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Abstract
Virtual reality-based instruction is becoming an important resource to improve learning outcomes and communicate hands-
on skills in science laboratory courses. Our study attempts first to investigate whether a Markov chain model can predict the 
students’ performance in conducting an experiment and whether simulations improve learner achievement in handling lab 
equipment and conducting science experiments in physical labs. In the present study, three cohorts of graduate students are 
trained on a microscopy experiment using different teaching methodologies. The effectiveness of the teaching strategies is 
evaluated by observing the sequences of students’ actions, while engaging in the microscopy experiment in real-lab situa-
tions. The students’ ability in performing the science experiment is estimated by sequential analysis using a Markov chain 
model. According to the Markov chain analysis, the students who are trained via a virtual reality software exhibit a higher 
probability to perform the steps of the experiment without difficulty and without assistance than their fellow students who 
attend more traditional training scenarios. Our study indicates that a Markov chain model is a powerful tool that can lead to 
a dynamic evaluation of the students’ performance in science experiments by tracing the students’ knowledge states and by 
predicting their innate abilities.

Keywords Markov chain model · Sequential data · Education · Virtual reality · Science experiment · Assessment · 
Experimental skills

Abbreviations
3D  Three dimension
ML  Maximum likelihood
MLE  Maximum likelihood estimation
T-Group  Traditional group
V-Group  Video group
VR  Virtual reality
VR-Group  Virtual reality group
LSTM  Long-Short Term Memory
CNNs  Convolutional Neural Networks
GANs  Generative Adversarial Networks
HMM  Hidden Markov Model
STEM  Science, Technology, Engineering, 

Mathematics

Introduction

In science courses, instructors do their best to communicate 
knowledge in terms of content and skills. A student who 
pursues to successfully complete a science course must not 
only have understood and assimilated the basic principles 
of specific science subjects, but he/she should have also 
acquired specific practical laboratory skills [21]. Besides, 
it is commonly acceptable that laboratory hands-on skills 
have always been a key pillar of science education. Μany 
researchers claim that the best way to obtain them is through 
practicing and not through passively watching face-to-face 
demonstrations in science labs or simply watching instruc-
tional videos [4].

Although practicing in a physical lab is an ideal way of 
being trained in experimental techniques, constantly equip-
ping and maintaining these labs is becoming more and more 
expensive and prohibitive for educational institutions [34]. 
A robust and affordable solution to overcome: (a) the expen-
sive update, (b) the safety issues that result from the misuse 
of sensitive and complex lab instruments from novice or 
unprepared students, and (c) the current needs for distance 
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experimental training that arose from the new COVID-19 
situations, is to immerse in a virtual lab and interact with 
the virtual lab equipment.

Virtual Reality (VR) is a cutting edge emerging technol-
ogy that the last decades demonstrates a great potential to 
change and modernize the way learners are trained in hands-
on skills in many fields such as medical, engineering, natural 
sciences, etc. [6, 29, 44, 49, 57, 60]. Makransky and Lille-
holt [35] mention that many business analyses and reports 
(e.g., Belini et al. [3], Greenlight & RoadToVR [17]) pre-
dicted that VR would be the biggest future computing plat-
form of all time as it could revolutionize the entertainment, 
gaming and education industries. Review papers mention the 
research methodologies used in the area of adaptive systems 
like 3D virtual learning environments [51]. Many support-
ers of VR technology claim that this alternative educational 
approach facilitates learning due to the ability of the human 
brain to perceive better and assimilate easier a three-dimen-
sional (3D) computer-graphics representation than a sim-
ple text [11]. Many studies show that simulations can be a 
very promising and affordable tool for learning and instruc-
tion [30, 56, 64], especially for users who are not aware 
of information technologies [14]. Virtual laboratories have 
overall positive effects on students’ cognitive load, skills 
development and motivation [35]. Several VR educational 
applications have been designed for STEM (Science, Tech-
nology, Engineering, Mathematics) domains [9, 45, 59], as 
interaction with such environments has shown, among other 
things, gains in deep and certain conceptual understanding, 
experimental experience and problem-solving ability [23]. 
The exploratory character of the virtual worlds that offers 
free navigation using the first-person user viewpoint may be 
the reason why VR applications are educationally superior 
also to multimedia [66].

There are several research studies that explore whether in 
science courses, attending traditional educational scenarios 
in physical labs is more beneficial than following more nov-
ice teaching strategies that include interaction with virtual 
environments [5, 36, 37, 40, 43, 53]. All researchers agree 
on the fact that physical labs play a unique role as it is a 
sine-qua-non in science [20, 22, 69], but more and more 
the VR technology reveals its substantial contribution to the 
successful achievement of the learning outcomes in labora-
tory courses. Paxinou et al. [42] provided evidence in favor 
of the use of a VR educational software, as a supplemen-
tary tool to the traditional laboratory learning methods in 
Biology Makransky et al. [36, 37] claimed that simulations 
must be used as a tool for preparation for the lab experi-
ments. Authors in Xu et al. [67] showed that in develop-
mental biology the combination of a virtual oriented and 
a traditional methodology in teaching promotes effective 
student learning.

In a science laboratory course, a way to evaluate the 
effectiveness of a certain teaching procedure is to explore 
whether the learning outcomes have been fulfilled. Have the 
students understood the introduced concepts? Have the stu-
dents managed to obtain the required laboratory skills? The 
level of the students’ understanding of the new topics can 
be easily assessed, for example, through scoring specially 
designed written tests, but assessing the gained practical 
skills is a quite multidimensional task [46].

Data, derived from the participation of students in edu-
cational research, are a powerful tool to researchers as 
they can utilize them to identify hidden patterns by using 
analytics techniques [15, 16, 27, 33, 41, 61, 63, 65]. This 
study is initially based on the assumption that the effective 
completion of all the steps comprised an experiment, is a 
robust indicator that the learner has a high perception of 
the lab environment and has also acquired all the neces-
sary hands-on skills. Therefore, we trained three groups of 
students on the Microscopy Experiment, by applying three 
different teaching scenarios, to investigate the predominance 
of the best scenario. After the different educational interven-
tions, the students’ ability to handle and operate properly 
a microscope, was evaluated through a specially designed 
worksheet. According to that worksheet, the microscopy 
experiment was divided into 13 steps. As is the case in every 
science experiment, the 13 steps had to be performed strictly 
in the given order and without skipping any of them. As a 
result, the data derived from the observed students’ actions 
when performing those 13 steps, were sequential. In this 
study, we decided to use a popular method for analyzing 
our sequential data, a Markov-based technique, and more 
specifically, a Markov chain model.

Markov model-based techniques are useful methods to 
analyze data, where order matters [32, 48]. Markov chain 
models and Hidden Markov models (HMMs) are both sta-
tistical models that belong in this category. Considerable 
research has been conducted on Markov chain models in 
many different settings, such as to predict enrolments for 
an education system or to model teachers’ behavior in the 
decision‐making process or finally to analyze genetic algo-
rithms [26, 39, 47, 55]. On the other hand, HMMs have 
extensively been used to model the behavior of individual 
students regarding their engagement and their motivation 
towards the learning procedure [2, 10, 18, 50, 54, 62]. Ari-
eli-Attali et al. [1] used a HMM to learn about test takers’ 
choice-making behavior in a self-adapted test, Shih et al. 
[52] proposed a HMM that could discover student learning 
tactics, Tadayon and Pottie [59] and He and Gao [19] used 
a HMM to analyze and make predictions of the students’ 
performance in educational games, and Jeong et al. [25] used 
HMMs to examine the effect of metacognitive prompting 
on students’ learning in the context of our computer-based 
learning-by-teaching environment.
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Although the HMM is based on augmenting the Markov 
chain model, in this study we used the latter, as we aimed to 
model the sequences of observable events, like the observed 
student’s actions when conducting an experiment in a sci-
ence lab, and not any unobservable influences. To the best 
of our knowledge, no other studies have relied on a Markov 
chain model to provide evidence in favor of an educational 
intervention by modeling the students’ performance in a lab 
environment. Neither such a model has been used to fur-
ther investigate whether the integration of Information and 
Communication Technologies into teaching, helps students 
acquiring those experimental skills that are necessary for 
performing successfully an experiment. Based on the fact 
that a science experiment, by nature, is a prototypical proce-
dure to obtain sequential data, our main research question is 
whether a Markov chain model can offer additional informa-
tion about the comparison of different teaching methods that 
are applied in laboratory science courses.

At this point, it is worth mentioning Deep Learning Tech-
niques are also very popular techniques that could have been 
considered for the processing of the data in this study. Deep 
Learning comprises a state-of-the-art learning paradigm that 
sheds new light on neural network approaches. Long-Short 
Term Memory (LSTM) components, Convolutional Neural 
Networks (CNNs) and Generative Adversarial Networks 
(GANs) bring in the Machine Learning Community a great 
deal of innovation that provides accurate complex predic-
tions on a diverse set of problems like speech processing, 
image processing, text processing and the like [24, 28, 68]. 
But, despite their groundbreaking impact on recent applica-
tion problems like self-driving cars, in this study, we decided 
to choose simpler white box algorithms that fitted better for 
our problem where the understanding of the proposed solu-
tion was necessary.

The main aim of our study was twofold. First, we investi-
gated whether a Markov chain model is a useful tool that can 
evaluate the students’ performance in science experiments 
by tracing their knowledge states and by predicting their 
innate abilities. Second, we interpreted the produced data to 
compare the effectiveness of three different teaching strate-
gies applied in a laboratory science course. Such a compari-
son could lead to serious decisions regarding the improve-
ment of teaching and learning practices. Furthermore, in our 
study, the Markov Chain methodology used for the sequence 
data analysis is presented as a step-by-step procedure in an 
attempt to make it totally understandable. Our results pro-
vided evidence in favor of using such a statistical model for 
modeling and predicting the students’ actions when con-
ducting hands-on exercises. In addition, the Markov chain 
methodology helped us come to the conclusion that the stu-
dents who were trained on the microscopy experiment by 
interacting with a VR educational application, exhibited a 

greater ability in performing the specific experiment in the 
physical lab.

Research Design and Methodology

Sixty-two, 4th-year, undergraduate students at the Depart-
ment of Primary Education of University of Patras, in 
Greece, participated in this study. The students were enrolled 
in the Computers and Education course, where the learn-
ing outcomes are (a) to practice in computer use, (b) to be 
informed about the latest developments in educational soft-
ware for primary and secondary education and (c) to be edu-
cated on technology-assisted teaching and learning.

This research focuses on the acquisition of hands-on 
skills after the training through a specific methodology. In 
particular, the participants are trained to operate a photonic 
microscope, the most basic and essential instrument in a 
biology lab. They are educated through three different teach-
ing methods, one of which is the use of educational soft-
ware. Our sample is a novice audience, as it brings a zero to 
minimum prior knowledge on the subject of microscopy. We 
chose the specific participants, as the students who attended 
the aforementioned graduate program, will face the chal-
lenge to train their young pupils, in simple experiments such 
as that of microscopy, when becoming teachers in primary 
schools.

To educate the 62 students on the use of the photonic 
microscope we separated them into three different groups; 
the T-Group who attended a traditional face-to-face dem-
onstration of the microscopy experiment, the V-Group who 
watched an instructional video on the microscopy experi-
ment, and the VR-Group who downloaded the Onlabs soft-
ware (https:// sites. google. com/ site/ onlab seap/) and inter-
acted with the simulated microscope in a VR environment 
to perform the microscopy experiment. The specific experi-
ment included the use of all of the 4 objective lenses of an 
optical (light) microscope to focus on human, animal and 
plant cells. Table 1 presents briefly the three phases of the 
educational experiment.

The current study is focusing on the 2nd Phase and 
especially on the 3rd Phase of the scenario. As presented 
in Table 1, in the 2nd Phase, the VR-Group was trained on 
the microscopy topic via the Onlabs, and more precisely 
by using the Instruction Mode of this VR application. The 
Onlabs is offered in three modes: The Instruction Mode, 
the Evaluation Mode and the Experimentation Mode. When 
using the Instruction Mode, specific instructions keep 
appearing on the screen guiding the students to operate 
properly the microscope. In case they cannot respond to the 
instruction, they have the option to click on the globe-button 

https://sites.google.com/site/onlabseap/
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on the left up corner of the screen and a written hint is 
appearing to their help (Fig. 1).

If and only if, the students complete an instruction, they 
can move on to the next one. The students keep following 
the instructions and taking into consideration the hints until 
they manage to focus successfully on a specimen by using 
all the objective lenses of the microscope. Only once, the 
VR-Group interacted with Onlabs, the V-Group watched the 
instructional video and the T-Group attended the face-to-
face tutorial.

According to the 3rd Phase of the project, after the train-
ing in the 2nd Phase, the three groups entered the biology 
lab. There, all students used their own optical microscope 
to set the instrument and focus on different cells. In paral-
lel with conducting the specific microscopy experiment, the 
students had to fill in a worksheet (hard copy) following the 
method presented by Paxinou et al. [45].

According to this worksheet, the experiment was a pro-
cedure divided into 13 steps. For each step, an instruction 
was given. The students had to follow the given instruction 
to perform each step, in a specific order. Each time a student 
performed a step, he/she had to tick on one of the three given 
outcomes (states), A, B or C, (Table 2), before moving on 
to the next step.

Table 3 demonstrates the worksheet where instructions 
for each one of the 13 steps are given.

In this point it is important to highlight that in laboratory 
experiments the order of the given instructions must be fol-
lowed in a strict way. As a result, the students had to perform 
each step in the order presented in Table 3, otherwise, the 
experiment would not have been successfully completed.

At the end of the assessment, each student’s data 
record included an ordered sequence of states, represent-
ing her or his performance on the microscopy experi-
ment. The corresponding state sequence is, for exam-
ple⟨A, A, C, B, A, B, C, A, ...⟩ . Subsequently, the student 
performance is modeled using a Markov sequence model 
called the Markov chain model [38], which is presented in 
detail in the following section.

The Markov Chain Model

In this study, and in the context of an educational setting, we 
focus on the completion of an experiment executed by three 
groups of students (observed subjects) after been educated 
on microscopy, each by a different educational methodology. 
The experiment is presented as a sequence of steps, each 
with a number of possible outcomes. As an outcome, we 
consider the observable student’s action, among the possible 
ones, while performing a certain step in the experiment. If 
the probability of observing any of the possible outcomes 
in a single trial/step, depends on a predetermined time-
invariant probability distribution, then we can claim that the Ta
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experiment follows the so-called multinomial distribution 
model [8, 12]. Furthermore, we assume that the set of the 
possible outcomes is the same for all steps in the experiment.

The multinomial model is not a precise and accurate 
representation of a science experiment as the different 
steps of such an experiment might have varied difficulties, 

and because of that, varied probabilities of the observ-
ing outcomes. The coincidence of having different steps 
with the same difficulty may only happen in case different 
steps exhibit the same complexity, which is rarely the case 
in real-lab situations. Another assumption while using a 
multinomial model, which does not hold true for a science 
experiment, is the fact that the probability of observing a 
certain outcome at a particular step along the way, has a 
data distribution which is independent of the outcomes 
of the experiment in the nearby positions. Usually what 
happens in a series of actions is that the probability of 
observing a certain outcome at a particular position in the 
sequence is affected by the outcomes found at adjacent 
positions in the sequence.

Fig. 1  Screenshots from the 
instruction mode of onlabs; a a 
given instruction, b a given hint

Table 2  Three possible outcomes denote the students’ actions in the 
microscopy experiment

State A I completed the step easily
State B I finally completed the step but on difficulty
State C I couldn’t complete the step by myself so I 

asked for help (from the supervisor or a fellow 
student)

Table 3  The assessment worksheet

Step Instruction State Step Instruction State

1 Turn the light on A B C 8 Move your specimen by rotating the stage and the 
specimen knob so as your specimen gets in the light 
path (visual field)

A B C

2 Adjust the light intensity A B C 9 Rotate the coarse adjustment knob to move the 
stage up or down until the image comes into 
focus. Ask for your supervisor to come and check 
your focus

A B C

3 Rotate the iris (diaphragm) lever to the leftmost 
position

A B C 10 Rotate the revolving nosepiece to set 10X objective 
lens into position

A B C

4 Lift the condenser knob up to its highest point A B C 11 Focus on your specimen. This time use also the 
fine adjustment knob. Ask for your supervisor to 
check your focus

A B C

5 Rotate the revolving nosepiece so as to set the 
objective lens with the lowest magnification into 
position

A B C 12 Rotate the revolving nosepiece to set 40X objective 
lens into position

A B C

6 Place the specimen on the stage and stabilize it 
with the stage clips

A B C 13 Focus on your specimen by using only the fine 
adjustment knob. Ask for your supervisor to 
check your focus

A B C

7 Enter the microscoping mode by looking through 
the eyepieces. Slide the eyepiece housing to 
match the width of your eyes and then make the 
diopter adjustment

A B C
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Given the previous discussion, it appears that a Markov 
sequence model seems to be a more accurate representation of 
a science experiment. A Markov sequence model assumes that 
an outcome at a particular position in the sequence depends 
on the outcome in the previous position. That is, if an out-
come Α is observed at the current position, then the probabil-
ity of observing any one of the outcomes at the next position 
depends on a predetermined probability distribution. Markov 
models embody randomly changing systems [13] and it is a 
popular method to model sequential data. There are four com-
mon Markov models used in different situations: the Markov 
chain, the Hidden Markov Model, the Markov Decision Pro-
cess and the Partially Observed Markov Decision Process. In 
our study, we use the Markov chain model which represents 
a class of stochastic processes of great interest for the wide 
spectrum of practical applications [7].

In a Markov chain model, there is a certain number of 
outcomes (states) which are observed while the subject (e.g. 
the student) is conducting a sequential process (e.g. a science 
experiment divided into numerous steps). The state space is 
represented as S and is simply a set containing the possible 
states of the process, that is, S =

{
s1, s2,… , sr

}
 [31]. Each 

state corresponds to a possible outcome that can be observed 
while performing a step in the aforementioned science experi-
ment. The process starts in one of these states and moves on 
successively from one state to another, creating a sequence of 
states x where x = xN , xN−1,… , x1 and N denotes the num-
ber of the steps and the length of the sequential process. The 
changes in the observed states across the sequence are called 
transitions. The probabilities associated with various state 
changes are called transition probabilities. For example, if the 
x sequence at the (k − 1)th step is at the state si (current state) 
and when moving to the next kth step, is at state sj (next state), 
the transition probability is represented as pij where:

As it is already mentioned, this probability does not depend 
upon any states other than the current state. The process can 
also remain in the state it is in, and this occurs with probability 
pii . An initial probability distribution, defined on S , specifies 
the starting state. Usually, this is done by specifying a par-
ticular state as the starting state. The overall process is then 
characterized by a state space, a probability transition matrix 
describing the probabilities of particular transitions and a prob-
ability distribution over the state space for the initial state.

By applying many times the Bayes’ Rule, 
P(X, Y) = P(X|Y)P(Y), for any probabilistic model of 
sequences, we can write the probability of the sequence as:

(1)pij = P
(
xk = sj|xk−1 = si

)
.

The key property of a Markov chain is that the probability 
of each symbol xk depends only on the value of the preced-
ing symbol xk−1 , not on the entire previous sequence, e.g. 
P
(
xk|xk−1,… , x1

)
= P

(
xk|xk−1

)
= pxk−1xk [10]. Therefore, 

Eq. 2 becomes

The main use of Eq. 3 is to find the values for a likelihood 
ratio test. To do that we use real data from our experiment. 
Our goal is to be able to discriminate between two Markov 
chain models and decide upon which one is the most prob-
able to have generated a certain sequence. Please note that in 
our study we induce three such Markov chain models, each 
one corresponding to one of the three participating groups 
(T, V and VR-Group).

Given that in our study we observe the students’ perfor-
mance from three different groups, it is safe to run three such 

discrimination tests ( 
(
3

2

)
=

3⋅2⋅1

2⋅1
= 3 ), each one corre-

sponding to one pair from our three Markov chain models. 
For demonstration purposes, we present how to use the like-
lihood ratio test to discriminate between the Markov chain 
model induced by the VR-Group and the T-Group data. The 
transition probabilities for each one of these two models 
were set using the following equations:

where countVRg

ij
and countTg

ij
 is the number of times, state j 

follows state i in all of the sequences of students in VR-
Group and T-Group (the so-called training sets), respec-
tively. These are actually the maximum likelihood (ML) 
estimators for the transitions probabilities. To use these two 
models for discrimination we calculate the log-odds ratio 
(Score):

(2)

P(x) = P
(
xN , xN−1,… , x1

)
= P

(
xN|xN−1, xN−2,… , x1

)
P
(
xN−1, xN−2,… , x1

)
…

= P
(
xN|xN−1,… , x1

)
P
(
xN−1|xN−2,… , x1

)
…P

(
x1
)
.

(3)

P(x) = P
(
xN|xN−1

)
P
(
xN−1|xN−2

)
…P

(
x2|x1

)
P
(
x1
)

= P
(
x1
) N∏

k=2

pxk−1xk .

(4)p
VRg

ij
=

countVR
ij∑

j� count
VR
ij�

,

(5)p
Tg

ij
=

countT
ij∑

j� count
T
ij�

,
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where �xk−1xk are the log-likelihood ratios of corresponding 
transition probabilities. Please observe that a positive value 
for the above Score function indicates that the sequence x 
has been more probably generated from the Markov chain 
model of the VR-Group. On the other hand, a negative value 
indicates that the sequence x has been more probably gener-
ated from the Markov chain model of the T-Group.

Discussion and Research Findings

In our study, the state space S is a set of three states (Table 2). 
As a result, the state space S =

{
s1, s2, ..., sr

}
 is presented as 

S = {A,B,C} , where r = |S| = 3 . Each student has to perform 
individually the microscopy experiment which is divided into 
13 steps. As a result, the length of the sequential process N 
appearing in Eq. 2, is now equal to 13. While following the 
given instructions and conducting the sequential steps, strictly 
in the given order, each student moves from state si to state sj.

At this point, we have to highlight that not knowing how 
to carry out an instruction for a specific step, leads to failure, 
as there is no option to move on to the next step without hav-
ing completed the current one. Fortunately, lab supervisors, in 
physical lab environments, or avatars and help/hint buttons, in 
intelligent tutoring systems like VR environments, offer learn-
ers second chances and the capacity to move on. Based on that, 
in our study, state A corresponds to the “I completed the step 
easily” action, state B corresponds to the “I finally completed 
the step but on difficulty” action, and state C corresponds to 
the “I couldn’t complete the step by myself so I asked for help 
(from the supervisor or a fellow student)” action (Table 2).

After the completion of the experiment, sequential data 
that represent the specific actions each student executes while 
performing the steps, are produced. For example, in the VR-
Group, the student with ID 16, exhibits the following pattern 
of actions in the 13 steps of the experiment: A, A, A, B, B, B, 
A, B, C, A, A, A, A. By observing this individual sequence, 
we count 12 transitions in total, when moving from one state to 
another. More specifically, we count five transitions from state 
A to itself, 2 transitions from state A to state B, zero transitions 
from state A to state C, one transition from state B to state A, 

(6)

Score(x) = log
P
(
x|model VRg

)

P
(
x|model Tg

) =

N∑
k=1

log
p
VRg

xk−1xk

p
Tg

xk−1xk

=

N∑
k=1

�xk−1xk ,

2 transitions from state B to itself, etc. Based on this counting, 
pAA = 5/7, pAB = 2/7, pAC = 0, pBA = 1/4, pBB = 2/4, etc. These 
transition probabilities can be organized in a transition matrix, 
such as the one presented in Table 4. A transition matrix is a 
common way to store the transition probabilities for a Markov 
chain model. The rows of the transition matrix represent the 
states observed at the current step in the sequence, while the 
columns represent the states that will be encountered at the 
next step in this sequence. It is easy to notice that in the transi-
tion matrix, the rows of the transition probabilities sum to 1.

The transition probabilities of students during the execution 
of the experiment comprise the basic parameters for a sto-
chastic/probabilistic model such as the Markov chain model. 
These parameters are typically estimated from large sets of 
cases often called a training set. For instance, the probability 
pBC = 1/4 was estimated as the observed frequency of transi-
tions from state B to state C, in the training set of the students’ 
performance data. In this way, we obtain the transition prob-
abilities by counting the nine probabilities which represent the 
entire space of possible transitions among states in our experi-
ment, as long as the training sequences are not systematically 
biased towards a peculiar state transition pattern.

We expect that these observed frequencies constitute rea-
sonable estimates of the underlining transition probabilities 
of our Markov chain model. It can be shown that using the 
frequencies with which a student transitions from one state 
to another, as the aforementioned transition probabilities, 
maximizes the total probability of all the sequences given 
the specific Markov chain model (the likelihood). The spe-
cific way for estimating these models is known as Maximum 
Likelihood Estimation (MLE).

Table 5 presents the average transition probabilities matri-
ces for T, V and VR-Group. According to these matrices, a 

Table 4  The transition 
probability matrix for the 
student with ID 16

State A B C

A 5/7 2/7 0
B 1/4 2/4 1/4
C 1 0 0

Table 5  Average transition probabilities matrices for T, V and VR-
Group

The Next State

A B C

A 0.776  0.128 0.096

B 0.738 0.167 0.095

T-
G

ro
up

C 0.630 0.259 0.111

A 0.787 0.128 0.085

B 0.600 0.333 0.067

V
-G

ro
up

C 0.421 0.474 0.105

A 0.866 0.086 0.048

B 0.516 0.452 0.032

C
ur

re
nt

 S
ta

te

V
R

-
G

ro
up

C 0.900 0.100 0.000
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T-Group student who is currently in state C and, therefore, 
ask for help to move on, has a 63.0% chance of moving 
into the higher ability state A at the next step. The diagonal 
entries represent the probabilities of remaining in the same 
state. For example, a VR-Group student has a 45.2% chance 
of remaining in state B at the next step. A VR-Group student 
who is currently in state C has a 0.0% chance of remaining 
in this state.

All three transition probability matrices suggest that there 
is a degree of inertia regarding state A. The probabilities for 
persisting in state A are higher than those of shifting to state 
B or C (77.6%, 78.7% and 86.6% for T, V and VR-Group, 
respectively). On the other hand, regarding states B and C, 
the probabilities for shifting to state A are higher than any 
other probability, (except from the V-Group when the cur-
rent state is C).

The powers of the transition matrices give us interesting 
information about the experiment as it evolves. Let PTg

 be 
the transition matrix of the Markov chain for the T-Group:

The ijth entry p(n)
ij

 of the matrix Pn
Tg

 gives the probability 
that the Markov chain, starting in state si, will be in state 
sj after n steps. For example, let us compute p(2)

AC
 which 

represents the probability that a Markov chain starting in 
state A will be in state C after 2 steps. We can easily 
observe that to move from state A to state C in 2 steps, we 
can either (a) remain to state A in the first step and move 
to state C in the second step, or (b) move from state A to 
state B in the first step and move from state B to state C in 
the second step or (c) move from state A to state C in the 
first step and remain to state C in the second step. This can 
be represented by the following equation:

Equation 7 indicates that p(2)
AC

 is given by the dot product 
between the first row and the third column of the transition 
matrix PTg

 . By substituting the corresponding values for 
the row and column vectors of the aforementioned matrix 
PTg

 we get

PTg
=

A B C

A

B

C

⎛
⎜⎜⎝

0.776 0.128 0.096

0.738 0.167 0.095

0.630 0.259 0.111

⎞
⎟⎟⎠
.

(7)

p
(2)

AC
= pAA ⋅ pAC + pAB ⋅ pBC + pAC ⋅ pCC =

�
pAApAB pAC

�
⋅

⎛⎜⎜⎝

pAC
pBC
pCC

⎞⎟⎟⎠
.

(0.7760.1280.096) ⋅

⎛
⎜⎜⎝

0.096

0.095

0.111

⎞
⎟⎟⎠

= 0.776 ⋅ 0.096 + 0.128 ⋅ 0.095 + 0.096 ⋅ 0.111 = 0.097.

The result above (0.097) is actually the value of the cell 
(1,3) in the matrix PTg

 computed below:

Powers of transition matrices indicate the long-term 
behavior of a Markov chain model. In Table 6, successive 
powers of an adequate size of the transition probability 
matrices for T, V and VR-Group are presented. We note 
that after a certain number of steps for each group, the 
state predictions are independent of the current state.

For instance, looking at the fourth power of the transi-
tion matrix for T-Group, P4

Tg
 , the transition probabilities 

for the three states A, B and C are 0.756, 0.146 and 0.097 
respectively, no matter where the chain started. This is an 
example of a type of Markov chain called a regular Markov 
chain. For this type of chain, it is true that the long-range 
predictions of states are independent of the starting state.

Subsequently, we illustrate the long-term behavior of a 
Markov chain, when it starts in a state chosen by a 

P
2

T
g

=

⎛
⎜⎜⎝

0.776 0.128 0.096

0.738 0.167 0.095

0.630 0.259 0.111

⎞
⎟⎟⎠
⋅

⎛
⎜⎜⎝

0.776 0.128 0.096

0.738 0.167 0.095

0.630 0.259 0.111

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

0.757 0.145 0.097

0.756 0.147 0.097

0.750 0.153 0.097

⎞
⎟⎟⎠
.

Table 6  Powers of the transition probability matrices for T, V and 
VR-Group

Power 
of 
matrix

T-Group V-Group VR-Group

P1 0.776 0.128 0.096

0.738 0.167 0.095

0.630 0.259 0.111

0.787 0.128 0.085

0.600 0.333 0.067

0.421 0.474 0.105

0.866 0.086 0.048

0.516 0.452 0.032

0.900 0.100 0.000

P2 0.757 0.145 0.097

0.756 0.147 0.097

0.750 0.153 0.097

0.731 0.184 0.085

0.700 0.262 0.079

0.660 0.262 0.079

0.838 0.118 0.044

0.709 0.251 0.039

0.831 0.122 0.047

P3 0.756 0.146 0.097

0.756 0.146 0.097

0.756 0.147 0.097

0.721 0.195 0.084

0.716 0.201 0.083

0.709 0.209 0.082

0.827 0.129 0.044

0.780 0.178 0.042

0.825 0.131 0.044

P4 0.756 0.146 0.097

0.756 0.146 0.097

0.756 0.146 0.097

0.720 0.197 0.083

0.719 0.198 0.083

0.718 0.199 0.083

0.823 0.134 0.044

0.805 0.151 0.043

0.822 0.134 0.044

P5 0.779 0.197 0.083

0.719 0.197 0.083

0.779 0.198 0.083

0.821 0.135 0.044

0.815 0.142 0.044

0.821 0.135 0.044

P6 0.719 0.197 0.083

0.719 0.197 0.083

0.719 0.197 0.083

0.820 0.136 0.044

0.818 0.138 0.044

0.820 0.136 0.044

P7 0.820 0.136 0.044

0.819 0.137 0.044

0.820 0.136 0.044

P8 0.820 0.136 0.044

0.820 0.136 0.044

0.820 0.136 0.044
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probability distribution on the set of states. In our study, a 
probability distribution is a row vector that comprises 
three components whose entries are non-negative and sum 
to one. If v is such a probability distribution which repre-
sents an initial state of a Markov chain, then we view the 
ith component of v as representing the probability 
P
(
x1 = si

)
 in Eq. 3, that the chain starts in state si. To 

denote this, we choose v to be the probability vector with 
its ith entry equal to 1 and all other entries equal to 0. For 
example, the probability vector v = (0, 1, 0) is the initial 
probability distribution when our Markov chain starts in 
state B. We note that if we want to estimate the distribution 
of the states after a number of steps, we simply need to 
multiply the initial probability distribution with the cor-
responding power of the transition matrix of the Markov 
chain model. So, if our initial probability distribution vec-
tor is v =

(
1

3
,
1

3
,
1

3

)
 , then the probability distribution vector 

after three steps is going to be v(3) = v ⋅ P3 . If in the for-
mula before, we consider the transition matrix P , as the 
transition matrix for the VR-Group, the probability distri-
bution vector after three steps is going to be 
v(3) = (0.811, 0.146, 0.043).

A probability distribution v satisfying the equation 
v = v ⋅ P , is stationary because the transition matrix does 
not change the probability of the states of the process. Such 
a distribution is unique in a regular Markov chain and in 
our study is (0.756 0.146 0.097) for T-Group, (0.719 0.197 
0.083) for V-Group and (0.820 0.136 0.444) for VR-Group 
(Table 7). In other words, although n increases theoreti-
cally without a bound, after a certain number of steps its 
value attains a limit (for example, pn

AA
 becomes 0.756 

for the T-Group, 0.719 for the V-Group and 0.820 for the 
VR-Group).

Since state A is related to the response I completed 
the step easily, it is obviously a state that corresponds to 
higher student’s ability than state B and C, in terms of how 
to treat and operate successfully a microscope. As a result, 
the observation where 

VR
pn
AA

 > 
T
pn
AA

 > 
V
pn
AA

, is an indicator 
that the interaction with the VR lab environment helped the 
students in VR-Group become more capable of handling 
the microscope than their fellow students in other groups. 
These findings agree with the students’ scores in a written 
assessment test based on the subject of microscopy. In detail, 

in a zero to ten scale, the students in the T-Group received 
a score of 6.52 ± 1.31, in the T-Group 6.64 ± 1.19 and in 
the VR-Group 7.39 ± 1.18 (T-Group: t =  − 2.538; df = 29; 
p < 0.05, V-Group: t =  − 4.353; df = 28; p < 0.001, VR-
Group: t =  − 8.823; df = 23; p < 0.001). Based on the results 
presented in Table 7, it is also noteworthy that watching 
passively an instruction video is a less effective teaching 
method than attending a face-to-face live demonstration of 
the experiment, as it is less probable that the V-Group stu-
dents will be in state A than the students in the T-Group.

While in the previous discussion we argued upon the col-
lective performance of the three groups of students, we now 
proceed to characterize the performance of each individual 
student, based on the observed sequence of actions in the 
experiment that he/she conducted. To accomplish this, we 
make use of Eq. 6 that assigns a score to a student, based on 
the sequence x that he/she exhibits. The score in Eq. 6 can be 
used to discriminate between a pair of Markov chain models 
by summing over the logarithm of ratios of corresponding 
transition probabilities, in these two models.

Let us consider the transition matrices for T and VR-
Group presented in Table 5. To apply Eq. 6, we need to 
take the ratio of these two matrices, element by element, as 
shown in the following equation:

followed by the logarithm base 2 of the ratio of the two 
matrices above, which is displayed below:

If we now consider any possible sequence observed 
by a student and by applying Eq. 6 along with the infor-
mation in matrix LR, we can easily tell whether the 
sequence has been generated by the Markov chain 
model of the VR-Group or of the T-Group. Let us con-
sider the sequence that the student with ID 11 exhibits: 
A, A, A, A, A, A, B, B, B, A, A, A, A . It is obvious 
that this sequence contains eight AA transitions, one AB 
transition, two BB transitions and one BA transition. For 
each one of these transitions, Eq. 6 tells us to consider the 
corresponding value of the cell from the LR matrix. In this 
way, based on Eq. 6 for the sequence of the student with ID 
11, x = A, A, A, A, A, A, B, B, B, A, A, A, A , we get

(8)R = PVRg
∕PTg

=

A B C

A

B

C

⎛
⎜⎜⎝

1.116 0.669 0.502

0.699 2.710 0.339

1.429 0.386 0.002

⎞
⎟⎟⎠
,

(9)

LR = log2

�
PVRg

∕PTg

�
=

A B C

A

B

C

⎛
⎜⎜⎝

0.158 −0.579 −0.994

−0.516 1.438 −1.562

0.515 −1.374 −9.322

⎞
⎟⎟⎠
.

Table 7  The stationary transition probabilities after n steps, for 
i ∈ {A,B,C}

pn
iA

pn
iB

pn
iC

T-Group 0.756 0.146 0.097
V-Group 0.719 0.197 0.083
VR-Group 0.820 0.136 0.444
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The positive value (3.045) of the score for the given 
sequence x, suggests that the sequence conforms to the 
Markov chain model of the VR-Group. In the following table 
(Table 8), we present the data derived from the observed 
sequences of the 19 students in the VR-Group. For students 
with IDs 7, 9, 13 and 15, the Score(x) is negative (all the 
elements that correspond to these students are marked in 
bold in Table 8). This finding indicates that although these 
three students originally belonged to the VR-Group, the 
group where the students have the highest probability to 
perform the experiment without difficulty and without any 
help, the log-likelihood discrimination test assigned them 
to the T-Group.

The analogue table for the T-Group is presented below 
(Table  9). For students with IDs 8, 12–18 and 23, the 
Score(x) is positive. As a result, although these students 
originally belonged to the T-Group, the log-likelihood dis-
crimination test assigned them to the VR-Group.

Figure 2 presents the histogram of the scores for all the 
sequences of the T and VR-Groups. The T-Group sequences 
are shown with light blue, the VR-Group sequences with 
salmon, whereas the purple color results from the overlap 
of the light blue and the salmon color. This overlap of the 
values is around zero.

Score(x) = 8 ⋅ LRAA + 1 ⋅ LRAB + 2 ⋅ LRBB + 1 ⋅ LRBA

= 8 ⋅ 0.158 + 1 ⋅ (−0.579) + 2 ⋅ 1.438 + 1 ⋅ (−0.516)

= 3.045.

Given our ability to discriminate sequences coming from 
different groups of students, we can easily segment a given 
(possibly) unknown sequence, to the most probable group 
path. For example, if we were segmenting the sequence of 
the student from the T-Group with ID 15 (Table 10), we 
would see that in the 1st and from 7th to 12th step his/her 
actions are closer to the VR-Group while during the 2nd–6th 
step are closer to the T-Group.

Table 8  The VR-Group student ID followed by his/her sequence 
along with the Score(x) computed by Eq. 6 and the assigned group

ID Sequence Score(x) Group

1 AAC AAA AAA AAA A 1.104438 VR
2 AAA AAA AAA AAA A 1.900220 VR
3 AABAAAAABBBAA 1.635277 VR
4 AAA AAA AAA AAA A 1.900220 VR
5 AAA AAA AAAABAA 0.487979 VR
6 AAA AAA AAA AAA A 1.900220 VR
7 AAABAAAACBBAA – 1.592277 T
8 AAA AAA AABAAAA 0.487979 VR
9 AAAABABABAAAA – 2.336503 T
10 AAA AAA AAA AAA A 1.900220 VR
11 AAA AAA BBBAAAA 3.047518 VR
12 AAA AAA AAA CAA A 1.104438 VR
13 AAABAAA ACA AAA – 0.307802 T
14 AAA AAA AAA AAA A 1.900220 VR
15 AAA CAC AAA ACA A – 0.487125 T
16 AAABBBABCAAAA 0.946543 VR
17 AAAAABAAABBAA 0.355508 VR
18 ABBBBBAABBBAA 6.754355 VR
19 AAC AAA AAA CAA A 0.308657 VR

Table 9  The T-Group student ID followed by his/her sequence along 
with the Score(x) computed by Eq. 6 and the assigned group

ID Sequence Score(x) Group

1 AAAAABAAABAAA – 0.924262 T
2 AAA AAA CBAABAA – 2.872046 T
3 AACAABAABAAAA – 1.720043 T
4 AABACBACBAAAA – 6.232072 T
5 AACAABBABAAAB – 1.178088 T
6 AABAABACA AAA A – 1.720043 T
7 AAC CAA AAABAAA – 9.788082 T
8 AAA AAA BABBBAA 1.635277 VR
9 AAABCABAABAAA – 3.025236 T
10 AAA AAC AABAAAA – 0.307802 T
11 BAAC AAC AAA CAA – 1.161552 T
12 AAA AAA AAA AAA A 1.900220 VR
13 AABAAA AAA AAAA 0.487979 VR
14 AABAAA AAA AAAA 0.487979 VR
15 AABCABBBBAAAA 2.226313 VR
16 BAAA AAA AAA AAA 1.225793 VR
17 AAA ACA AAA AAA A 1.104438 VR
18 AAC AAA AAA AAA A 1.104438 VR
19 ABCBCAA AAA CAA – 4.249514 T
20 AAA ACA AACCBAC – 2.888718 T
21 ABABAACBBAAAB – 3.742332 T
22 AAA CAA CBABAAA – 3.667828 T
23 AAA AAA AAA AAA A 1.900220 VR
24 AAC CAA BAAA AAA – 9.788082 T

Fig. 2  Distributions of scores of students for the T and VR-Groups
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Conclusions

In this paper we investigated the capability of a Markov 
chain model to evaluate the students’ performance in sci-
ence experiments by tracing the students’ knowledge states 
and by predicting their innate abilities. Consequently, by 
analyzing the data derived from the Markov model-based 
techniques, we tried to compare the effectiveness of three 
different teaching methodologies in communicating experi-
mental skills to students. To accomplish that, three groups 
of students were trained on microscopy through three dif-
ferent teaching scenarios: the T-group attended a classical 
face-to-face lab tutorial, the V-Group watched, in class, an 
instructional video, and the VR-Group entered the Comput-
ers lab, downloads a VR educational software and interacts 
with a simulated microscope. After the educational inter-
ventions, the students assessed their gained hands-on skills 
by performing a microscopy experiment of 13 steps, in real 
lab situations. There, we recorded through a worksheet, the 
students’ actions and subsequently we analyzed their states. 
Each time a student performed one of the 13 steps, he/she 
had to tick on one of the three given states A, B or C, before 
moving on to the next step. State A corresponded to “I com-
pleted the step easily”, State B to “I finally completed the 
step but on difficulty” and State C to “I couldn’t complete 
the step by myself so I asked for help”.

Using training data from three groups of students, we 
came up with three different Markov chain models each one 
represented by a different transition matrix. We made use of 
the stationary distribution property of the transition matrices 
to assess the performance of each one of the three groups. 
We exploited the underlying Markov property of a sequence 
to build a scoring function that discriminates between a 
pair of input models. It was also shown that the Markov 
chain models are a promising solution in educational lab 

environments to model students’ actions and make the pre-
diction throughout the experiment. The results indicate that 
examining sequential data from the experiment could lead to 
dynamic evaluation of student experimental skills before he/
she even finishes the specific experiment. The three Markov 
chain models presented in this project could assign every 
student to the T, V or VR-Group, (or in other words, to the 
low, medium, or high ability group), giving the instructor the 
potentiality to make a beneficial intervention and provide the 
students’ efficient feedback.

Our results indicated that a VR-oriented learning pro-
cedure is more beneficial and more effective in helping the 
students to acquire the necessary experimental skills for a 
specific lab experiment. Students from the VR-Group were 
better prepared and exhibited a higher probability to conduct 
the steps of the experiment easily and without any help than 
the students in V and T-Group. Although nowadays video 
is the most important digital media on the Internet, the role 
of the watchers is still the same; they are a passive audi-
ence. Therefore, according to the Markov chain analysis, 
the students in the V-Groups had a lower probability to con-
duct the steps easily and by themselves than the students in 
T-Group who also attended passively a demonstration of the 
experiment but this demonstration was live and they had the 
opportunity to stop the tutor and pose questions. The average 
transition probability of the V-Group students to move on to 
the higher ability State A at their next step, when they were 
in State C, was 42.1% whereas this probability was 63.0% 
and 90.0% for students in T and VR-Group, respectively. 
Furthermore, the probabilities for persisting in State A were 
higher for VR-Group (86.6%) compared to the percentages 
of 77.6% and 78.7%, for T and V-Groups, respectively.

Recommendations

Our findings reinforce the point of view that educational 
institutions should take advantage of technological inno-
vations such as VR, and enrich the conventionally applied 
learning methods and curriculums in an attempt to success-
fully engage their students and satisfy the initially defined 
learning outcomes. A VR application such Onlabs could be 
offered to students that attend laboratory courses to engage 
them in a creative way into the educational procedure and 
prepare them for the real lab environment. The higher per-
formance of the VR-Group was probably a consequence of 
the active participation, the high interactivity and the indi-
vidualization, features that are highlighted when interacting 
with a VR environment. Furthermore, models like the one 
suggested in this study, could be a useful tool for educators 
to predict their students’ performances in science experi-
mentation through tracking their knowledge state. Such 

Table 10  The probable group 
path for the student with ID 15 
from the T-Group

Step Score(x) Group

1 0.15835 VR
2 – 0.42111 T
3 – 1.98299 T
4 – 1.46756 T
5 – 2.04703 T
6 – 0.60890 T
7 0.82921 VR
8 2.26733 VR
9 1.75125 VR
10 1.90961 VR
11 2.06796 VR
12 2.22631 VR
13 2.22631 VR
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information is an interesting insight for academic manage-
ment and supervision.

Future Research Focus

Experimental data indicated the good fitness of our models 
to the training data. To validate the accuracy of our findings, 
further experimentation with larger training data sets is nec-
essary. A focus of the future research will be on designing 
an empirical study where a HMM can be applied to model 
students’ emotional states like frustration, anxiety or inter-
est, when performing a science experiment in a physical lab.
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