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Abstract: Background: Esophageal cancer (ESCA) is a major cause of cancer-related mortality world-
wide. Altered fatty acid metabolism is a hallmark of cancer. However, studies on the roles of fatty
acid metabolism-related genes (FRGs) in ESCA remain limited. Method: We identified differentially
expressed FRGs (DE-FRGs). Then, the DE-FRGs prognostic model was constructed and validated
using a comprehensive analysis. Moreover, the correlation between the risk model and clinical char-
acteristics was investigated. A nomogram for predicting survival was established and evaluated.
Subsequently, the difference in tumor microenvironment (TME) was compared between two risk
groups. The sensitivity of key DE-FRGs to chemotherapeutic interventions and their correlation
with immune cells were investigated. Finally, DEGs between two risk groups were measured and
the prognostic value of key DE-FRGs in ESCA was confirmed in other databases. Results: A prog-
nostic model was constructed based on seven selected DEG-FRGs. TNM staging and CD8+ T cells
were significantly correlated with high-risk groups. Low-risk groups exhibited more infiltrated
M0 macrophages, an activation of type II interferon (IFN-γ) responses, and were found to be more
suitable for immunotherapy. Seven key DE-FRGs with prognostic value were found to be consider-
ably influenced by different chemotherapy drugs. Conclusion: A prognostic model based on seven
DE-FRGs may efficiently predict patient prognosis and immunotherapy response, helping to develop
individualized treatment strategies in ESCA.

Keywords: esophageal cancer (ESCA); The Cancer Genome Atlas (TCGA); fatty acid metabolism;
prognosis; immunotherapy response

1. Introduction

ESCA is the eighth most common cancer worldwide causing the sixth highest cancer-
related mortality rates [1]. Despite the range of available treatment options, the overall
five-year survival rate remains less than 20%, with most deaths being associated with
distant metastases and the emergence of resistance to chemoradiotherapy [2,3]. Therefore,
exploration of novel therapeutic options and development of prognostic models for the
management of ESCA are crucial.

The reprogramming of energy metabolism is a hallmark of cancer development,
promoting cell growth and proliferation [4,5]. Accumulating evidence suggests that fatty
acid metabolism plays a crucial role in metabolic reprogramming, affecting cell membrane
formation, energy storage, and the production of signaling molecules [6,7]. Previous study
has reported that fatty-acid-metabolism-related genes are associated with malignancy,
prognosis, and immune phenotype in gliomas [8]. In cervical cancer patients, enhanced
lipolysis and fatty acid synthesis promote lymphatic spread via the activation of nuclear
factor kB (NF-kB) signaling [4,9]. Activated fatty acid oxidation improves the survival of
acute myeloid leukemia cells [10]. In addition to influencing the effectiveness of chemo-
and radiation therapy, altered fatty acid metabolism has also been suggested to effect
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responses to immunotherapy [11,12]. Previous study has indicated that fatty acids can
affect the phenotype and functionality of infiltrating immune cells, potentially causing
immunosuppression [13]. However, the prognostic relevance and potential therapeutic
significance of genes involved in fatty acid metabolism, particularly in the context of
immunotherapy, has never been explored among ESCA patients.

In this study, we identified differentially expressed FRGs (DE-FRGs). Then, the DE-
FRGs prognostic model was constructed based on univariate Cox analysis, LASSO regres-
sion analysis, and multivariate Cox analysis. A receiver operating characteristic (ROC)
curve was drawn to validate the accuracy of this model. Moreover, the correlation between
the model and clinical characteristics was evaluated. A nomogram for predicting survival
was established and evaluated. Subsequently, the difference in immune cell infiltration,
immune function and immunotherapy response were compared between high- and low-
risk groups. The sensitivity of key DE-FRGs to chemotherapeutic interventions and their
correlation with immune cells were investigated. Finally, DEGs between two risk groups
were identified and the prognostic value of key DE-FRGs in ESCA was confirmed in other
databases.

2. Materials and Methods
2.1. Identification of Fatty-Acid-Metabolism-Related Genes

ESCA-related RNA sequencing data and corresponding clinical data, including infor-
mation of age, gender, tumor stage, and survival information were downloaded from TCGA
Database (https://portal.gdc.cancer.gov/ 15 March 2022). A total of 171 samples were
obtained from TCGA database, including 160 tumor samples and 11 normal samples. A list
of genes related to fatty acid metabolism (FRGs) was compiled using the Molecular Sig-
nature Database (MSigDB; https://www.gsea-msigdb.org/gsea/msigdb 14 March 2022),
including the Kyoto Encyclopedia of Genes and Genomes (KEGG), the Reactome fatty acid
metabolism, and the Hallmark fatty acid metabolism datasets, followed by the elimination
of duplicate transcripts/genes [14]. The expression of fatty acid metabolism-related genes
(FRGs) in ESCA were obtained from TCGA database using “Limma” R package. The differ-
entially expressed fatty acid metabolism-related genes (DE-FRGs) in ESCA were identified
using “Limma” and “pheatmap” R package. The criteria for identifying DE-FRGs were
fold change (FC) >1.5 and false discovery rate (FDR) of <0.05 [15]. The details of clinical
information can be found in Supplementary Tables S1 and S2.

2.2. Construction and Evaluation of a Predictive Risk Score Model

Univariate Cox regression analysis was performed to identify DE-FRGs associated
with prognosis, using the “survival” and “survminer” packages in R. Additional LASSO
regression analysis was conducted to narrow further the field of key DE-FRGs. Subse-
quently, multivariate Cox regression analysis was performed to develop a prognostic risk
score model for predicting overall survival (OS) of ESCA patients. ESCA patients were
divided into high-risk (n = 80) and low-risk (n = 80) groups based on the median risk
score. Kaplan–Meier (KM) survival curves were plotted to analyze the difference in overall
survival (OS) and progression free survival (PFS) of patients assigned into the high-risk
and low-risk groups. Finally, the receiver operating characteristic (ROC) curve was drawn
and the area under the curve (AUC) for 1-, 3-, and 5-year OS was calculated through the
“survival ROC” package in R to assess the predictive accuracy of the prognostic risk score
model. A p-value < 0.05 was used as the filter condition.

2.3. The Association between Risk Score and Clinical Characteristics

The Limma R package was utilized to explore the association between risk score and
clinical characteristics, including age, gender, and TNM pathology stage [14]. This was
followed by univariate and multivariate Cox regression analyses to identify independent
prognostic factors using the “survival” package (p < 0.05) [16].

https://portal.gdc.cancer.gov/
https://www.gsea-msigdb.org/gsea/msigdb
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2.4. Construction of a Nomogram for Patients with ESCA

A nomogram consisting of age, gender, pathologic staging, and prognostic risk score
model was constructed using the “survival”, “regplot” and “rms” packages, to predict the
likelihood of 1-, 3-, and 5-year survival of the studied ESCA patients. Then, independent
prognostic analysis was performed to evaluate whether nomogram could independently
predict patient prognosis. ROC curves and calibration curves were plotted to confirm the
prediction accuracy of the nomogram [17].

2.5. Association between the Risk Model and Immune Parameters

The extent of immune cell infiltration was compared between the high- and low-risk
groups using the CIBERSORT algorithms [18] and potential differences in immunologic
functioning were evaluated using the “Limma”, “GSVA”, “GSEABase”, “ggpubr”, and
“reshape2” R packages [19]. Finally, the tumor immune dysfunction and exclusion (TIDE)
algorithm (http://tide.dfci.harvard.edu/login/ 18 March 2022) was applied to predict the
effects of the observed changes on potential immunotherapy responses in the high- and
low-risk groups [20].

2.6. GSCA Analysis

Gene Set Cancer Analysis (GSCA, http://bioinfo.life.hust.edu.cn/GSCA/#/ 20 June
2022) is an online analysis tool for genomic, pharmacogenomic, and immunogenomic gene
expression analyses in cancer [21]. We used GSCA to analyze the correlations between the
expression of key biomarkers, immune cells, and drug sensitivity.

2.7. A Protein–Protein Interaction Network of DEGs in Groups of Different Risk Score Groups

DEGs in 160 ESCA patients between two different risk groups were analyzed using
the Limma R package (|logFC| > 1, FDR < 0.05) to identify DEGs [4]. Gene Ontology (GO)
enrichment analyses of the detected DEGs was then performed using the “clusterProfiler”
R package [22]. A protein–protein interaction (PPI) network of DEGs was then constructed
and visualized via the STRING database (STRING, https://string-db.org/ 17 March 2022)
and the Cytoscape software (version: 3.7.2), identifying hub genes using cytoHubba [4].
According to the median expression value of the hub genes, all samples were divided
into low- and high-expression groups. Kaplan–Meier analysis was carried out to compare
the survival characteristics between the two groups [23]. Finally, the correlation between
immune cell infiltration and prognostically relevant DE-FRGs was analyzed [24].

2.8. Validation of the Expression and Prognostic Value of Seven FRGs

UALCAN (http://ualcan.path.uab.edu/index.html 28 June 2022) is a comprehensive
interactive web resource for analyzing cancer OMICS data (TCGA, MET500, CPTAC, and
CBTTC), allowing users to identify biomarkers or to perform in silico validation of potential
genes of interest. It uses graphical representations of gene expression profiles of protein-
coding, miRNA-coding, and lincRNA-coding genes and combines these with survival
information [25]. UALCAN database was used to confirm the expression difference of key
DE-FRGs and investigate whether their expression was correlated with survival differences
between the two groups.

3. Results
3.1. Identifying Fatty-Acid-Metabolism-Related DEGs in ESCA Samples

The database search-derived lists of fatty acid metabolism-related genes were inter-
sected, and duplicates were eliminated. A total of 309 genes were identified as having a
known or proposed role in fatty acid metabolism (Figure 1A). Of these, 108 were differ-
entially expressed between ESCA samples and healthy samples in the TCGA database
(Figure 1B,C; Table 1).

http://tide.dfci.harvard.edu/login/
http://bioinfo.life.hust.edu.cn/GSCA/#/
https://string-db.org/
http://ualcan.path.uab.edu/index.html
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MAOA −0.9333 0.0001 0.0011 
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GPX1 0.6824 0.0031 0.0114 
ENO3 0.7959 0.0125 0.0288 

Figure 1. Identification of DE-FRGs in ESCA samples. (A) 309 fatty acid metabolism-related genes
from Kegg, Hallmark and Reactome. (B) Heatmap display the upregulated and downregulated
fatty acid metabolism−related DEGs (top 10, respectively, p < 0.05). (C) Volcano plot of fatty acid
metabolism-related DEGs (only displaying 10 DE-FRGs).

Table 1. Identification of differentially expressed fatty acid metabolism-related genes.

Gene logFC p-Value FDR

FADS2 1.6647 0.0022 0.0090
HACD1 −0.8386 0.0109 0.0258
PTGES2 0.8793 0.0001 0.0011
HPGD −1.9718 0.0001 0.0009
PTGES 2.5728 0.0001 0.0006
MAOA −0.9333 0.0001 0.0011
CD36 −0.6685 0.0053 0.0161

ELOVL2 1.7260 0.0084 0.0217
GPX1 0.6824 0.0031 0.0114
ENO3 0.7959 0.0125 0.0288
CEL 4.4503 0.0128 0.0291

ACBD6 0.8421 0.0000 0.0004
MORC2 0.9267 0.0000 0.0002
UBE2L6 1.4763 0.0000 0.0005
CYP2C9 −1.3856 0.0050 0.0153
SLC25A1 0.6648 0.0006 0.0034

ALDH1A1 −1.6541 0.0256 0.0499
PRKAA2 −1.3722 0.0091 0.0227
ACOT7 1.5324 0.0000 0.0002
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Table 1. Cont.

Gene logFC p-Value FDR

ABCD1 1.0133 0.0012 0.0057
GLUL −1.6938 0.0007 0.0037

ACOT9 0.6684 0.0071 0.0193
NCAPH2 0.8264 0.0000 0.0003
HACD2 0.7813 0.0004 0.0027
OSTC 0.5871 0.000 0.0028
FADS1 1.6133 0.0046 0.0142

HMGCS2 −0.9822 0.0038 0.0136
ALOX15 4.2060 0.0063 0.0177

CPOX 0.9419 0.0001 0.0006
ACSM6 −2.6558 0.0043 0.0142
NTHL1 0.9232 0.0000 0.0005
MIX23 1.0243 0.0000 0.0004
HSPH1 1.3146 0.0000 0.0005
PTGDS −0.7081 0.0160 0.0339
CYP2C8 −4.2436 0.0021 0.0089
PTGES3 1.0439 0.0000 0.0002
CPT1B 0.9034 0.0055 0.0163

ADH1C −1.3389 0.0071 0.0193
BLVRA 0.6532 0.0152 0.0327

SUCLG2 −1.3197 0.0002 0.0012
THRSP −1.3148 0.0099 0.0242
ACOX3 −0.5875 0.0115 0.0266
ELOVL3 2.6467 0.0009 0.0046

TDO2 4.0796 0.0000 0.0000
ACADS −0.9901 0.0007 0.0035

YWHAH 0.7439 0.0002 0.0012
AMACR −0.7589 0.0080 0.0209

PCCA −0.9226 0.0001 0.0006
ODC1 1.8059 0.0005 0.0030
ALAD −1.2068 0.0000 0.0003
CA2 −1.8684 0.0031 0.0114

RDH11 0.6085 0.0004 0.0027
LDHA 1.2471 0.0003 0.0019

ACADSB −1.1380 0.0000 0.0005
ACAT1 −1.2122 0.0001 0.0008

GABARAPL1 −0.9593 0.0080 0.0209
ALOX5AP 1.0724 0.0086 0.0219

NSDHL 0.7857 0.0020 0.0085
FMO1 2.2368 0.0019 0.0084

ACAT2 0.7943 0.0049 0.0152
GPX4 0.6893 0.0018 0.0082

ACSS1 −0.7269 0.0150 0.0324
ETFDH −0.8984 0.0000 0.0002
ACSM3 −1.3758 0.0026 0.0102
ACBD7 1.6988 0.0113 0.0266
AUH −0.8033 0.0083 0.0215

H2AZ1 1.2866 0.0000 0.0002
SMS 0.9141 0.0004 0.0024

ELOVL5 1.3837 0.0037 0.0135
ALDOA 0.7531 0.0023 0.0090
CYP4B1 −1.2830 0.0017 0.0076
ACO2 −0.7125 0.0001 0.0009
MDH2 0.6924 0.0004 0.0026
PPT1 1.4317 0.0000 0.0002
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Table 1. Cont.

Gene logFC p-Value FDR

PON2 1.7812 0.0000 0.0002
PSME1 0.9799 0.0000 0.0002
PTGS2 1.6912 0.0031 0.0114

HSD17B10 0.6922 0.0007 0.0035
ACLY 1.2460 0.0000 0.0004

HMGCS1 0.8293 0.0089 0.0225
ECI2 −1.3581 0.0021 0.0089

METAP1 0.6304 0.0040 0.0138
APEX1 0.8167 0.0001 0.0006

MIF 1.2857 0.0002 0.0013
ADSL 0.9045 0.0000 0.0002
SCD 1.3604 0.0007 0.0038

RDH16 1.6334 0.0139 0.0315
PRXL2B 0.7951 0.0256 0.0499

IL4I1 1.9874 0.0000 0.0005
ACADL −3.1819 0.0002 0.0013
PTGIS −1.8784 0.0062 0.0177

ACAD11 0.7438 0.0103 0.0249
ACACB −2.0952 0.0000 0.0005
ADH1B −2.3779 0.0000 0.0003
ENO2 1.1322 0.0040 0.0138
NBN 0.6371 0.0022 0.0090

LGALS1 1.7481 0.0001 0.0009
GAPDHS 2.0802 0.0059 0.0173
SLC27A2 0.9832 0.0256 0.0499

HSP90AA1 1.2248 0.0000 0.0002
MLYCD −0.9958 0.0000 0.0003

SLC25A17 0.6682 0.0000 0.0003
BCKDHB −1.0404 0.0006 0.0034

DBI 0.6881 0.0062 0.0177
GPD2 0.6431 0.0045 0.0142

S100A10 0.7390 0.0046 0.0142
HSD17B7 0.8224 0.0011 0.0054
CYP4A11 −1.0684 0.0003 0.0019

3.2. Establishing and Validating a Prognostic FRG Signature

Univariate Cox regression analysis indicated that 19 differentially expressed DE-FRGs
(DE-FRGs) were associated with different clinical outcomes (p < 0.05) (Figure 2A). LASSO
analyses were used to further analyze 19 DE-FRGs to preventing overfitting. This additional
analysis identified a signature, consisting of 11 genes, that showed altered expression
levels depending on clinical prognosis (Figure 2B,C). Subsequently, seven DE-FRGs were
identified as potential prognostic-related biomarkers of ESCA patients using multivariate
Cox regression analysis (Figure 2D). Kaplan–Meier analysis indicated that compared with
the low-risk group, the high-risk group was significantly associated with poor OS and
PFS (p < 0.05) (Figure 2E,F). Furthermore, time-dependent ROC curves were constructed
and the corresponding area under the curve (AUCs) figures were calculated to assess the
predictive power of the prognostic risk model. The AUC values for 1-, 3-, and 5-year OS
were 0.787, 0.829, and 0.937, respectively (Figure 2G).
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Figure 2. Establishment and validation a prognostic DE-FRG signature. (A) 19 genes were associated
with the clinical outcomes of ESCA patients based on univariate Cox regression analysis; Red
squares represnt Hazard Ratio (HR) value. (B) LASSO coefficient profiles of the 19 selected fatty acid
metabolic genes; (C) The best parameter (lambda) in the LASSO-Cox model; the red dots indicates the
partial probability of deviation values, the gray lines indicates standard error (SE). (D) 7 genes were
eventually identified as prognosis related biomarkers based on multivariate Cox regression analysis;
ESCA patients were divided into high-risk (n = 80) and low-risk (n = 80) groups based on the median
risk score. * p < 0.05, ** p < 0.01, *** p < 0.001. Black squares represent Hazard Ratio (HR) value. (E,F)
Kaplan–Meier survival analysis was performed to assess the difference in OS and PFS between the
high-risk and low-risk group; (G) ROC curves of risk model for predicting overall survival at 1, 3,
and 5 years.
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3.3. Association between Risk Score and Clinical Characteristics

We analyzed the association between patient clinical characteristics and the gene
expression-based risk score. This analysis showed no association between the age or gender
of the patients and their corresponding risk scores (Figure 3A,B). However, a higher risk
score correlated with significantly more advanced pathologic stage and T stage of the tumor
(p = 0.0017, Figure 3C, Figure S1). Univariate and multivariate Cox regression analysis
revealed that our risk score and the clinical T stage could serve as independent prognostic
factors (p < 0.001) (Figure 3D,E). ROC curve analysis further supported the high sensitivity
and specificity of the predictive score (Figure 3F,G).
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Figure 3. Association between risk score and clinical characteristics. (A–C) The association of risk
score and clinicopathological features, including age (A), gender (B), and tumor stage (C); The
circle represent each individual. (D) The univariate Cox regression analysis of clinical parameters in
patients with ESCA; (E) The multivariate Cox regression analysis of clinical parameters in patients
with ESCA; (F) ROC curves show 1-year survival in ESCA patients based on risk score and multiple
clinical features; (G) ROC curves display 3-year survival in ESCA patients based on risk score and
multiple clinical features. We excluded patients with deficient clinical information and 124 patients
were retained for analysis.Red and green square represent HR value.
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3.4. Establishing and Evaluating a Nomogram for Predicting Survival

A nomogram, integrating age, gender, TNM stage of the tumor, and the risk score
model was established to predict OS in ESCA patients (Figure 4A). The calibration curves
at 1 year, 3 years, and 5 years indicated that the nomogram could accurately predict the OS
of ESCA patients (Figure 4B). Based on univariate Cox regression analysis the nomogram
model and the TNM tumor stage could predict the prognosis of the patients independently
of each other or other clinical parameters (Figure 4C). Multivariate Cox regression analysis
showed that the nomogram model was an independent prognostic factor with an HR of
1.193 (95% CI = 1.060–1.343) (Figure 4D). ROC analysis also revealed that the nomogram
could predict the OS for ESCA patients with remarkable accuracy (AUC: 1 year = 0.736,
3 years = 0.849; Figure 4E,F).
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Figure 4. Establishment and evaluation a nomogram for predicting survival. (A) Nomogram predict-
ing OS of ESCA patients. (B) The calibration plots of the nomogram. The x axis is nomogram-predicted
survival, and the y axis is actual survival. (C) Univariate Cox regression analysis of the nomogram.
(D) Multivariate Cox regression analysis of the nomogram. Red and green square represent HR value.
(E,F) ROC curves at 1 and 3 years showing the predictive ability of the nomogram.

3.5. Immunological Features of the Tumor and GSCA Analysis

The expression of seven key FRGs showed strong correlation with the infiltration of
the tumors with immune-activating cells (Figure 5A). The ratios of 22 distinct immune cell



Vaccines 2022, 10, 1721 10 of 18

types in the tumors of high- and low-risk ESCA patients is shown in Figure 5B. The number
of infiltrating CD8+ T cells was higher in the high-risk group, while M0 macrophages
were more predominant in the low-risk patients (Figure 5B). In terms of immune function,
our results also showed that type II IFN production was significantly higher in the low-
risk group (Figure 5C). Furthermore, significantly higher TIDE scores were seen in the
low-risk than group, indicating that potentially the high-risk group could benefit more
from receiving immunotherapy (Figure 5D). We also explored the correlation between the
expression of the seven key FRGs and drug sensitivity, defined as IC50 values, based on
Spearman’s correlation analysis. Our results revealed that most drugs effected the seven
key FRGs, suggesting that these molecules could be exploited as potential therapeutic drug
targets in the management of ESCA (Figure 5E,F).
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Figure 5. Immunological features of the tumor and GSCA analysis. (A) The correlation between 7 key
genes and infiltrated immune cells. Different color circle denote different p value, the smaller the
p value, the larger the circle. (B) The ratios of 22 immune cell types in high- and low-risk patients.
The black circle represents a single individual. (C) Immune function difference in high- and low-risk
group in ESCA patients. (D) Comparison of Immunotherpy response between high- and low-risk
patients. (E) Correlation between CTRP drug sensitivity and 7 key gene expressions. (F) Correlation
between GDSC drug sensitivity and 7 key gene expressions. * p < 0.05, ** p < 0.01.
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3.6. DEGs in the Low- and High-Risk Score Groups

Using the “Limma” package, we identified 48 genes that were differentially expressed
between the high- and low-risk groups (Table 2). GO analyses indicated that these DEGs
mainly belonged to the response to glucocorticoid, response to corticosteroid, intermediate
filament cytoskeleton organization, intermediate filament-based process, skin development,
negative regulation of peptidase activity, unsaturated fatty acid biosynthetic process, and
regulation of peptidase activity KEGG pathways (Figure 6A). A PPI network of 48 DEGs
was constructed using the STRING database (Figure 6B). The Top 10 genes of the network,
including PPL, MMP9, TGM1, ALOX12, ANXA1, VIL1, IL1RN, GPA33, MLXIPL, and
PCK1 of the network were selected using the cytoHubba plugin in Cytoscape (Figure 6C).
Analyzing these against the survival parameters showed that high expression of PPL was
significantly associated with favorable OS of ESCA patients (Figure 6D). The proportions
of infiltrating immune cells in samples expressing PPL at high or low levels was analyzed
using the “Limma” package. Our result showed that the presence of M0 macrophages was
significantly more pronounced in samples with a high PPL high expression. In addition,
the proportion of T cell CD4+ resting memory T cells was lower in the immune infiltrates
in the high-PPL-expression group (Figure 6E).

Table 2. Differentially expressed genes between high and low-risk groups.

Gene logFC p-Value FDR

KRT16P2 −1.1383 0.0004 0.0175
RNF225 −1.5708 0.0038 0.0488
FOXE1 −1.1111 0.0035 0.0477
USH1G −1.1662 0.0024 0.0386
BCAT1 −1.1360 0.0015 0.0301
MIEN1 1.1579 0.0012 0.0275

MLXIPL 1.2968 0.0012 0.0270
PPL −1.3393 0.0006 0.0204

TMEM74B 1.0136 0.0003 0.0142
NEFM −2.1322 0.0017 0.0325
GBP6 −1.4412 0.0018 0.0334

KRT16P6 −1.1958 0.0025 0.0398
ALOX15B −1.1045 0.0008 0.0223
AHNAK2 −1.0332 0.0002 0.0111

AMBP 2.2574 0.0031 0.0450
MIR559 1.1306 0.0013 0.0275
ALOX12 −1.2123 0.0007 0.0212

PCK1 2.4876 0.0000 0.0039
PDX1 1.2546 0.0005 0.0187

PINLYP −1.1081 0.0003 0.0151
FAM83C −1.0035 0.0034 0.0471
ANXA1 −1.1213 0.0006 0.0199

YBX2 1.1975 0.0000 0.0047
MIR3189 1.1694 0.0028 0.0425

NOX1 1.1536 0.0002 0.0125
MMP9 −1.3834 0.0012 0.0272
EMP1 −1.1129 0.0009 0.0241
SBSN −1.0531 0.0030 0.0439

CCL15 1.6283 0.0036 0.0480
ACY3 1.2213 0.0003 0.0153
ASCL2 1.4926 0.0034 0.0467
IL1RN −1.2627 0.0002 0.0138
A2ML1 −1.6120 0.0008 0.0233
TGM1 −1.8265 0.0014 0.0295
NEFL −1.1713 0.0006 0.0200

CLRN3 1.2620 0.0028 0.0427
QPRT 1.2541 0.0013 0.0275
VIL1 1.4509 0.0032 0.0454
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Table 2. Cont.

Gene logFC p-Value FDR

WNK4 1.2133 0.0034 0.0469
GOLT1A 1.2505 0.0006 0.0206

ANKRD33B −1.0516 0.0016 0.0314
CLDN3 1.4046 0.0004 0.0170
PRAP1 1.5993 0.0020 0.0354
ZBED2 −1.3404 0.0001 0.0100
ECM1 −1.2862 0.0022 0.0368
GPA33 1.5683 0.0023 0.0380

BCAN-AS1 1.1560 0.0004 0.0175
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Figure 6. DEGs in the low- and high- risk score groups. (A) The results of GO enrichment analysis on
DEGs. (B) PPI network processed by STRING. (C) Identification of 10 hub DEGs using cytoHubba
software. (D) Survival analysis for subgroup patients stratified by PPL mRNA expression. (E) The
abundance of each infiltrated cell in patients with high- and low PPL mRNA expression. DEGs
in 160 ESCA patients between 2 different risk groups were analyzed using the Limma R package
(|logFC| > 1, FDR < 0.05). Black circle represent individual values. * p < 0.05.
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3.7. Validating the Expression of the Seven FRGs and Their Prognostic Value

The UALCAN online database was used to analyze how the expression of key
FRGs affected survival times. The results indicated that FABP2, HSPH1, and IDH3G
were more abundantly expressed in tumors (Figure 7A–C). Furthermore, a higher abun-
dance of PDHA1 correlated with poor prognosis in ESCA patients (Figure 7D). Similarly,
the increased expression of HSPH1, IDH3G, NUDT7 and PDHA1 was associated with
shorter OS in the subgroup of patients suffering from esophageal adenocarcinoma (EAD)
(Figure 7E–H).
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High PDHA1expression was correlated with poor OS in ESCA. (E–H) Survival rates were calculated
between high and low gene expression groups in EAD patients. (E) HSPH1, (F) IDH3G, (G) NUDT7
and (H) PDHA1. EAD = Esophageal adenocarcinoma.

4. Discussion

There is increasing evidence that metabolic dysregulation plays a critical role in cancer
cell growth, proliferation, angiogenesis, and invasiveness [14,26]. Previous observations
suggest that abnormal glycolytic metabolism is associated with the physiological behavior
of human malignant tumors [27]. In colorectal cancer, abnormal anaerobic metabolic path-
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ways play an important role in the formation of cancer stem-like cells (CSCs), promoting
the rapid formation, development, and therapy resistance of these tumors [28,29]. Fatty
acid metabolism is involved in cellular energy production, membrane synthesis, and signal
transduction pathways relevant to tumorigenesis and development [14,30]. Deregulated
anabolism/catabolism of fatty acids may support cancer cell growth [6]. A previous study
reported that fatty acid synthesis may promotes esophageal adenocarcinoma [31]. A recent
study has shown that loss of FBP1 promotes migration, proliferation and invasion through
regulating fatty acid metabolism in ESCA [32].Although several studies focused on the
role of fatty acid metabolism in a variety of tumors, this topic remains unclear in ESCA.
The identification of key molecular markers related to fatty acid metabolism, together with
the exploration of their role in the development of ESCA, could provide novel insights
into the biological behavior of these tumors, potentially highlighting new, more effective,
therapeutic strategies.

In the present study, we explore the role of DE-FRGs in ESCA. Interestingly, 19 FRGs
that were differentially expressed in patients with ESCA showed a correlation with the
clinical/biological behavior of the tumors. Via LASSO and multivariate Cox regression
analysis, we were able to identify seven key DE-FRGs, including PDHA1, CD36, IDH3G,
HSPH1, FABP2, NUDT7 and SERINC1 that may become useful prognostic biomarkers in
the clinical management of ESCA patients. Subsequently, a prognostic risk score model
was established that was able to divide patients into distinct high- and low-risk groups
showing significant differences in OS and DFS. This prognostic risk score was an indepen-
dent prognostic factor according to univariate and multivariate Cox regression analyses.
Furthermore, the predictive potential of this model was confirmed by combination with
clinical characteristics (age, gender, and TNM stage of the tumor) in a risk-assessment
nomogram. The risk model presented here might help to identify ESCA patients with a
poor prognoses, and could be utilized in the management of the disease.

PDHA1(Pyruvate Dehydrogenase E1 Subunit Alpha 1) is a protein-coding gene in-
volved in the pyruvate and thiamine metabolism pathways. In HNSCC cells, LDHA/PDHA1
changes may associated with a broad metabolic reprogramming while intracellular molecules
including polyunsaturated fatty acids and nitrogen-metabolism-related metabolites under-
lie the malignant changes [33]. Previous study has shown that promotion of the tricarboxylic
acid cycle (upregulation of PDHA1, PDHB, ACO2, and DLST expression) and inhibition
of ME1 expression may inhibit fatty acid synthesis [34]. The inhibition of PDHA1 expres-
sion in the LnCap human prostate cancer cells led to the “Warburg effect”, resistance to
chemotherapy, improved migration, and increased expression of stem cell markers [35]. In
ESCC, the low expression of PDHA1 correlates with poor clinical prognosis and can result
in metabolic reprogramming, again leading to the Warburg effect increasing malignant
potential [36,37]. Decreased PDHA1 protein expression was also found to predict poor
prognosis in gastric cancer [38]. HSPH1 encodes a member of the heat shock protein 70 fam-
ily. Previously, elevated levels of HSPH1 expression were reported in tissues of HNSC
patients. Moreover, the overexpression of HSPH1 was associated with poor overall survival
(OS) [39]. HSPH1 is one of the most prominently upregulated proteins in several malig-
nancies, with a well-documented involvement in Wnt- and chronic nuclear factor-kappa
B signaling [40–42]. It has been suggested that the analysis of HSPH1 expression levels
may help in predicting the effectiveness of chemotherapeutic approaches acting on the
EGFR-TKI pathway in advanced lung adenocarcinoma [40]. The involvement of HSPH1
in anticancer immunity has also been described [41]. NUDT7, Nudix Hydrolase 7, is an
enzyme involved in peroxisomal lipid metabolism. In the liver, upregulated expression of
NUDT7 can inhibit peroxisomal fatty acid oxidation [43]. In clear cell renal cell carcinomas
the alternative splicing of NUDT7 was found to be correlated with overall survival time [44].
Fatty acid binding proteins (FABPs) are key proteins in lipid transport, which can maintain
a steady pool of fatty acids in the epithelium by traffic lipids from the intestinal lumen
to enterocytes and bind superfluous fatty acids. As a lipid chaperone, FABP2 can also
carry lipophilic drugs to improve targeted transport [45]. During the work presented here
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we identified and validated the prognostic value of seven key DE-FRGs. Of these FABP2,
HSPH1, and IDH3G were upregulated and the high expression of four FRGs, including
PDHA1, HSPH1, IDH3G, and NUDT7 was associated with poorer OS. These findings
suggest that these key DE-FRGs might have a prognostic value in the assessment of ESCA
and could represent potential therapeutic targets.

Previous studies have suggested that prominent CD8+ T cell infiltrates were associated
with clinical prognosis and immune responses in ESCA [46,47]. In renal cell cancer an
increased CD8+ T-cells to Treg ratio is associated with poor prognosis [48]. We observed
an increase in the number of infiltrating CD8+ T cells in the samples of high-risk group
ESCA patients, indicating an unfavorable prognosis. In contrast, patients with a low-risk
score showed an activated type II IFN response. Based on the TIDE algorithm this may
indicate suitability for the immunotherapy. Previous studies demonstrated that type II
IFN (IFN-γ) could indirectly regulate PD-L1 levels in small cell lung cancer [49]. It was
also suggested that IFN-γ production induced elevated PD-L1-mRNA expression resulting
in favorable OS [50]. Indeed IFN-γ production is a key driver of PD-L1 expression in
both cancer and host cells, and may improve the likelihood of anti–PD-1 therapies being
effective [51]. These previous findings support the notion that the favorable prognosis of
patients in the low-risk group may be due to more effective immune responses.

It was reported that the expression of PPL was significantly decreased in esophageal
cancer tissues and that the proteins were barely detectable in advanced cancer samples [52].
The experimental knockdown of PPL decreased cellular motility, reduced attachment,
and generally inhibited malignant progression [53]. However, this finding contrasts with
observations that the high expression of PPL is associated with favorable survival in
patients with adenoid cystic carcinomas and sarcomas [54]. Our results showed that the
expression of PPL gene was upregulated in low-risk group, and high expression of this
gene was associated with better prognoses. This result may further support the hypothesis
that the low-risk group was significantly associated with a favorable prognosis.

5. Conclusions

In summary, this first investigation of the role of fatty acid metabolism-related genes in
ESCA identified seven genes showing strong association with the prognosis and therapeutic
responses to chemotherapy and immunotherapy in this disease. This allowed us to develop
a risk score model that could effectively divide patients into high- and low-risk groups.
Using this score clinically might aid the development of individualized treatment strategies
in the future. However, the prognosis value and immunotherapy effect of seven fatty-acid-
metabolism-related genes in patients with esophageal cancer need to be further confirmed
in larger clinical studies.
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