerne, and sohphlang flax.
Beside soy, other legumes such as lupin beans, kudzu, barley, and fava beans are rich in
isoflavones [102,103]. The most important types of isoflavones are genistein, daidzein,
glycitein, formononetin, biochanin A, and equol [104].

Isoflavone has been reported to alleviate mitochondrial-induced oxidative stress
on DCM. Recently, Upadhayay et al. [24] reported that isoflavone was able to reduce
mitochondrial-induced oxidative damage by reducing ROS generation in mitochondria and
depolarization of mitochondrial membrane through silent information regulator 1 (SIRT-1)
pathway or PPAR-α, which further attenuated mitochondrial dysfunction, thus conserving
cardiomyocytes health. Besides, recent study conducted by Laddha and colleagues has
confirmed that streptozotocin-induced type 1 diabetic rats were shown to maintain AMPK
and SIRT-1 levels to normal levels whereby both activities are important in controlling free
fatty acid uptake as well biogenesis in cardiac mitochondria [105].

However, studies made on the effects of isoflavones on cardiac diabetes model are
rather meagre in number. Yet, we can still refer to its therapeutic effect on other cardiac
pathology models as well. There are several studies that reported favorable effects of
isoflavones on cardiac mitochondria. Recently, isoflavones was shown to give positive effects
on mitochondria by alleviating the excessive mitochondria Ca2+ uptake in isolated heart [106].
Apart from that, isoflavones was also capable in improving disturbance in ∆Ψm as well as
reduction of intracellular ROS release, thus proving that isoflavone was able limit oxidative
stress induced by mitochondria [107,108]. In addition, isoflavones also alleviate ∆Ψm loss as
well as curbing mPTP opening which exhibiting cardiac protective effect [108].

4.3. Flavonol

Flavonoids with a ketone group are known as flavonols. Flavonols can be found
plentiful fruits and vegetables. Kaempferol, quercetin, myricetin, and fisetin are among
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the most widely studied flavonols and they can be found in abundant in common daily
diet including in onions, kale, lettuce, apples, and berries. Flavonol consumption has been
proved to a variety of health advantages, including antioxidant potential and a lower risk of
cardiovascular disease. Flavonols have a hydroxyl group in position 3 of the C ring, which
can be glycosylated, unlike flavones. Flavonols have a vast spectrum of methylation and
hydroxylation forms, and they are the most prevalent and largest subclass of flavonoids in
fruits and vegetables based on their many glycosylation patterns [109].

Flavonol has a vast potential in protecting heart mitochondria. Earlier study has
revealed that flavonol was able to enhance mitochondrial biogenesis by increasing mito-
chondrial DNA content via upregulation of nuclear factor erythroid 2-related factor, Nrf-1,
Nrf-2, and mitochondrial transcription factor A (TFAM) expression [110]. Furthermore,
flavonol also was capable to improve complexes I, III, and IV activities as well as upregulate
expression of UCP-2 and UCP-3 [110]. These findings show that flavonols have promising
capability in protecting against cardiovascular disease development.

Indeed, previous study reported that flavanols found in Abroma augusta L. family
of Malvaceae including rutin, myricetin, and quercetin have been proven to revive the
ubiquinones (co-enzyme Q) function, which is important in electron carriers’ distribution
within cell organelles chiefly and thus reduce ROS production in myocardial mitochondrial
of T2DM [99]. In another cardiac study model, quercetin also was found to control free FAO
by modulating phosphorylation of AMPK via upregulation of AMPKα2, PPARα, and PCG-
1α genes where these genes are crucial in altered energy metabolism mechanisms [111,112].
The derivative of myricetin, dihydromyricetin, could boost mitochondrial performance in
streptozotocin-induced diabetic rodents, thus reducing oxidative stress. In this study, the
ATP levels and complexes I/II/III/IV maneuver in ETC as well as ∆Ψm were enhanced
when treated with dihydromyricetin in the cardiomyocytes [113].

Recently, Ni and colleagues [23] have demonstrated that flavonol icariin could upreg-
ulate Apelin, the gene in myocardium and the mitochondrial matrix gene Sirt3, hence ele-
vates the ∆Ψm and reduces mitochondria ROS production. Another study has shown that
flavonol from quercetin could induce peroxiredoxin-3 (Prx-3) expression, a mitochondrial
antioxidant, causing a significant decrease in myocardial biomarkers for mitochondrial un-
coupling and redox stress, UCP3 protein expression, and reduction of cardiac thioredoxin-2
(Trx-2) expression as well as thioredoxin reductase-2 (TrxR2) activity. Therefore, it could
upregulate the expression of Nrf2/Nrf1 and consequently elevate Prx-3 expression [114].
An in vivo study conducted by using Murraya koenigii (curry) and Moringa oleifera leaf
extract that contain quercetin and kaempferol has reported that these flavonols were able to
enhance the expression SOD1 gene, PGC 1α gene, and ATPase and improve mitochondrial
function in the diabetic heart [115].

The disruption of mitochondrial transmembrane potential is one of the causes that
lead to mitochondrial induce oxidative stress. Taxifolin (dihydroquercetin), a subclass of
flavonol could restore mitochondrial transmembrane potential in H9c2 cell lines (Sun et al.
2014). Wu and the team [113] have reported that the dihydromyricetin could enhance the
ATP content levels, citrate synthase activity and complex I/II/III/IV and ATP synthase
activities as well as increase in ∆Ψm.

4.4. Flavanol

Flavanols are the 3-hydroxy derivatives of flavanones commonly known as dihy-
droflavonols or catechins. They are a multi-substituted and highly diverse subclass of
flavonoids. [96]. Due to the hydroxyl group attached to position 3 of the C rings, flavanols
are also known as flavan-3-ols. There is no double bond between positions 2 and 3, unlike
many flavonoids. Fruits such as bananas, pears, apples, blueberries, and peaches are rich
in flavanols.

In earlier study, flavanol has appear to protect heart mitochondria via various mech-
anisms. This includes protection effect of flavanol via meddling with ETC complexes
activities through deprivation of complex I activity, consequently mitochondrial membrane
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depolarization which then of ROS production (NO and H2O2) [116]. This has been cor-
roborated by previous study on T2DM model where epigallocatechin-3-gallate (EGCG), a
flavanol, attenuated myocardial deterioration and showed beneficial effects on myocardial
mitochondrial components. EGCG has been demonstrated to revive complex I, III, and IV,
as well as voltage-dependent anion-selective channel 1 (VDAC1) activities that produce
major ROS. Mitochondrial DNA (mtDNA) copies and the mitochondrial dehydrogenase
activity were significantly revived in treatment model [117]. This evidence indicated that
EGCG could be an effective substances to protect mitochondria-induced oxidative stress in
cardiomyocytes of T2DM.

Moreover, epicatechin is one of the flavanols reported to attenuate DCM through mod-
ulation of mitochondrial-induced oxidative stress. Ramírez-Sánchez and colleagues [118]
have demonstrated that epicatechin could block the suppressive effect of high glucose
on heart mitochondrial biogenesis involving mitofilin, SIRT1, PGC-1α, and TFAM levels.
Treatment with epicatechin also has reversed the high level of eNOS-O-GlcNAc in the
diabetic heart.

4.5. Anthocyanins

In terrestrial plants, anthocyanins are one of the most common and abundantly dis-
tributed secondary metabolites. Anthocyanins are responsible for red, purple, and blue
colors in the flowers, seeds, and fruits of numerous plant species. [119,120]. Anthocyanins
are natural antioxidants because they are electron deficient, making them highly reactive
to ROS [121]. More than 600 anthocyanins have been extracted from a variety of plant
species. They are based on the flavylium ion, which has a single fundamental core struc-
ture. As a result, the C15 skeleton is formed with a chromane ring with a second aromatic
ring B in position 2 (C6-C3-C6) containing single or more sugar molecules attached at
various hydroxylated sites on the basic structure. The C3 hydroxyl in the C ring com-
monly conjugates sugar molecules to the anthocyanidin structure [121]. Anthocyanins and
anthocyanin-rich foods have been found to exhibit a variety of biological functions mostly
as an antioxidant that may benefit for human wellbeing [122]. The role of anthocyanins has
been proven to improve DCM through modulation of mitochondrial-induced oxidative
stress. Anthocyanins mainly can be found in plant such as roselle, blackberries and black-
currants [123]. However, the study that was conducted by using anthocyanins in targeting
mitochondrial-induced oxidative stress in DCM is still very limited.

Mitochondria damage is a key factor leading to cardiomyocytes impairment and
cell death as well as other cardiac diseases and making mitochondria an attractive target
for pharmacological interventions. As a matter of fact, protocatechuic acid (PCA), a
primary metabolite of anthocyanins that found in roselle, has been shown to possess as
an antioxidant. In an in vitro study by Semaming et al. [122], PCA significantly reduced
mitochondrial ROS level and attenuated mitochondrial membrane depolarization. They
also found that PCA treatment attenuated mitochondrial swelling as the ROS level decrease.
Not only that, PCA treatment alone was able to reduce blood glucose level via enhancing
GLUT4 translocation and adiponectin secretion caused by elevated PPARG activity in
adipocytes. This shows that mediating this mechanism is crucial in alleviating increase of
FAO in the mitochondria [124].

Although the use of anthocyanins on diabetic cardiomyopathy research has not yet
been extensively investigated, we can presume the result of its interventions by looking at
findings of its impact on different cardiac disease models. Previously, anthocyanins has
proven to attenuate oxidative stress by scavenge ROS via various mechanisms including
direct scavenge ROS, induction of enzymes (superoxide dismutase, catalase) responsible
for ROS removal or modulation of ROS forming enzymes (NADPH oxidase) in mitochon-
dria [125,126]. This has been confirmed by another study reporting that anthocyanins was
able to quench ROS and thus preserve mitochondrial complex activities in heart [127].
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4.6. Flavanones

Flavanones are another important compound found in citrus fruits, including oranges,
lemons, and grapes. This group of flavonoids includes hesperidin, naringenin, and eriodyc-
tiol. Because of their free radical-scavenging characteristics, flavanones have been linked
to various health advantages [96]. Citrus fruit juice and peel contain these substances,
which give them a bitter taste. Citrus flavonoids have pharmacological actions that include
antioxidant, anti-inflammatory, anti-hyperglycemia, and anti-hypercholestrolemia. The C
ring is saturated in flavanones (saturated double bond between positions 2 and 3), giving
them the alternative name of dihydroflavonols, and distinguishes them from flavones [109].

Naringin, a major flavanone glycoside found mostly in citrus fruits, has been reported
to alleviate mitochondrial-induce oxidative stress by preventing the high glucose-induced
loss in mitochondrial membrane potential [128]. In another study conducted by You and
colleagues [129], naringin also reduced the downregulation of mitochondrial ATP-sensitive
potassium channels, which is important in sensing the metabolic changes in pancreatic
beta cells and thus protecting the cardiomyocytes against the hyperglycemic condition.

Similar to anthocyanins, the extensive study on the effect of flavanone in mitochondrial-
induced oxidative stress in DCM is still limited. However, in other cardiac models, fla-
vanone has been demonstrated to modulate mitochondrial function in cardiomyocytes.
Previously, flavanone was found to ameliorate mitochondrial disruption in cardiomyocytes
by reducing impaired mitochondrial membrane potential and suppressing mitochondrial
ROS levels and increase mitochondrial antioxidant via regulation of AMPK-mTOR signal-
ing pathways [130,131]. Moreover, flavanone was able to alleviate mitochondrial mem-
brane potential collapse and preserve mitochondrial complex II activity on isolated heart
mitochondria [131]. Aside from that, Ca2+ overload was reduced significantly with the
treatment of flavanone and hence reviving mitochondrial function in the heart [132]. Table 1
shows an overview of the role of flavonoids in alleviating mitochondrial-induced oxidative
stress in DCM. Figure 5 demonstrated the role of flavonoids in targeting mitochondrial
induce oxidative stress in DCM.

Table 1. Summary of flavonoid and its subclasses in targeting mitochondrial-induce oxidative stress in DCM.

Flavonoid Subclass Type Study Design Dose Results Reference

Anthocyanin Protocatechuic acid In vivo; T1DM
Sprague-Dawley rats

50 and
100 mg/kg/day

Reduce mitochondrial ROS
levels, attenuated

mitochondrial depolarization
and decreased mitochondrial
swelling in cardiomyocytes.

[122]

Flavones

Vitexin In vitro; H9C2 cells 1, 3, 10, and 30 µM

Improve mitochondrial ATP
production Revive

mitochondrial respiratory
function by increasing

expression of levels of COX
IV and SDHB in H9c2 cells.

[25]

Rutin In vivo; T2DM
Wistar rats

100 and
200 mg/kg/day

Improve co-enzyme Q9 and
Q10 in the mitochondria. [99]

Luteolin In vivo; T1DM
Sprague-Dawley rats 100 mg/kg/day

Increase MnSOD and eNOS
expression and decrease Ca2+

induced mPTP opening and
mitochondrial inner

membrane in
cardiomyocytes.

[97]
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Table 1. Cont.

Flavonoid Subclass Type Study Design Dose Results Reference

Isoflavones
In vitro; H9C2 cells 20–200 µg/mL

Reduce mitochondrial-induce
oxidative by lowering

mitochondrial ROS
generation, depolarization of

∆Ψm through SIRT-1
pathway or PPAR-α which

further attenuate
mitochondrial dysfunction

and thus conserve
cardiomyocytes health.

[24]

In vivo; T1DM
Sprague-Dawley rats

25, 50, and
100 mg/kg orally

Maintained the AMPK and
SIRT1 levels. [105]

Flavonol Icariin

In vivo and in vitro;
db/db, db/+ mice

and C57 mice
cardiomyocytes

7.5, 15, and 30 µM

Upregulate myocardium gene
apelin and the cardiac
mitochondrial matrix

gene Sirt3.
Increase the mitochondrial

membrane potential.
Reduce mitochondria

ROS production.

[23]

Flavonol

Quercetin
In vivo and in vitro;
T1DM Wistar rats

and H9C2 cells

50 mg/kg and 1
and 10 µM

Induce Prx-3 expression,
causing downregulation in
myocardial UCP3 protein.

Reduce cardiac Trx-2
expression and TrxR2 activity.

Induce the expression of
transcription factor

Nrf2/Nrf1.

[114]

Quercetin and
Kaempferol

In vivo; T1DM
albino rats

200 mg/kg/twice
daily

Enhance the expression SOD1
gene, PGC 1α gene and

ATpase and improve
mitochondrial function.

[115]

Taxifolin/
dihydroquercetin

In vivo and in vitro;
T1DM C57BL/6 mice

and H9C2 cells

10, 20, and 40 µg/mL
and 25, 50, and
100mg/kg/day

Restore mitochondrial
transmembrane potential in

H9c2 cell lines.
[133]

Dihydromyricetin In vivo; T1DM
C57BL/6 mice 100 mg/kg/day

Enhance ATP levels, CS
activity, and complex
I/II/III/IV activities,

increase ∆Ψm.

[113]

Flavanol Epigallocatechin-3-
gallate

In vivo; T2DM
Goto–Kakizaki rats 100 mg/kg/day

Revive Complex I, III, IV, and
VDAC1 activities as well as
recover mtDNA copies and

the mitochondrial
dehydrogenase activities.

[117]

Epicatechin
In vivo and in vitro;

T2DM C57BL/6 mice
and HCAEC cells

100 nM and
1 mg/kg/day

Blocked the suppressive effect
of high glucose on heart

mitochondrial biogenesis
involving mitofilin, SIRT1,

PGC-1α, TFAM protein levels
and reversed the high level of

eNOS-O-GlcNAc of
diabetic heart.

[118]

Flavanone Naringin In vitro; H9C2 cells 5 µM Prevent the HG-induced loss
in ∆Ψm. [128]

Naringin

In vivo and in vitro;
T1DM

Sprague-Dawley rats
and H9C2 cells

80 µM and 25, 50,
and 100 mg/kg/day

Reduce the downregulation
of KATP channels. [129]
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Figure 5. Role of flavonoids in targeting mitochondrial induce oxidative stress in DCM. Flavonoids have been proven
to alleviate mitochondrial dysfunction by targeting mechanisms involving oxidative stress in mitochondria including
activation of AMPK which then activate PGC1α. PGC1α enhances mitochondrial biogenesis as well as PPARα expression
and cause reduction of β-oxidation in mitochondria which then downregulate UCP3. Flavonoids also reduce the formation
of Ca2+ induced mPTP which preserve mitochondrial number and prevent apoptosis. Furthermore, flavonoids were proven
to enhance GLUT4 activity which then led to increase glucose uptake as well as enhance MMP that cause increase in ETC
activities which further elevate ATP production. Moreover, flavonoids can act as antioxidant and scavenge ROS as well as
increase SOD and Prx3 enzyme which later attenuate oxidative stress. This figure is illustrated based on the review of the
previous research. Black arrow indicates flow of mechanisms; red arrow indicates increase/decrease of level/activity.

5. Future Prospects of Flavonoids Aiming at Reducing Mitochondrial-Induced
Oxidative Stress in Diabetic Cardiomyopathy

Mitochondrial dysfunction is the hallmark of cardiac degeneration in DCM. Therefore,
it is of utmost importance to curb and alleviate mitochondrial dysfunction in patients with
DM. Given enormous evidence linking that mitochondrial-induced oxidative damage can
lead to progression of DCM, it is reasonable to assume that lessening oxidative damage
would protect the cardiac against detrimental adjustment by diabetes. To the best of
our knowledge, there is no clinical study using flavonoids as an antioxidant targeting
mitochondrial-induced oxidative stress in DCM. In addition, the preclinical study in this
field also is limited. To sustain the improvement of a specific and successful therapy,
future studies should investigate the use of flavonoid-rich source targeting specifically in
mitochondrial ROS production pathways. Nevertheless, the inhibition of mitochondrial
ROS supply might be a useful strategy to prevent the alteration caused by oxidative stress
on myocardial structure and function.

We postulate that the lack of clinical trial on this topic could be due to several reasons.
This could be a consequence of difficulties in getting human cardiac mitochondrial samples
as it is invasive or a lack of proven biomarkers indicative of mitochondrial ROS production,
specifically from DCM. Taking into consideration of previous findings obtained in DCM
experimental models with the treatment of flavonoids, it is worth assessing whether the
flavonoid compound could be used for the treatment of patients with DCM caused by
mitochondrial-induced oxidative stress. Flavonoids can be considered as a tool to prevent
DCM in patients with DM or to be use in the conjunction with existing treatment to lower
the morbidity and mortality rate due to DCM.
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6. Conclusions

In a nutshell, it is clear that prolonged hyperglycemia can cause mitochondrial-induced
oxidative stress and lead to development of DCM. There are scientific evidence showing
that flavonoids can protect cardiomyocytes against mitochondrial-induced oxidative stress
caused by DM against perturbations, such as altered energy metabolism, impaired calcium
handling, altered mitochondrial biogenesis, and altered ETC. Therefore, flavonoids show
promising potential in alleviating DCM by protection against mitochondrial-induced oxida-
tive stress. However, studies exploring this potential are rather scarce especially by using
isoflavones, anthocyanins, and flavanones. Several mechanisms were also poorly investi-
gated by previous studies even though it is very important in alleviating mitochondrial-
induced oxidative stress and intervene by flavonoid. To prove that flavonoids could
suppress mitochondrial-induced oxidative stress that causes DCM, in-depth studies are
very much needed in the future especially by looking into its effects on altered ETC, mi-
tochondrial biogenesis and calcium handling. Currently, most studies of the effects of
flavonoids on cardiac mitochondrial-induced oxidative stress are focusing on animals
and cell culture studies rather than clinical study. Hence, more clinical studies examining
the beneficial effect of flavonoids on mitochondrial-induced oxidative stress should be
conducted as flavonoid has huge potential in ameliorate DCM which then reduce heart
failure risk in diabetic patients.
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Abbreviations

DM Diabetes mellitus
CVD Cardiovascular disease
DCM Diabetic cardiomyopathy
ROS Reactive oxygen species
AGE Advanced glycation end product
PKC Protein kinase C
ATP Adenine triphosphate
OXPHOS Oxidative phosphorylation
DNA Deoxyribonucleic acid
mPTP Mitochondrial permeability transition pore
FAO Fatty acid oxidation
PPAR Peroxisome proliferator-activated receptor
AMPK 5′ adenosine monophosphate-activated protein kinase
PGC-1 Peroxisome proliferator-activated receptor-gamma coactivator 1
NADH Nicotinamide adenine dinucleotide (NAD) + hydrogen (H)
FADH2 Flavin adenine dinucleotide
ETC Electron transport chain
MnSOD Manganese superoxide dismutase
UCP Uncoupling protein
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∆Ψm Inner mitochondrial membrane
MMP Mitochondrial membrane polarization
O-GlcNAc O-linked β-N-acetylglucosamine
OGT O-GlcNAc transferase
NOX Nicotinamide adenine dinucleotide phosphate oxidase
UCP-DTA Uncoupling Protein-diphtheria Toxin A
eNOS Endothelial nitric oxide synthase
SIRT1 Silent information regulator 1
Nrf Nuclear factor erythroid 2–related factor 2
TFAM Mitochondrial transcription factor A
Prx3 Peroxiredoxin-3
Trx2 Thioredoxin-2
VDAC Voltage-dependent anion channel 1
EGCG Epigallocatechin-3-gallate
PCA Protocatechuic acid
GLUT4 Glucose transporter type 4
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