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ABSTRACT: In this work, we calculate Flory−Huggins phase diagrams for correlated random copolymers. We achieve it in two
steps. At first, we derive a distribution function of two-letter A, B copolymer chains depending on the fraction of A-segments and AB-
duplets. Then, we use the method of moments, which was developed by Sollich and Cates [Phys. Rev. Lett. 80, 1998, 1365−1368]
for polydisperse systems, to reduce the number of degrees of freedom of the computational problem and calculate phase diagrams.
We explore how the location of transition points and composition of coexisting phases depends on the fractions of A-segments and
AB-duplets in a sequence and the degree of polymerization. The proposed approach allows taking into account fractionation, which
was shown to affect the appearance of the phase diagrams of statistical copolymers.

■ INTRODUCTION

Random copolymers, or statistical copolymers, are polymers
composed of at least twomonomer units connected in a more or
less random manner. Random copolymers are ubiquitous in
industrial applications. For example, poly(vinyl alcohol) (PVA)
is used for the creation of water-soluble pouches and capsules.
PVA is obtained by post polymerization modification from
poly(vinyl acetate) (PVAc), in which the acetate groups can be
either fully or partially transformed into alcohol groups.1−4 Pure
PVA films with a high degree of hydrolysis are brittle and difficult
to dissolve because of a considerable degree of crystallinity.5

Lowering the degree of hydrolysis or adding plasticizers leads to
more flexible and soluble PVA films. To understand the
conditions of stability of these films with respect to segregation
and their physical properties, it is important to take into account
a copolymer nature of PVA.6,7

Other examples of statistical copolymers include carbox-
ymethyl cellulose (CMC),8 acrylonitrile butadiene styrene
(ABS), styrene−butadiene rubber (SBR), membrane electolyte
polymers like Nafion,9 polyurethanes,10 and many other
commercial materials.11,12 The ability to predict polymer
material properties based on their chemistry, chain structure,
and preparation method is crucial for product design and other
industrial applications. The molecular structure of statistical AB

copolymers is most commonly characterized by the composition
(i.e., the fraction of A units). Composition totally describes an
ensemble of sequences in the case when there are no correlations
between the type of segments at different positions along the
chain. In this case, copolymers are called random. If there is a
correlation between the appearance of different types of
segments at different positions along a chain, then statistical
copolymers are called correlated. Correlated copolymers can be
described macroscopically in terms of concentrations of duplets
(AA, BB, AB, BA), triplets (AAA, AAB, etc.), etc. The more
concentrations of n-tuplets are needed to fully describe the
system, the less randomness there is in a copolymer sequence.
Here, we consider the situation when only the fractions of A-
segment and AB-duplets (which is equivalent to a fixed
concentration of all duplets) are enough to fully characterize
the copolymer. If the concentration of AB-duplets in a
copolymer sequence is reduced, compared to a truly random
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copolymer, then such correlated copolymer is referred to as a
blocky copolymer, meaning that the segments of one type tend
to be arranged in blocks. In the opposite case when a copolymer
sequence is enriched in AB-duplets, the copolymer is called
alternating.
In the case of PVA, the degree of the blockiness of PVA

depends on the synthetic route.2,3 Saponification of PVA leads
to blocky copolymers, while acetylation of previously hydro-
lyzed PVA produces more random sequences. The appearance
of correlations during saponification is due to a larger reaction
constant for hydrolyzing VAc segments whose neighbors have
already been hydrolyzed.3,13

Blocky or alternating copolymers are also common results of
sequential polymerization.14 In this case, blockiness arises when
kAA≫ kAB and kBB≫ kBA, where kIJ is the reaction rate coefficient
describing the addition of I-segment to the growing chain with
segment J at the end.
Both models belong to the class of first-order Markov models

and with the assumption that copolymerization is stationary
(concentrations of monomers are kept fixed), both produce the
same types of sequences.
The equilibrium phase behavior of statistical copolymers is

rich and is not yet fully understood. Early works on the phase
behavior of random copolymers15−17 concentrated on consid-
ering Flory−Huggins mixtures or copolymers with different
compositions (fractions of A-segments in AB-copolymer). As
the Flory−Huggins parameter, χ, describing interactions
between dissimilar segments, increased, an initially homoge-
neous mixture of copolymer chains separated into two phases
with a different fraction of A-segments. The location of a
spinodal point, with respect to separation into two phases, was
predicted by Scott:15 χ =

ρ ρ−s
1

2 1
2 , where ρ2 and ρ1 were

correspondingly the second and the first moment of the
distribution with respect to composition. Nesarikar et al.17 went
further and calculated phase diagrams with cloud points and
fractions of A-segments in coexisting phases for short Bernoulli
copolymers. They showed that as the Flory−Huggins
parameter, χ, increased, separation into two, three, four, etc.,
phases occurred. Importantly, it was also shown that
distributions with respect to the fraction of A-segments in
coexisting phases, in general, had different shapes; in other
words, fractionation took place. However, these predictions and
calculations weremade only for polymers with a small number of
segments, N ≈ 10−30, and no correlations along the sequence.
Another approach to predict phase behavior of random

copolymers was proposed by Shakhnovich and Gutin18 and later
developed by other authors.19−25 It was based on Landau
expansion of free energy of a copolymermelt in terms of an order
parameter representing a deviation of a local composition from a
global composition. Coefficients of expansion were calculated
within a mean-field approximation and expressed through
single-chain correlation functions averaged over all sequences.
This approach was applied to correlated random copolymers by
Fredrickson et al.19 It was shown that initially homogeneous
melt of blocky copolymers separated first into two macrophases
upon an increase in the Flory−Huggins parameter. This
transition was closely followed by remixing and forming one
microphase separated phase with no long-range order. The
period of the microphase had a strong dependence on the
temperature and decreased as L ∼ (Ts − T)−1/2 as temperature
decreased (Flory−Huggins parameter increased). For alternat-
ing copolymers, a critical value of sequence correlation λC was

found, such that for λ < λC a direct transition from the
homogeneous state into microphase separated state was
predicted, without macrophase separation.19

Nesarikar et al.17 pointed out that the one feature of the
Shakhnovich−Fredrickson approach was that it did not take
fractionation into account. It implicitly assumed that the
distribution with respect to compositions (fraction of A-
segments) had the same shape and only the mean value of
composition had been changed. This assumption was too strong
for nonsymmetric comopolymers. The further prediction was
that for sufficiently short copolymers, N ≲ 60, the transition to
microphase should be preceded by the coexistence of three
macrophases.
Recently this discussion was continued by von der Heydt et

al.,26 who considered a mixture of triblock copolymers, AAA,
BBB, ABB, AAB, BAB, ABA, with overall composition f = 0.5 and
varied volume fractions of different sequences to imitate
Markovian sequence correlations. They showed that as the
Flory−Huggins parameter, χ, increased coexistence of two A-
and B-richmacrophases was followed by the coexistence of three
phases one of which was the lamellar microphase. Microphase
emerged as a shadow phase and was enriched in alternating
sequences. So, both microphase separation and three-phase
coexistence took place simultaneously.
The latest results show that it is important to take

fractionation into account to make a correct prediction of
phase behavior.27 In this work, we aim at taking into account
fractionation in the framework of the Flory−Huggins theory of
blocky copolymers with realistic chain lengths. Therefore, we
consider only the possibility of macrophase separation despite
knowing about the existence and importance of microphase
separation in statistical copolymers. This is done to get a solid
reference point for a more refined picture including microphase
separation, which may be developed in the future.
In this work, we use the method of moments proposed by

Sollich et al.28 for polydisperse systems. This method can
effectively reduce the number of degrees of freedom of the
polydisperse system; otherwise, the system consists of, an order
of magnitude, 2N different components and direct solution of the
phase equilibrium equations is not possible. To use the method
of moments, we derive the probability distribution function of
copolymer chains with respect to the fractions of A-segments
and AB-duplets. Then, we obtain Flory−Huggins phase
diagrams of blocky copolymers and study the dependence of
phase diagrams on the fraction of A-segments of the copolymer,
chain length, and degree of correlations along the sequence
(concentration of AB-duplets). At the end, we make a
comparison of our results with the work of Nesarikar et al.17

and Fredrickson et al.19

The paper is organized as follows. First, we derive a
distribution function for correlated copolymers. Then, we use
this distribution to apply the moment method and obtain phase
diagrams, volumes of coexisting phases, and their density
distributions. We finish with a discussion of the results.

■ DERIVATION OF A DISTRIBUTION FUNCTION FOR
MARKOV COPOLYMERS

To derive a distribution function for Markov copolymers of the
first order, let us first look at AB random binomial copolymers
with chain length N, the number of A-monomers equal to NA,
and their average fraction f = ⟨NA/N⟩ in the population of
copolymer chains. The distribution function can be written as
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Let us consider now an infinite random AB sequence
characterized by the fraction of A-segments, f. Then, we can
write down an information rate that corresponds to entropy per
monomer of such sequence29,30

= − − − −S f f f fln (1 )ln(1 )inf (3)

The information chemical potential of species A is then

μ = −
∂
∂

= − −
S

f
f fln ln(1 )inf

inf

(4)

If there is a finite sequence of length N in equilibrium with this
infinite system, then its grand potential depending on the
number NA = σN of A-segments in this sequence is

σ σ μ σΦ = − −
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which is a binomial distribution.
Now let us turn to the first-order Markov sequences.

Information rate, in this case, is known to take the form29

= − − − −S n
n
p

n
n
p

n
n
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n
n
p

ln ln ln lninf AA
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AB

AB

A
BA

BA

B
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(7)

here, pA = f is the probability of a randomly chosen segment to be
type A, pB = 1 − f is the probability of a randomly chosen
segment to be type B, and nIJ is a concentration of IJ-duplets in
the sequence. Concentrations of duplets satisfy conditions: nAA
+ nAB + nBA + nBB = 1, nAB = nBA = θ, nAA + nBA = f, and nBA + nBB =
1− f, where f is the fraction of A units and θ is the concentration
of AB-pairs. θ was referred previously as a block character by
Moritani and Fujiwara2 as it controls the average lengths of
blocks when the composition of copolymer is fixed, ⟨l⟩ = ( f)/
(θ). In completely random copolymer, θ = f(1 − f) and the

average length of the A-block is ⟨ ⟩ = =
θ −

l f
f

1
1

. If θ < f(1 − f),

then the sequence is depleted in AB and BA duplets and the
copolymer is defined as blocky; the average lengths of A-blocks
and B-blocks are larger than in random copolymer. Conversely,
if θ > f(1 − f), the concentrations of AB and BA duplets are
increased and the copolymer tends to be alternating, the average
length of A and B-blocks is decreased. The maximum value the θ
can take is min( f,1 − f).
An alternative parameter, which is often used to characterize

the degree of correlations and the average block length in first-
order Markov copolymers, is a parameter λ, introduced by

Fredrickson et al.19 λ describes the degree of correlations of the
sequence. λ = 0 corresponds to a random copolymer, λ < 0
corresponds to an alternating copolymer, and λ > 0 corresponds
to a blocky copolymer. Mathematically, λ is the nontrivial
eigenvalue of the transfer matrix (the trivial eigenvalue equals
one), which in our notations takes the form
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Therefore, we get for λ expressed in terms of f and θ

λ
θ

=
− −

−
f f

f f(1 )

2

(9)

Returning to the information rate and applying conditions on nIJ,
we get

θ θ θ θ θ

θ

= − − − − − − −

− − + + − −

S f f f

f f f f f

( )ln( ) 2 ln (1 )
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(10)

This expression depends on two parameters f and θ, which
describe the concentration of A-segments and AB-pairs in the
infinite sequence correspondingly. In analogy with the case of a
random sequence, we calculate the chemical potentials of these
pseudospecies from the information rate

μ θ θ= −
∂
∂

= − + − + − − − −
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f
f f f fln ln(1 ) ln( ) ln(1 )f,inf
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(11)
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(12)

For a distribution function for a chain with the finite length N,
the fraction of A-segments σ, and the fraction of AB-pairs t,
which are in equilibrium with an infinite chain with the
composition f and the fraction of AB-duplets θ, we get
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where Z is determined from the normalization condition

∫ ∫σ ρ σ =
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If we reverse the Stirling approximation again in analogy with a
binomial distribution, we can get
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In Appendix B, we show another way to derive this distribution,
which serves as additional support to the calculations presented
above.
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We would like to note that similar ideas were developed
previously to characterize the local composition profile of
compatible polymer blends in the course of macromolecular
reactions and interdiffusion.31,32

Example contour plots of the distributions are shown in
Figure 1. We can see that at a fixed value ofN and f, the width of
the distribution projected on the σ axes decreases as θ increases.
We expected to see this because the difference in compositions
between different chains is expected to be larger when segments
are arranged in blocks. If we compare two distributions with the
same θ but different f, we can see that the distribution with f
closer to 0.5 is broader, so variations in compositions are largest
for the symmetric copolymer.

■ MOMENT FREE ENERGY
Let us now consider a melt of random copolymers with the
distribution ρ(σ, t) and write down a moment free energy for
it.28 We start with Flory−Huggins free energy for the melt

∫ ρ σ ρ σ
σ

σ χρ ρ= − + −
i
k
jjjjj

y
{
zzzzz

F
k TV N

t
t

R t
t

1
( , ) ln

( , )
( , )

1 d d (1 )
B 0

1 1

(16)

where V is the volume of the system, χ is a Flory−Huggins
parameter describing interactions of segments of type A and B
and

∫ρ σρ σ σ= t t( , )d d1 (17)

Figure 1.Distribution ρ(σ,t) for copolymers characterized byN = 100 and (a) f = 0.3, θ = 0.09 (blocky); (b) f = 0.5, θ = 0.09 (blocky); (c) f = 0.3, θ =
0.21 (random); (d) f = 0.5, θ = 0.25 (random); (e) f = 0.3, θ = 0.27 (alternating); and (f) f = 0.5, θ = 0.35 (alternating).
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is the total volume fraction of A-monomers. R0(σ,t) is the
distribution of chains with respect to the fractions of A-segments
and AB-duplets in the parent phase. It is added here for
convenience as far as it represents a term linear in density ρ(σ, t),
which does not affect the phase behavior of a copolymer melt.
We also implicitly assume that volumes of A and B segments are
equal to each other, both segments are flexible so that ρ(σ, t) is
simply a volume fraction of the polymer with parameters σ, t.33

Now we can apply the moment method28 to reduce the
number of degrees of freedom of the problem. We fix m first
moments of the distribution ρi = ∫ σiρ (σ, t)dσdt using Lagrange
multipliers λi along with the total volume fraction which is equal
to 1 with Lagrange multiplier λ0 and the constrained free energy
is minimized with respect to the remaining degrees of freedom

∫
∫

∫∑

ρ σ ρ σ
σ

σ

χρ ρ λ ρ σ σ

λ σ ρ σ σ ρ

′ = −

+ − − −

− −
=

i
k
jjjjj

y
{
zzzzz
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kTV N

t
t

R t
t

t t

t t
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( , ) ln

( , )
( , )

1 d d

(1 ) ( , )d d 1

( , )d d
i

m

i
i

i

0

1 1 0

1 (18)

We note here that though we have two-dimensional (2D)
distribution, depending on two parameters, ρ(σ, t), we fix only
moments of the composition here. The reason for this is that the
Flory−Huggins interaction term depends only on the first
moment of the σ (fraction of A-segments), so fixing of other
moments (for example, moments of t) does not affect the phase
diagram. This was checked by direct calculations (fixing all
moments up to the third order gives the same result as fixing only
moments of σ). In case when the contribution of interactions
into free energy depends additionally on θ1 = ⟨t⟩, the average
concentration of AB-duplets all moments of the distribution
should be fixed (physically this case takes place, for example,
when Flory−Huggins parameter describing interactions of two
segments depends on the type of their neighbors, the model
considered by Balazs et al.34).
Minimizing F′ with respect to ρ(σ, t), we get

ρ σ σ= λ λ σ+∑ =t R t e( , ) ( , )0
i
m

i
i

0 1 (19)

In this approximation, all possible distribution functions in any
coexisting phases belong to this family (eq 19). It is clear why we
needed to include R0(σ, t) in the formula (eq 18), because the
parent phase must be included in the family. The larger the
number of fixed moments, m, the larger the set of functions for
approximating distributions in daughter phases. Then, we
substitute eq 19 into eq 18 and obtain an expression for the
moment free energy (omitting terms which are linear in ρi)

∑λ λ ρ χ ρ= + − ′
=

F ,m
i

m

i i0
1

1
2

(20)

where χ′ = χN. This expression can be analyzed further as the
free energy of a m-component system.

■ PHASE DIAGRAMS
In this section, we calculate phase diagrams using derived
distribution (eq 15) and moment free energy (eq 20).
We expect that upon an increase of the Flory−Huggins

parameter, χ′, an initially uniformmelt separates into two phases
at a cloud point χ′cloud, where a new phase with infinitesimal
volume emerges. It is also expected that the spinodal point of the
system is located at some value of χ′s > χ′cloud. Beyond the

spinodal point, the a homogeneous state cannot exist as a
metastable.
To construct a phase diagram and to determine the

composition of coexisting phases from the moment free energy,
we write down standard expressions for chemical potentials and
osmotic pressures.

μ
ρ

λ χ ρ=
∂
∂

= − ′
F

2m
1

1
1 1

(21)
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= >
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∑π ρμ λ χ ρ= − + = − − ′
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F .m
i

m

i i
1

0 1
2

(23)

Conditions of phase equilibrium for coexisting phases α, β, γ,
etc., are

μ μ μ= = = ≤ ≤α β γ i m..., 1i i i (24)

π π π= = = ≤ ≤α β γ i m..., 1 (25)

Additionally, there are conditions that amounts of ρi are
conserved

ρ ρ ρ ρ= + + +α
α

β
β

γ
γv v v ...i i i i

(0)
(26)

where ρi
(0) is the ith moment of composition in the parent phase

and

= + + +α β γv v v1 ... (27)

the sum of all volume fractions of the coexisting phases equals to
1.
These equations can be solved by the standard Newton

method. For example, for three coexisting phases with m
moments fixed, the set of unknowns is {λ1

α,λ1
β,λ1

γ,λ2,..,λm,vα,vβ}
and there are m+4 equations in total (see Appendix A for
details).
To determine the first spinodal and cloud points, it is enough

to fix only one moment.28 For the spinodal point at which the
initial homogeneous phase loses stability, analytic expression can
be derived

ρ
λ
ρ

χ
ρ ρ

χ
∂
∂

=
∂
∂

− ′ =
−

− ′ =
F

2
1

2 0m
s s

2

1
2

1

1 2 1
2

(28)

which is a well-known condition for the spinodal point in
random copolymers.15

To calculate the characteristics of coexisting phases above the
cloud point, it is needed to fix more moments. However, it is not
known in advance howmany moments are needed to be fixed to
produce a satisfactory approximation of the actual composition
of the coexisting phases. We proceed by fixing an increasing
number of moments at each step until the phase diagram does
not change anymore for a given value of χN.
Figure 2a shows the phase diagram of a copolymer with a

fraction of A-units f = 0.3, fraction of AB-duplets θ = 0.09, and
chain length N = 100. Figure 2b shows the dependence of the
volume fractions of coexisting phases on χN. The binodal for
separation of the initially homogeneous phase into two phases is
located at χN = 56.2. One of these phases is the cloud phase with
a composition equal to the initial composition of the system ρ1 =
0.305 (it is denoted as α). It occupies nearly all of the system
volume (see Figure 2b). Another phase is a shadow phase with a
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volume fraction of A-segments ρ1 = 0.695 (it is denoted as β), it
occupies an infinitesimal volume. Upon further increase in χN,
the average fraction of A-segments in the shadow phase
decreases strongly until it reaches the value ρ1 = 0.45 at the
spinodal point (χN = 66.2) corresponding to the instability
point of the initial homogeneous phase. The decrease in the
volume fraction of A-segments in the shadow phase is a
consequence of the increase in its volume fraction. If the volume
fraction of a phase is sufficiently high, its average fraction of A-
segments is inevitably close to the volume fraction of A-
segments in the initial phase because the initial distribution has
one thin single peak. However, it is interesting to note that the
compositional contrast between the phases above the spinodal,
for example, at χN = 70 Δρ1 ≈ 0.13 is larger than standard
deviations of each phase (ρ2

α − (ρ1
α)2)1/2 = 0.0829 and (ρ2

β −
(ρ1

β)2)1/2 = 0.0831 (noting that the standard deviation of the
parent phase is a bit larger and is equal in this case to (ρ2

0 −
(ρ1

0)2)1/2 = 0.0869) meaning that they can be distinguished. At
χN ≈ 77, the second binodal with respect to the coexistence of
three phases is located and a new shadow phase emerges
(denoted as γ). The compositions of coexisting phases at this
point are ρ1 = 0.29, ρ1 = 0.4, and ρ1 = 0.64. At χN≈ 86.4, the first
shadow phase losses its stability, which corresponds to the

second spinodal point (phase compositions are ρ1 = 0.28, ρ1 =
0.39, and ρ1 = 0.54). Mathematically, this means that the
determinant of the matrix composed of second derivatives of
moment free energy with respect to fixed moments ρi equals
zero at this point in the shadow phase
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(29)

The next spinodal point is located at χN = 107.7, and here the
shadow phase with the largest ρ1 loses stability and separates
into two phases. However, this fact is not reflected in Figure 2a.
Also, the cloud point at which the fourth phase emerges is not
shown.
Below all diagrams are calculated with nine moments of

compositions fixed. We discovered that to correctly predict the
direction of change in the composition of a shadow phase above
the first cloud point (for example, see Figure 2a) at least three
moments should be fixed for copolymers with nonsymmetric
composition f ≠ 0.5. To predict correctly, the location of the
second spinodal point and volumes of coexisting phases, at least
six moments need to be fixed. Also, to predict the location of the
second cloud point, at least eight moments are required.
Figure 3 shows the phase diagram of a copolymer with

composition f = 0.3, blockiness θ = 0.15, and length N = 100,

calculated with moment free energy depending on nine
moments of the distribution. The increased value of θ, fraction
of AB-duplets, compared to Figure 2a means that copolymer is
less correlated. However, this value is still less than in a binomial
copolymer with the same composition, i.e., θ = f(1 − f) = 0.21.
One can see that the increase in concentration of AB-pairs leads
both to an increase of the value of χN at which the first spinodal
and the first cloud point are located. It is expected because an
increase in θ leads to a decrease in the variance of the
distribution, so increase of χN at spinodal point (eq 28). The
same reason explains why the distance between consecutive
spinodals on the diagram increases and the compositional

Figure 2. (a) Phase diagram for f = 0.3, θ = 0.09, and N = 100 and nine
moments fixed. (b) Volume fractions of coexisting phases. Spinodals
are shown as dotted lines, cloud points are shownwith broken lines, and
solid curves show the compositions of coexisting phases in (a) and the
volume fractions of coexisting phases (α, β, γ) in (b). As Flory−
Huggins χ parameter increases, the number of coexisting phases
increases.

Figure 3. Phase diagrams for f = 0.3, θ = 0.15, and N = 100 and nine
moments fixed. Spinodals are shown as dotted lines, cloud points are
shownwith broken lines, and solid curves represent the compositions of
coexisting phases.
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contrast decreases, though the composition of a shadow phase at
the first cloud point does not change ( fsh = 1 − f).
Figure 4 shows the effect of increasing N on the phase

diagram, it is calculated for a copolymer characterized by

parameters f = 0.3, θ = 0.09, and N = 300. Interestingly, we can
see that as we increaseN both the first spinodal point χS and the
first cloud point χC slightly decrease and their differenceΔχ = χS
− χC essentially does not change.
Finally, Figure 5a shows a special case of a phase diagram for a

system with a critical composition f = 0.5. It differs from the
phase diagrams for asymmetric copolymers. The first spinodal
point coincides with the cloud point, and the transition from one
phase to two phases is continuous. The composition of the two
coexisting phases is symmetric with respect to the line f = 0.5,
and their volume fraction does not change until the third phase
emerges (Figure 5b). The transition from two phases to three
phases is discontinuous. As χN increases the volume fraction of a
phase with the volume fraction of A-segments, f = 0.5 increases
until the next spinodal line. The next transition is again
continuous. These observations agree with the observations of
Nesarikar et al.17 for binomial copolymers.
Figure 6 shows the dependence of cloud and spinodal points

on the fraction of A-segments and chain length. As expected χ
values at which spinodal and binodal points are located increase
with the increasing asymmetry of the copolymer. A slight
decrease of both χS and χC with N can also be observed. The
spinodal converges to the limit derived by Fredrickson et al.19 for
N→∞ (see Figure 7)

χ θ
θ

=
− − −→∞ f f f f

lim
2 (1 )(2 2 )N S 2

(30)

We also predict that binodal does not converge to spinodal in the
limit N→∞ (Figure 8), and the difference between the Flory−
Huggins parameter at the cloud point and the spinodal point,Δχ
= χS− χC, is nearly independent onN. This is a new prediction.19

■ DISCUSSION
In the previous section, Flory−Huggins phase diagrams for
correlated copolymers are presented which were calculated
using the method of moments. Here, we compare obtained
results with existing works and propose future developments.

First, we want to note that our phase diagrams qualitatively
look similar to those for short binomial copolymers considered
by Nesarikar et al.17 In that paper, phase diagrams were obtained
by direct solution of phase equilibrium equations for all
components in the system. Insofar as binomial copolymers are
a special case of correlated copolymers, this demonstrates that
the combination of distribution (eq 15) and the moment
method produces consistent results.

Figure 4. Phase diagrams for f = 0.3, θ = 0.09, N = 300, and nine
moments fixed. Spinodals are shown as dotted lines; cloud points are
shownwith broken lines; and solid curves represent the compositions of
coexisting phases.

Figure 5. (a) Phase diagrams for f = 0.5, θ = 0.09, and N = 100. (b)
Volume fractions of coexisting phases. Spinodals are shown as dotted
lines, cloud points are shown with broken lines, and solid curves
represent the compositions of coexisting phases.

Figure 6. Dependence of spinodal points χS (dotted) and cloud points
χC (dashed) at fixed values of θ = 0.09 and (1)N = 100 (red) and (2)N
= 1000 (black).
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Our prediction for a spinodal converges to the expression
derived by Fredrickson et al.19 for infinitely long chains. We also
showed that the distance between binodal and spinodal is nearly
independent of N in contrast with previous predictions.19

We predict that the compositional contrast between
coexisting phases is larger than the width of the distributions
of these coexisting phases, so in the framework of Flory−
Huggins theory, phases can always be distinguished. It would be
interesting to verify our predictions with respect to contrast in
the composition of macrophases in simulations (at least for short
sequences), for example, using the method proposed by
Houdayer and Müller35 extended to simulate asymmetric
copolymers.
In the present work, we consider the simplest possible case of

the copolymer in a melt with a fixed chain length. However, the
method of moments allows taking polydispersity in chain length
into account as well. The only thing which is needed for it is a
distribution function depending additionally on the chain
length, ρ(σ, t, N). In the case of the PVA−PVAc system
synthesized by the postmodification of PVAc, this distribution
function is obtained by the product of distribution function
describing polydispersity of PVAc and the distribution function
with respect to the fractions A-segments and AB-duplets (eq
15). Additionally, for the PVA−PVAc system, it should be taken
into account that the volume of the VAcmonomer unit is 2 times
larger than the volume of the VA monomer unit, which leads to
polydispersity in length even in the case when the initial PVAc is
perfectly monodisperse. This effect is also easy to account for

using the presented approach. Both polydispersity in length and
segment asymmetry increase incompatibility. Interestingly, our
preliminary calculations show that the segment asymmetry has a
larger effect on the phase diagram than the chain length
polydispersity (for Poisson distribution of initial PVAc).
The proposed approach can also be generalized to predict the

phase behavior of mixtures of Markov copolymers with a
plasticizer (solvent), which is an important industrial problem. It
is well known that the phase behavior of these mixtures is
strongly affected by the polydisperse nature of these materials,
especially for blocky copolymers.28,36−38

To derive a distribution function for the first-order Markov
copolymers, we used an approach related to the large deviation
theory,30 which allows us to do it easily and additionally go
beyond a Gaussian approximation.39 To understand the effect of
large deviations in the initial distribution on phase behavior in
the framework of our model, we compare (see Figure 9) phase

diagrams obtained with the method of moments for distribution
(eq 15) (black curves) and the Gaussian approximation of this
distribution (red curves) in a case f = 0.3, θ = 0.09, andN = 100.
As far as the variance for both distributions is the same, the first
spinodal point is the same in both cases, it is shown by a dotted
line in Figure 9. The composition of the shadow phase at the
cloud point is also the same in both cases and equals 1 − f. The
location of the first cloud point is different (shown by dashed
black and red lines). In the case of Gaussian distribution, it is
located just below the spinodal in contrast to the case of parent
distribution (eq 15) considered in this paper. The contrast in
composition between cloud (α) and shadow (β) phases is small
in the case of Gaussian distribution. It is smaller than the width
of the distribution within each coexisting phase, so such
coexisting phases cannot be distinguished. In contrast, for the
case of the distribution (eq 15), phases can be distinguished as
we discussed above. This means that difference here is not just
quantitative but also qualitative. The last difference is in the
location of the second spinodal point. In the case of Gaussian
parent distribution, the first shadow phase loses stability at χN≈
73.3 (second spinodal point shown with a red dotted line in
Figure 9), which is a much smaller value of χN than in the case of
parent distribution considered in this paper. We did not go
beyond the second spinodal for the parent Gaussian distribution
because we were unable to find a converging solution for three-

Figure 7. Spinodal points converge to the expression from the paper of

Fredrickson et al. χ = λ
λ

−
− +S f f
1

2 (1 )(1 )
, f = 0.5, and θ = 0.09.

Figure 8.Dependence of spinodal points, χS, and binodal points, χC, on
the length of the chain N for copolymer with f = 0.3 and θ = 0.09. Figure 9. Comparison of the compositions of coexisting phases for the

case of distribution (eq 15) (black) and its Gaussian approximation
(red) for the case f = 0.3, θ = 0.09, andN = 100. Nine moments are fixed
in both cases.
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phase coexistence in this case. Concluding, we can suggest that
Gaussian approximation in this particular case gives qualitatively
different predictions for phase behavior.
In the present work, we use the Flory−Huggins model to

describe a copolymer melt. There are several limitations to this
model. One of them is that it does not allow to consider the
possibility of microphase separation. It is expected that the
picture including microphase separation is the following. Upon
increase in Flory−Huggins parameter initially, homogeneous
melt separates into two coexisting macrophases.19 At further
increase in Flory−Huggins parameter, first, microphase
separated phase coexisting with two macrophases is expected
to emerge,26 then it is expected that macrophases will be
absorbed by a microphase. The type of microphase was
predicted to depend on the composition of the copolymer21,25,40

and the degree of incompatibility. The possibility of coexistence
between different ordered structures was also predicted.25,41 All
of these results were obtained with the assumption that
distribution in all coexisting phases had the same shape and
only the average composition was different. It would be
interesting to see in the future theory developments accounting
both for microphase separation and fractionation for the case of
asymmetric random copolymers.

■ CONCLUSIONS
In this paper, we derive a probability distribution function for a
blocky copolymer, with first-order Markov correlations along
the sequence. Then, we used this distribution with the method

of moments by Sollich et al.28 and Flory−Huggins theory to
obtain the phase diagrams of blocky copolymers.
This combination of methods allows one to calculate Flory−

Huggins phase diagrams for copolymers characterized by
arbitrary length and blockiness. Qualitatively obtained phase
diagrams look similar to those for short binomial copolymers.17

As the final message, we would like to emphasize the
importance of characterizing Markov copolymers (those
obtained in stationary conditions) by both fractions of A-
segments and AB-duplets. This work shows that the phase
behavior of two copolymers with the same composition but a
different fraction of AB-duplets can be very different. So,
characterization of the structure of copolymers, such as PVA, in
practical settings should include the determination of this
parameter.

■ APPENDIX A
In this section, we include computation details. Consider the
case of moment free energy with m moments fixed and two
phases in equilibrium. Then, to determine the compositions of
these phases, one needs to solve a system of equations
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It is solved numerically with the Newton method xn+1 = xn −
f(xn) [Df(xn)]
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Derivatives with respect to Lagrange parameters are calculated
as
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All calculations were made using scripts written in Python with
the mpmath package allowing arbitrary precision mathematics.
The need in arbitrary precision mathematics arises because the
matrix (eq 32) in general is poorly defined. All integrals were

calculated with the trapezoidal rule and uniform discretization
along the composition axis. For factorials, Stirling approximation
including a square root was used π! ≈ ·n n n e2 ( / )n. The step
along χN axes was varied to ensure convergence of the Newton
solver and maximization of the computation speed.
The transition from discrete distribution to continuous, as

well as following discretization, introduces errors upon
calculation of integrals. These errors lead to relatively large
dependencies of λi parameters on the degree of discretization (of
order 1). These differences increase with χN and decrease with
an increasing degree of discretization. Differences in λi, however,
produce much smaller differences in free energies calculated
with different discretizations, which are of order 10−5 for
discretizations up to 500. However, the difference between the
energies of two and three phases is of order 10−7 when all
calculations are done with the same discretization. As a result,
the free energy of two-phase coexistence calculated with larger
discretization may be smaller than the free energy of three-phase
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coexistence calculated with smaller discretization, even at the
second spinodal point when the first shadow phase losses
stability. So, it is recommended to keep discretization fixed
during calculations. Values of all transition points depend to
some extent on discretization. However, the difference between
discretization 100 and 500 is of order δχN ≈ 0.1 and differences
tend to decrease with an increase in discretization. As far as
computational cost is concerned, this increases strongly with an
increase of discretization (∼Ndiscr

2 ). We used discretization 100
for calculations of all phase diagrams.

■ APPENDIX B
Consider again the binomial distribution

ρ = !
! − !
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In this expression, f NA(1 − f)N−NA gives the probability of a
specific sequence ABABB... with total length N and the number
of A-segments equals toNA. Also,

!
! − !

N
N N N( )A A

is the total number

of sequences which has the same description, i.e., have a total
length N and the number of A-segments equals to NA. So, if we
look at the distribution for a blocky copolymer
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we can see that it has the same structure as the binomial
distribution and the probability of a specific sequence, ABABB...,
in which we calculated both the number of A-segments, NA, and
the number of AB-duplets, NAB equals to
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So, if we calculate the probability of ABBB sequence (it is short
here for simplicity), we have
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where PIJ are the corresponding elements of the transfer matrix
(eq 32). From the formula above (eq 37), we obtain

θ θ
* =

− −
−

p
f

f f
(ABBB)

(1 )
(1 )

2 2

3
(39)

So we have a discrepancy between p(ABBB) and p* (ABBB).
The contradiction is resolved if we take into account that in eq
37 no start of the sequence was ever specified and it must be
“cyclic”without cyclic symmetry. So to obtain the probability for
a linear sequence, we need to specify a starting segment and
remove one duplet adjacent to it (in this particular case the BA-
duplet)

= * ·p p
p

P
(ABBB) (ABBB) A

BA (40)

However, these end-chain effects will be unimportant in the
limit of large N, NA, and NAB.
The second part of the distribution, the number of sequences

with the same description N, NA, and NAB, can be calculated in
the following way. Assuming that we have a string of A-s with
length NA and a string of B-s with length N − NA. Then, if we
want to mix them in a way such that there are precisely NBA +
NAB = 2NAB boundaries between A and B-blocks, we need to find
a number of ways in which one can split a continuous A-string
intoNAB blocks and for each of these splits find a number of ways
the B-string can be split into NAB blocks. This means that the
total number of combinations is

!
− ! !

·
− !

− − ! !
N

N N N
N N

N N N N( )
( )

( )
A

A BA BA

A

A BA BA (41)

This expression coincides with the number of sequences with
the same description from the distribution in eq 36. In this case,
end-chain effects are also neglected as the number of boundaries
2NAB is even, implying that all beads are located on a “circle”.
It is interesting to note that distribution in eq 36 converges

exactly to binomial distribution in the case when θ = f(1− f) and
the summation over NAB is taken. This happens because for
binomial distribution there is no difference between a linear
chain model with ends and the circle model considered above
without ends, as there is no correlation between the probability
of appearance of different segments.
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