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ABSTRACT

Central to the core principle of cell theory, depicting
cells’ history, state and fate is a fundamental goal in
modern biology. By leveraging clonal analysis and sin-
gle-cell RNA-seq technologies, single-cell lineage trac-
ing provides new opportunities to interrogate both cell
states and lineage histories. During the past few years,
many strategies to achieve lineage tracing at single-cell
resolution have been developed, and three of them (in-
tegration barcodes, polylox barcodes, and CRISPR
barcodes) are noteworthy as they are amenable in
experimentally tractable systems. Although the above
strategies have been demonstrated in animal develop-
ment and stem cell research, much care and effort are
still required to implement these methods. Here we
review the development of single-cell lineage tracing,
major characteristics of the cell barcoding strategies,
applications, as well as technical considerations and
limitations, providing a guide to choose or improve the
single-cell barcoding lineage tracing.

KEYWORDS single-cell lineage tracing, integration
barcodes, polylox barcodes, CRISPR barcodes

INTRODUCTION

Cells are the basic units of all living organisms. As a long-
standing goal, depicting a cell’s origin, current state, and future
fate in physiological and pathological contexts presents a
challenging task for biomedical research. Recent advances in

single-cell transcriptomics hold great promises to elucidate
the molecular mechanisms of cell fate determination of animal
development and stem cell differentiation (Hwang et al., 2018;
Lafzi et al., 2018; Potter, 2018; Svensson et al., 2018). By
simultaneously measuring the expression of multiple genes in
individual cells, single-cell RNA sequencing (scRNA-seq)
greatly facilitates the characterization of cell states with a large
dimensionality. Additionally, based on pseudotemporal
ordering (sequence of gene expression change) or mRNA
splicing dynamics, computational tools, such as Monocle and
RNA velocity, have been conceived to infer cell state trajec-
tories, offering an attainable approach to determine molecular
dynamics of thousands of genes (La Manno et al., 2018;
Saelens etal., 2019). Armed with the analytic power of scRNA-
seq, many investigations attempt to provide a comprehensive
molecular cell atlas of animal development at the single-cell
level, which are accompanied with identifying new cell types
and illustrating the major cell lineage segregation, as well as
characterizing molecular markers or drivers (Briggs et al.,
2018; Farrell et al., 2018; Zhong et al., 2018; Cao et al., 2019;
Packer et al., 2019; Pijuan-Sala et al., 2019; Tam and Ho,
2020; Mittnenzweig et al., 2021). Besides, numerous studies
have been carried out to delineate the cell fate transitions in
both 2D stem cell culture and 3D organoids (Treutlein et al.,
2016; Camp and Treutlein, 2017; Semrau et al., 2017; Han
et al., 2018). Similarly, scRNA-seq data continue to grow
rapidly with the progress of cell atlas projects (Regev et al.,
2017; Bock et al., 2021).

As mentioned earlier, current research based on single-cell
transcriptomics heavily relies on pseudotemporal ordering to
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infer cell trajectories and connective lineage relationships.
However, route descriptions of state transitions may or may
not be equivalent to the true lineage paths of a progenitor
population, and severe limitations remain to be resolved
before accurate inferences can be achieved. First, a confident
inference of cell trajectory requires substantial sampling of
cells, which may be impeded by the incomplete or insufficient
coverage of scRNA-seq in some cases (Tanay and Regeyv,
2017). Second, cell fates may converge in specific situations.
A well-known example of lineage convergence is that the
definitive endoderm has both extra-embryonic and embryonic
origins (Kwon et al., 2008; Chan et al., 2019). Third, the cell
state transition may undergo rapid divergence with the change
of a few molecular drivers, which is challenging to distinguish
with transcriptome analysis alone (Wagner et al., 2018;
Packer et al., 2019; Tritschler et al., 2019; Wagner and Klein,
2020). Alternatively, by utilizing the dynamics of unspliced and
spliced MRNAs, RNA velocity adds a new layer of information
(molecular kinetics) to clarify the direction of cell state transi-
tions. However, the ability to infer cell fate transitions for RNA
velocity relies on assumptions such as constant gene-specific
splicing rates, which may be violated in some situations (La
Manno et al., 2018; Svensson and Pachter, 2018; Tritschler
etal.,2019; Bergenetal., 2020; Lederer and La Manno, 2020).
Altogether, although current computation tools may reveal the
cell state trajectories by various pseudo-time analysis algo-
rithms, more defined information with the ability to record the
cell history is crucial to fully clarify the true path of lineage
specification.

As a substantial improvement in depicting and predicting
cell behaviors, recent developments of single-cell lineage
tracing, which combines single-cell omics and lineage tracing,
enable detecting cell state and clonal relationship in parallel,
thereby illustrating a credible route of lineage segregation by
integrating the information of the clonal history and state
transition. As a cutting-edge technique, extensive reviews
have discussed various aspects of its basic concepts,
sequence architectures, computational tools, and so on
(Woodworth et al., 2017; Kebschull and Zador, 2018; Kester
and van Oudenaarden, 2018; Baron and van Oudenaarden,
2019; McKenna and Gagnon, 2019; Wu et al., 2019; VanHorn
and Morris, 2020; Wagner and Klein, 2020). In this technical
review, we first attempt to describe the whole path of technical
advances leading to the single-cell resolution of lineage trac-
ing. We then focus on current implementations for three bar-
coding strategies widely adapted in experiments.
Furthermore, we summarize several scenarios to apply sin-
gle-cell lineage tracing. Finally, we discuss some technical
considerations and caveats of current barcoding strategies.

FROM TRADITIONAL LINEAGE TRACING
TO SINGLE-CELL LINEAGE TRACING

Lineage tracing is the gold standard to infer the relationship
between progenitors and their progenies. By labeling the
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progenitors and examining their locations and marker
expressions at a later time point, the lineage segregation that
occurred during this interval can be queried. Further lineage
structure could also be constructed by consecutively labeling
the progenitors at different developmental stages (Bucking-
ham and Meilhac, 2011; Blanpain and Simons, 2013; Hsu,
2015; Wagner and Klein, 2020). Lineage tracing strategies
can be roughly divided into two categories: prospective
tracing and retrospective tracing. Prospective tracing
approaches label the progenitor cells and identify their
descendants with the same tag. In contrast, retrospective
tracing approaches access the natural genetic markers
accumulated in the progenies across multiple cell divisions
and then infer their lineage relationship through shared
markers (Girskis and Woodworth, 2016; Woodworth et al.,
2017; Baron and van Oudenaarden, 2019; Figueres-Onate
et al., 2020; Wagner and Klein, 2020).

Tracking all the offspring of a single cell to define its cell
lineage (i.e., prospective tracing) has a long history dating
back to the early ages of developmental biology. The initial
implementation of lineage tracing relies on direct observation
and manual labeling using vital dyes. Although it's possible
to reach single-cell resolution, these techniques are labor-
intensive and usually limited to transparent samples. In the
era of modern molecular genetics, fluorescent proteins,
whose expressions are usually under the control of site-
specific recombinases such as Cre, become the conven-
tional “molecular dyes” to track cells. However, as the
expressions of site-specific recombinase are usually con-
trolled by cell-type-specific promoters, which in turn confine
the expressions of fluorescent proteins in a group of cells
instead of a single cell. To increase the resolution of lineage
tracing, multicolor labeling systems such as Brainbow and
Confetti are developed. By putting multiple flox sites and/or
multiple fluorescent proteins in specific combinations,
Brainbow or Confetti may generate dozens to hundreds of
colors to distinguish different cells upon Cre activation.
Nevertheless, multicolor labeling remains challenging to
reach single-cell resolution due to the complicated trials of
time and dose on initiating labelling (Buckingham and Meil-
hac, 2011; Hsu, 2015; Weissman and Pan, 2015; Liu et al.,
2020). In contrast, DNA barcodes are DNA fragments with
huge sequence variations and their advent offers a novel
approach to label individual cells (Fig. 1A). Retroviral librar-
ies of DNA barcodes allow for labeling thousands of
hematopoietic stem cells (HSCs) and tracking their cell fates
simultaneously, which greatly enhance the tracing contents
and resolution (Gerrits et al., 2010; Lu et al., 2011; Naik
et al., 2014; Weinreb et al., 2020). However, viral barcoding
is not easy to be precisely implemented in some in vivo
settings. To address this problem, new genetic labels such
as polylox barcodes and CRISPR barcodes have been
developed. Their versatile applications are capable of
labeling a single progenitor in vivo, for some barcodes are
generated in low probabilities, making it unlikely to contain
the same barcode among multiple cells (McKenna et al.,
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Figure. 1. Barcoded-based single-cell lineage tracing. (A) Comparison between Cre-LoxP labeling and DNA barcode labeling.
(B) Integration barcodes. One or multiple integration barcodes can be used as cell identifiers to record clonal information. (C) Polylox
barcodes. (D) CRISPR barcodes. In most cases, most InDels occur within a single target (intrasite InDel), but a deletion spanning
multiple targets may happen when Cas9 cuts two targets at the same time (inter-site deletion). As illustrated, a middle intrasite InDel
may be eliminated by inter-site deletion. IntBC, integration barcode; polyloxBC, polylox barcode; CRISPR BC, CRISPR barcode; FP,
fluorescent protein; pA, polyA tail. (E) Base-editing barcodes. SNVs induced by base editors are usually adjacent to the DNA binding

motifs.

2016; Pei et al., 2017; Kalhor et al., 2018). Remarkably, like
somatic mutations, cumulative CRISPR/Cas9 insertions and
deletions (InDels) can also serve as genetic landmarks to
reconstruct the lineage hierarchy of different cells (Baron and
van Oudenaarden, 2019; Espinosa-Medina et al., 2019;
Spencer Chapman et al., 2021). A more recent breakthrough
for lineage tracing is the development based on base editors,
which offers more informative sites to record the cell division
events (Liu et al.,, 2021). Of note, compared to somatic
mutations, InDels and mutations induced by CRISPR-based
genome editing can record more mitotic divisions due to their
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faster mutation rates, thus generating a more elaborate cell
lineage tree. In summary, the trend of lineage tracing is
towards finer (from distinguishing a group of cells to a
specific cell) and broader (from tracing a few cells to thou-
sands of cells) resolutions of both progenitors and their
offspring.

Nevertheless, detecting thousands and millions of bar-
codes that label thousands of progenies is a strenuous task.
In this regard, transcribing the barcode information into the
mRNA pool and retrieving these barcodes by high-through-
put sequencing such as scRNA-seq is more practical.
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Importantly, scRNA-seq at the end of lineage tracing also
assists the characterization of progenies’ phenotypes (Raj
et al.,, 2018; Wagner et al., 2018; Pei et al., 2020; Wagner
and Klein, 2020). This combined effort to distinguish thou-
sands of clones and a variety of cell types leads to the birth
of single-cell lineage tracing (SCLT). In brief, compared to
classical prospective or retrospective lineage tracing, SCLT
shows two paramount features. First, SCLT can identify the
progenitor-progeny relationship by barcode evolution and
define the states of each cell by scRNA-seq, thus enabling
the revelation of integrated lineage kinship and molecular
trajectory. Second, thousands of clones can be analyzed in
parallel to refine the lineage connections, representing an
unbiased and large-scale survey of cell-to-cell transitions.

BARCODE CLASSIFICATION

The genetic markers for SCLT can be roughly divided into
two categories: endogenous markers and exogenous
markers. Common endogenous markers include nuclear
genome changes (e.g., SNP, CNV, microsatellites repeat, L1
retrotransposition elements) and mitochondrial genome
changes. These endogenous markers usually arise from the
random errors of DNA replication, DNA repair, or random
transposon integration in chromosomes. It's feasible to
reconstruct the complete or partial cell lineage by deducing
the pattern of mutation heredity. However, the readout of
somatic mutations usually requires costly deep sequencing
of the whole genome or exome of single cells, given the low
frequency of these somatic mutations and their sparse
genomic distribution (Woodworth et al., 2017; Baron and van
Oudenaarden, 2019; Bizzotto et al., 2021; Spencer Chap-
man et al., 2021). Nevertheless, a few studies take advan-
tage of mutations in the mitochondrial DNA for their high
mutation rate, high copy number, and high levels of hetero-
plasmy. This strategy reduces the cost of sequencing but
may suffer from the horizontal transfer of mitochondria
between cells (Ludwig et al., 2019; Lareau et al., 2021).
Recently, some researchers tried to use CRISPR/Cas9 or
base editor to target some specific endogenous loci of the
genome. These modifications increase the frequency of
detectable mutations, but might violate the normal develop-
ment of cells (Hwang et al., 2019; Cotterell et al., 2020; Ye
et al., 2020).

To avoid the limitations of endogenous markers, three
major types of exogenous markers (integration barcode,
polylox barcode, CRISPR barcode) have been established
for experimental systems that are compatible with genetic
manipulations (Fig. 1B-D). These exogenous markers are
usually packed in a defined region and transcribed by con-
stitutive promoters to facilitate their detection by high-
throughput sequencing methods such as scRNA-seq and
amplicon sequencing. As these exogenous markers can
achieve high resolution of lineage tracing in the experimen-
tally tractable system, comprehensive descriptions of these
strategies are discussed here. Besides, a brief introduction
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on base-editing barcodes, which are considered as a
promising next-generation lineage tracer, is arranged after
the descriptions of CRISPR barcodes due to their inherent
similarity (Jones et al., 2020). However, unless in related
sections, they will not be further discussed as they await
future studies to witness their full potential in lineage tracing.

Integration barcodes

Integration barcodes are originally introduced as short
stretches of DNA sequences that flank the integration sites
of transposons or lentiviruses. As the transposons or len-
tiviruses randomly integrate into genomes, the flanked
sequences are also random, thus serving as unique clone
tags to distinguish cells with different integration events.
Although the number of such integration barcodes seems
unlimited, it's hard to interrogate their information with
scRNA-seq. To address this issue, the current version of
integration barcodes is designed as short DNA fragments
placed in an expressed locus, and they can be synthesized
as type | barcodes (consecutive random nucleotides) or type
Il barcodes (random nucleotides interspersed with fixed
nucleotides) (Lu et al., 2011; Rodriguez-Fraticelli et al.,
2018). Integration barcodes are commonly used as barcode
libraries, and the library diversity is determined by the total
length of random nucleotides (Fig. 1B). Theoretically, the
diversity of a barcode library with 10 bp random nucleotides
can approach 1 million, although such diversity is hard to
achieve after multiple steps of molecular cloning. Generally,
type Il barcodes can avoid consecutive poly-N regions,
which are unfriendly for oligo synthesis, PCR amplification,
and further sequencing, hence reducing the loss of barcode
diversity at the cost of longer sequencing length. Besides,
semi-random sequences (“N” is replaced by “S/W”) have
also been applied for barcode design. This design maintains
a constant GC ratio while sacrificing the barcode diversity
(Bystrykh and Belderbos, 2016; Bramlett et al., 2020).

Integration barcodes are typically inserted in the 3'UTR
after the coding region of fluorescent proteins. This archi-
tecture makes it convenient to retrieve the barcoded cells by
fluorescence-activated cell sorting (FACS). A common
application of integration barcodes is to label thousands of
cells (e.g., HSCs and cancer cells) at the onset of lineage
tracing and then evaluate their clonal dynamics. For this
purpose, lentiviruses are preferred due to their high degree
of transduction efficiency (Gerrits et al., 2010; Lu et al., 2011;
Bystrykh et al., 2014). Other transgene systems have also
been employed. For example, Tol2 transgenesis can intro-
duce integration barcodes to the zebrafish genome in an
accumulative way during early embryogenesis (Wagner
et al., 2018).

Polylox barcodes

As mentioned earlier, integration barcodes are not easily
adapted for in vivo systems, and one alternative is polylox
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barcodes. The intact form of polylox barcodes is a DNA
cassette with multiple loxP sites in alternating orientations
(Fig. 1C). Under the activity of Cre, the intervened DNA
fragment between two loxP sites will be excised if these two
sites are in the same orientation, whereas inverted if these
two sites are in the opposite orientation. In polylox, recom-
bination events can happen between any two loxP sites, and
recombination won’t stop until usable loxP sites are
exhausted or the Cre activity stops. The fast recombination
of multiple loxP sites could generate thousands of recom-
bination barcodes in a relatively short interval, thus labeling
thousands of cells at the onset of lineage tracing with
extremely high barcode diversity. In the first implementation,
an intact polylox fragment with 10 loxP sites is introduced
into the Rosa26 locus by targeted insertion and interrogated
by amplicon sequencing, and the single-cell resolution is
accomplished by FACS of the interested cells into 8-tube
strips individually. Strikingly, an estimated maximum of 1.8
million distinct barcodes can be generated by random
recombination of the polylox fragment (Pei et al., 2017,
2019). A later version of this method named polyloxExpress
offers a more friendly approach to query the cell types by
placing the polylox fragment in the 3'UTR of tdTomato fluo-
rescence reporter, whose expression is driven by Rosa26
promoter (Pei et al., 2020). Both implementations have been
tested in mice to track the clonal behavior of HSCs. The
polylox design takes advantage of the abundant Cre mouse
lines that have been generated during the past few decades.
With a simple cross between polylox mice and tissue-
specific Cre mouse line, this method achieves clonal track-
ing in the selected tissues. Currently, one major concern for
polylox barcodes is the requirement of expensive long-read
sequencing. A few conceptual designs of polylox barcodes
for short-read sequencing have been proposed, but their
feasibility in mammalian cells remains elusive (Peikon et al.,
2014; Weber et al., 2016).

As the length of integration barcodes is short, it is intuitive
to combine integration barcodes with polylox fragments. In
this situation, integration barcodes function as identifiers to
distinguish the different copies of polylox fragments intro-
duced by random insertion (Fig. 1B). Using random
sequences as integration identifiers greatly increases the
barcode diversity. For example, without considering inte-
gration identifiers, only 155 barcodes are generated by
polylox recombination, while 514 barcodes are retrieved
when distinguishing the same recombination by integration
identifiers (Kim et al., 2020).

CRISPR barcodes

The CRISPR barcodes are combinations of InDels gener-
ated by CRISPR/Cas9 mediated genome editing (Fig. 1D).
The proof of concept using CRISPR barcodes for lineage
tracing in vivo was firstly demonstrated in zebrafish by tar-
geting a tandem array of Cas9 targets, which is integrated
into the genome by Tol2 transgenesis (McKenna et al.,
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2016). This success was followed by a bunch of different
designs, and the shared principle of these designs can be
described as follows: multiple targets are introduced into
genomes either at one locus or multiple loci. As the editing
rate of Cas9 nuclease is limited, the edited targets are
accumulated after multiple rounds of cell divisions until sat-
urated. Generally, dozens to hundreds of InDels can be
generated in one target. With the assumption that targets are
independent of each other, thousands of barcodes (InDel
combinations across multiple targets) are accumulated in
different cells. By accessing the barcode information at the
end of lineage tracing, it's possible to reconstruct cell lineage
trees based on shared InDels.

To date, there is no common practice about how to
implement CRISPR barcodes. Here the current practices of
CRISPR barcodes are categorized into three types. The first
type, as reported in ScarTrace or LINNAEUS designs,
selects the Cas9 targets in the GFP or RFP coding regions
so that InDels are indicated by the attenuation of the fluo-
rescence intensity (Alemany et al., 2018; Spanjaard et al.,
2018). Although ScarTrace and LINNAEUS designs take
advantage of available transgenic zebrafish lines, the calling
of barcodes may be suffered as it’s difficult to distinguish the
same type of InDels from different loci, thus undermining
their abilities to reconstruct accurate lineage trees. Instead of
having one Cas9 target at one integration locus, the second
type of CRISPR barcodes, such as scGESTALT and CAR-
LIN designs, usually places multiple Cas9 targets together to
form a tandem array in the 3'UTR of GFP/RFP. These
designs greatly facilitate the simultaneous detection of mul-
tiple targets (Raj et al., 2018; Bowling et al., 2020). The third
type of CRISPR barcodes is generated from MARC1 design.
In this design, the gRNAs are called homing gRNAs, since
the gRNA scaffolds are modified so that the expressed
gRNAs can target their own loci for several rounds until the
length of guide sequences is out of range. As the InDels are
obtained by several rounds of self-targeting, this type of
barcodes generally achieves higher diversity per target
(Kalhor et al., 2018). Notably, the current practice of MARC1
hasn’t been adapted with scRNA-seq yet, as the capture of
homing gRNAs using scRNA-seq awaits further
modification.

With regards to the genomic location of targets, there are
distributed arrays and tandem arrays. Tandem arrays are
implemented by targeted insertion to genomic safe harbors
such as Col71a1 locus, while distributed arrays are introduced
by random insertions. Similar to polylox barcodes, random
insertion can also take advantage of integration barcodes to
discriminate different integration copies. Remarkably, multi-
ple integration barcodes in a cell can be viewed as clone
identifiers, which help distinguish different progenitors in a
progenitor pool (Fig. 1B) (Quinn et al., 2021). Finally, the
expression of Cas9 also varies from experiment to experi-
ment. Cas9 expression can be accomplished by direct
injection of Cas9 protein/mRNA in zebrafish or by breeding
with Cas9-expressing mouse lines (McKenna et al., 2016;
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Chan et al., 2019; Bowling et al., 2020). However, the best
practice on CRISPR barcodes awaits further improvements
on various aspects of experimental considerations such as
barcode design, barcoding induction timing, tree recon-
struction algorithms.

Similar to CRISPR barcodes, base-editing barcodes are
combinations of single nucleotide variations (SNVs) gener-
ated by base editors. Base editors are initially designed for
precise gene editing based on dCas9 (an inactive form of
Cas9) before their adaption for lineage tracing. They are
special nucleases composed of three domains, a DNA-bind-
ing domain (e.g., dCas9) which allows the base editors to
search for DNA targets, a deaminase domain that transforms
the adjacent nucleotides (e.g., C to U mutations caused by
activation-induced cytidine deaminase), and a UGI (uracil
DNA glycosylase inhibitor) domain which inhibits associated
repair systems that may suppress the transformations. Com-
pared to CRISPR barcodes, a unique feature of base editors is
their ability to record cell division events, since DNA replication
is essential for the successful transformation of nucleotides
induced by deaminases (Rees and Liu, 2018). As the scan-
ning space of deaminases is limited by DNA binding domains,
only afew nucleotides adjacent to the DNA binding sites will be
edited. To increase the number of editable sites, multiple DNA
binding sites are preferred architectures for base-editing bar-
codes (Fig. 1E). Using a dCas9-derived base editor, Hwang
et al. proved the concept of tracing cell lineages by targeting
the endogenous L1 retrotransposition elements (Hwang et al.,
2019). Besides dCas9, other DNA binding proteins such as
iScel could also be applied in base editors in the setting of
lineage tracing. One exemplary demonstration of the usage of
iScel has been suggested by a recently published design
called SMALT. This work took advantage of base editing on an
exogenous synthetic three-kilobase DNA cassette containing
many editable sites, and provided many informative sites for
recording thousands of cell division events in fruit flies (Liu
et al., 2021). Considering the high recording ability of base-
editing barcodes, their future integration with scRNA-seq may
be promising for dissecting the lineages on organism level.

CURRENT AND PROMISING APPLICATIONS
OF SCLT

SCLT can leverage the information from both lineages and
single-cell transcriptomes. As a result, SCLT can offer
unprecedented perspectives to analyze clonal histories and
molecular mechanisms in qualitative and quantitative man-
ners. The following points are some of its fascinating
applications.

Clarifying clonal relationships between different cell
types

Clonal tracing by barcodes makes it possible to identify the
proliferation, migration, apoptosis, and differentiation events
of individual cells (Petit et al., 2005; Buckingham and
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Meilhac, 2011; Blanpain and Simons, 2013; Naik et al.,
2014). Barcodes can be either static or cumulative
depending on whether their sequence identity evolves during
developmental processes. If barcodes are invariable once
introduced, then the barcodes are static; In contrast, if bar-
codes keep evolving, then the barcodes are cumulative
(Fig. 2A). Static barcodes allow for revealing clonal potency
(self-renewing, unipotent, bipotent, or multipotent) directly by
identifying the cell types sharing the same barcode. Gener-
ally, the labeled progenitors that are located at the upper
level of the lineage hierarchy should have more progenies
than those at the lower level. If the progenies derived from
earlier barcoded cells are still progenitors, the earlier bar-
coded cells should have undergone self-renewal. If the off-
spring is categorized into two differentiated cell types, the
labeled ancestors should be considered as bipotent cells.
The same logic can also be adapted to identify unipotent and
multipotent progenitors. In comparison, cumulative barcodes
can record the history of mitotic divisions, so a clonal tree
with multi-layers could be reconstructed, then the subclonal
relationships between different cell types can be uncovered
by analyzing the clonal trees from root to tip, although the
granularity varies greatly in different experiments.

Different types of barcodes can serve as either static
barcodes or cumulative barcodes depending on their actual
usages. Integration barcodes are usually used to label a pool
of progenitors as static barcodes, which is a common tech-
nique to interrogate the potency of HSCs (Lu et al., 2011;
Weinreb et al., 2020). However, integration barcodes can
also be applied cumulatively by multiple rounds of integration
across a developmental process, as demonstrated in the
zebrafish embryogenesis and somatic reprogramming
(Biddy et al., 2018; Wagner et al.,, 2018). As for polylox
barcodes, they are primarily generated within a short time
interval due to the rapid reaction of LoxP sites once attacked
by Cre proteins, so they are currently deemed as static
barcodes to track the cell fates of HSCs and pluripotent stem
cells (Kim et al., 2020; Pei et al., 2020). Although the gen-
eration of CRISPR/Cas9 InDels is inherently cumulative,
CRISPR barcodes may also be considered static in some
settings such as HSC regeneration and fin regeneration, as
they have stopped altering their sequence identity before the
concerned developmental events (Alemany et al., 2018;
Bowling et al., 2020).

Resolving lineage relationships by lineage coupling
analysis

Knowledge of cell differentiation hierarchies is important for
the understanding of cell fate decisions and controlled dif-
ferentiation in vitro. However, it's difficult to directly elucidate
the lineage hierarchy of different cell types by evaluating the
clones that share static barcodes. To decipher the lineage
hierarchy, statistical analysis may provide a solution by
gathering the information from multiple barcodes. Generally,
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Figure. 2. Current and promising applications of single-cell lineage tracing. (A) Two types of barcodes for clonal analysis. In the
setting of single-cell lineage tracing, characterization of cell types is usually achieved by dimensionality reduction such as uniform
manifold approximation and projection (UMAP). (B) Some clone enrichment metrics for lineage coupling analysis [figure adapted from
(Chan et al., 2019)]. (C) Trajectory direction can be determined by integrating state and clonal information. (D) Dividing
transcriptionally similar cells into subgroups by clones facilitates the identification of delicate molecular signatures involved in cell fate
bias. (E) Inferring basic parameters for a cell division tree such as the number of founder cells, the number of cell divisions, and cell
division modes. (F) Building mathematical models to understand the cell behaviors [adapted from (Klein and Simons, 2011)].
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more features are shared between siblings than cousins.
Equivalently, the more barcodes are shared between two cell
types, the closer the lineage relationship between these two
cell types. By calculating the normalized shared barcodes,
it's feasible to infer the lineage relationships between dif-
ferent cell types by hierarchical clustering. Multiple metrics
for normalizing shared barcodes have been developed
(Fig. 2B). Some of these metrics are spearman rank corre-
lation, observed/expected ratio, correlation of Z-score
enrichment, and normalized covariance (Raj et al., 2018; Pei
et al., 2019; Weinreb and Klein, 2020; Weinreb et al., 2020).
Furthermore, a unique metric called shared progenitor score
is applied to deduce lineage hierarchies encoded in cumu-
lative CRISPR barcodes (Chan et al., 2019). Nevertheless,
their ability to fully capture the true lineage relationships may
need further validation.

Analyzing trajectory directions in state-fate maps

To unravel transition directions, trajectory analysis algorithms
such as Monocle start creating an unrooted tree, and then tra-
jectory directions are established by selecting the root and
leaves according to annotated cell states (Qiu et al., 2017). In
many cases, trajectory analysis algorithms have good perfor-
mances to illustrate the sequential cell transitions. However, as
mentioned earlier, trajectory analysis may fail to recapitulate the
true differentiation paths with states alone under certain cir-
cumstances. The SCLT method can address this issue by
accessing the shared barcodes, which connect cells with states
in the early and late developmental stages (Fig. 2C). For
example, by evaluating the single-cell transcriptomes con-
nected by shared polylox barcodes, Pei et al. validated the two
major developmental branches (i.e., lymphoid development
and myelo-erythroid development) of the mouse in vivo
hematopoiesis (Pei et al., 2020). Besides, with the aid of clonal
information collected from integration barcodes, systematic
single-cell evaluation of the relationship between state and fate
has been performed in zebrafish, uncovering some major
convergent and divergent events of fate transitions during
zebrafish embryogenesis (Wagner et al., 2018). Cumulative
integration barcodes with inherent information of lineage layers
also help to discover the two paths of fate determination in
somatic reprogramming from fibroblasts to endoderm progen-
itors (Biddy et al., 2018). Likewise, single-cell transcriptomic
analysis assisted by CRISPR barcodes inherently contains cell
trajectory information if InDels are accumulated across the
concerned developmental stages (Fig. 2A) (Chan et al., 2019;
Bowling et al., 2020).

Identifying molecular signatures with the support
of clonal information

After obtaining single-cell sequencing data, a common
practice of finding molecular signatures is to compare the
differential expressed genes between different conditions,
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such as cell types between different lineages or different
developmental stages within the same lineages (Van den
Berge et al., 2020). Generally, hundreds of differentially
expressed genes can be found, while it’s difficult to pinpoint
which genes are crucial for the fate choice as the state dif-
ference is already manifest between two conditions in the
state maps.

The advent of SCLT offers a new route to determine
molecular signatures by incorporating clonal information.
With the assumption that there exists little fate divergence
between recently divided sister cells in a progenitor pool, it's
possible to divide the progenitor pool into different groups of
cells with fate biases by utilizing shared clonal information
between progenitors and progenies. By comparing different
progenitor groups, it's more likely to identify the crucial reg-
ulators involved in fate decisions within dozens of differen-
tially expressed genes. A similar strategy can be applied to
determine molecular markers for those transcriptionally
similar cells from other events by separating the cells into
different groups according to the clonal relationships
(Fig. 2D). For instance, by comparing the HSC populations
with low progeny output and high progeny output, Rodri-
guez-Fraticelli et al. discovered dozens of genes that might
be involved in regulating the activity of HSCs, and genetic
knockouts further validated that one of the candidate genes
participated in the quiescence and long-term self-renewal of
HSCs (Rodriguez-Fraticelli et al., 2020; Weinreb et al.,
2020). Likewise, Biddy et al. identified a candidate gene
named Mettl7a1 by comparing successfully reprogrammed
clones and dead-end clones. In addition, they found that this
gene could enhance the reprogramming efficiency when
adding to the reprogramming cocktail (Biddy et al., 2018).
Furthermore, an in vivo investigation on HSCs showed that
some of the candidate genes derived from this strategy were
engaged in proliferation activity or showed lineage biases
(Bowling et al., 2020; Pei et al., 2020).

Dissecting cell dynamics in division hierarchies

Despite inferring tree structures of cell lineages, the quanti-
tative clonal analysis also allows for reckoning cell dynam-
ics. As symmetric divisions boost cell proliferation and
asymmetric divisions lead to cell differentiation, plotting clo-
nal distribution and size can distinguish whether cells in a
clone undergo symmetric or asymmetric divisions (Petit
et al., 2005). For CRISPR barcodes, basic concepts and
practices drawn from population genetics using somatic
mutations may provide solutions to estimate some parame-
ters of cell dynamics. For example, by calculating the lower
threshold of a self-defined parameter called mosaic fractions
(MF) for somatic single nucleotide variants that appear in all
germ layers, quantitative clonal analysis has been applied to
estimate the effective number of epiblast cells (1/MF) in
human embryogenesis (Bizzotto et al., 2021). Interestingly,
CRISPR barcodes have been adopted to deduce the num-
ber/composition of progenitors if the clonal tree has a
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sufficient resolution (Chan etal., 2019). Compared to CRISPR
barcodes, base-editing barcodes generally have more infor-
mative sites to infer the cell division events. In their SMALT
design, Liu et al. demonstrated that they might simulate the
dynamics of the number of actively dividing parental cells in
fruit flies, offering an overview of the organ development of fruit
flies (Liu et al., 2021). Remarkably, cumulative somatic
mutations could be used to estimate the number of cell divi-
sions (Wasserstrom et al., 2008), this strategy might also be
adapted by CRISPR barcodes and base-editing barcodes
comprised of cumulative sites (Fig. 2E). However, the ability to
truly capture the cell division events should be different
between CRISPR barcodes and base-editing barcodes. As
mentioned earlier, the successful generation of base-editing
barcodes requires DNA replication occurring in cell divisions,
and this coupling provides foundations for estimating the
number of cell divisions (Rees and Liu, 2018). In contrast, the
InDels generated by CRISPR/Cas9 may occur at any stage of
the cell division. Nevertheless, the internal nodes in the cell
phylogenetic tree reconstructed from CRISPR barcodes may
capture the independent gene editing events after the division
of ancestral cells, which might still be informative to infer the
number of cell divisions.

Population-level models of cell dynamics

Generating or maintaining a functional organ requires an
adequate number and composition of cells. Some quantita-
tive studies have shed light on cell dynamics by mathemat-
ical or statistical models at the population level (MacLean
et al., 2017). One of the most studied models is the neutral
drift of adult stem cell clones. As adult stem cells must pro-
liferate and differentiate into new terminal cells to replenish
the old or dead ones, they require self-renewal to maintain
the total number of adult stem cells. Instead of self-renewing
through invariant asymmetric divisions for all adult stem cells
as previously suspected, however, recent studies suggested
that they adopted a population strategy. In this model, stem
cells are equipotent: some stem cells proliferate and some
stem cells undergo differentiation, resulting in the neutral drift
of stem cell clones. Furthermore, it's possible to infer the
self-renewing properties from intrinsic or extrinsic signals by
determining the scaling functions of clonal distribution
(Fig. 2F) (Klein et al., 2010; Klein and Simons, 2011). Apart
from adult stem cells, mathematical modeling on retina his-
togenesis also implied that retina progenitors might also be
equipotent and showed stochastic clone size in develop-
ment, while the overall composition of terminally differenti-
ated cell types remained proportioned (He et al., 2012;
Zechner et al., 2020). A more recent example also demon-
strated the power to combine quantitative lineage analysis
and mathematical modeling. Willnow et al. showed that
quantitative measurement of the rudiment size by Cre-loxP
labeling found that the size of liver bud increased faster than
the pancreato-biliary bud, and this phenomenon was not due
to different proliferation activities. Using a mathematical
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simulation on a cell plasticity model, they suggested the
existence of a population of multipotent progenitors that
could generate both liver progenitors and pancreato-biliary
progenitors, which was confirmed by further lineage tracing
experiments (Willnow et al., 2021). Of note, few of the above
statistical models or mathematical models on cell fate deci-
sions are built based on SCLT data. As SCLT intrinsically
acquires enormous information of clones at the population
level, it might be promising to revisit those models in adult
stem cell systems or build new models to disentangle
developmental processes.

TECHNICAL CONSIDERATIONS AND LIMITATIONS

The implementation of SCLT contains several major steps:
barcode introduction, barcoding initiation, detection of both
transcriptomes and barcodes, and computational analysis.
Here we discuss several common issues during these steps.

Random insertion and targeted insertion

Integration barcodes are usually introduced into genomes by
random integration, while polylox recombination elements and
Cas9 targets are integrated into genomes either by random
insertion or targeted insertion. The choices of random inser-
tion or targeted insertion depend on experimental objectives,
as these two methods have their own advantages and draw-
backs. Given the wide application of random insertion in
mutagenesis or enhancer trap, it's possible that random inte-
gration disrupts the regulatory elements and changes the cell
state without killing the cells, which may mislead the inter-
pretation of biological results (Sivasubbu et al., 2007; Trinh le
and Fraser, 2013). Besides, the expression of barcodes might
be suppressed by surrounding transcription-repressive ele-
ments. Furthermore, screening for a stable transgenic mouse
line after random insertion takes huge efforts, and may cause
potential defects when some integration sites become
homogeneous. Targeted insertion into the genomic safe locus
can guarantee the gene expression and avoid detrimental
developmental defects (Papapetrou and Schambach, 2016),
but barcode diversity will decrease due to the compromised
copy numbers of polylox recombination elements or Cas9
targets. Additionally, inter-site deletions occur in the tandem
arrays of Cas9 targets when Cas9 simultaneously cuts two
targets (Fig. 1D) (Kalhor et al., 2018; Chan et al., 2019;
Bowling et al., 2020), which reduce the barcode diversity and
may even eliminate the previous InDel information recorded in
the targets between those two targets (Salvador-Martinez
etal., 2019). In contrast, this limitation can be avoided by base-
editing barcodes as only point mutations occur in the DNA
fragments (Fig. 1E).

Time points or interval of barcoding

The timing to initiate barcoding will have great influences on
the resolution and accuracy of clonal reconstruction.
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According to the timing of barcoding in the concerned
developmental process, there are four major modes of bar-
coding: early barcoding, intermediate barcoding, late bar-
coding, and continuous barcoding (Wagner and Klein, 2020).
Early barcoding, which usually labels a pool of progenitors at
the start of lineage tracing, facilitates the lineage tracing of
specific clones but has difficulties in inferring the mitotic
hierarchies between different cell types within a clone. Late
barcoding has little contribution to understanding the internal
structure of lineage trees, as it labels the end stage of
development. Although intermediate barcoding could distin-
guish different cell types at late stages, the ideal continuous
barcoding from early to late stages could help to build a
multi-layer cell phylogenetic tree with lots of internal nodes,
which record the valuable information of cell division history
(Fig. 3A).

In practice, different kinds of barcodes are suited for dif-
ferent modes of barcoding according to their features.
Generally, static barcodes have a large barcoding space,
which could simultaneously label hundreds to thousands of
clones through early barcoding. In contrast, as cumulative
barcodes have informative sites to record the history of cell
divisions, they are useful for obtaining cell phylogenetic trees
through continuous barcoding. Based on the above consid-
erations, integration barcodes and polylox barcodes are
usually used to label a pool of heterogeneous progenitors
in vitro and in vivo, respectively. Albeit CRISPR barcodes
can be applied to label a stem cell population, they are
mainly used for recording the different generations of
descendants from a single ancestor (Fig. 2A). For the latter
case, the timing of barcoding should be fine-tuned by
adjusting the availability of the three components of the
CRISPR/Cas9 system. This is because whether the
CRISPR barcoding process captures the cell divisions
depends on many factors, which include but are not limited
to the number of informative sites, gene editing rates, and
endogenous cell division rates (Salvador-Martinez et al.,
2019). The direct way is to moderate the Cas9 activity by dox
induction or heat shock induction, but a priori knowledge is
required to select the best timing of barcoding (Bowling et al.,
2020). Confining the Cas9 activity in a specific phase of the
cell cycle such as the S/G, phase should slow down the
target exhaustion, as well as eliminate the post-mitotic edit-
ing events that may confound the lineage inference (Garcia-
Marques et al., 2020). Mismatches between gRNAs and
targets can also attenuate the gene-editing rates, which has
been applied to depict animal embryogenesis across a
longer time window (Chan et al., 2019; Salvador-Martinez
et al,, 2019). Homing gRNAs provide another means to
increase the barcoding interval, though further improvement
is needed to detect the homing RNA for barcode recovery
(Kalhor et al., 2018; Kalhor and Church, 2019). A new design
called gRNA cascade might offer a better solution by con-
trolling the ordered activation of gRNAs, which is mediated
by the single-strand anneal repair pathway after DNA dou-
ble-strand breaks. By genetic switches to activate sequential
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gRNAs, this strategy slows down the exhaustion of targets
(Garcia-Marques et al., 2019, 2020; Clarke et al., 2020).
However, it’s still challenging to apply this strategy at present
due to the unstable generation of new gRNAs through the
single-strand anneal repair mechanism. Finally, distinct
CRISPR barcodes are generated through cell divisions, so
it's impossible to capture the differentiation route of postmi-
totic cells. To maximize the CRISPR’s ability to dissect lin-
eage hierarchies, one suggestion is to modulate the cell
barcoding process in the stages of cell differentiation. In
contrast to CRISPR barcodes, continuous barcoding by
base editors suffers from low editing rates. As a result,
modification of deaminase is usually required to increase the
editing rates (Liu et al., 2021).

Recovery rates of cells and barcodes

As SCLT requires the retrieval of both barcodes and RNA
profiling, ensuring the simultaneous capture of cells and
barcodes is quite essential for unleashing the power of SCLT
(Fig. 3B). The current throughput of commercial scRNA-seq
platforms (e.g., 10x Genomics) is around 10,000 cells per
experiment, but high cost makes it impractical to sequence
millions of cells, which may be necessary for organism-level
tracing analysis. Insufficient sampling results in the doubt of
whether selected cells can represent the whole population,
thus affecting the accuracy and completeness of lineage
couplings. Recently, two high throughput scRNA-seq tech-
niques called SPLiT-seq and sci-RNA-seq have enabled the
sequencing of millions of cells by labeling them using com-
binatorial indexing. However, further refinements of their
gene detection rates are necessary for accurate downstream
analysis (Rosenberg et al., 2018; Cao et al., 2019). Besides
insufficient sampling, clonal tree reconstructions of CRISPR
barcodes might also suffer from biased sampling, as current
algorithms require inferring the shared InDels from a variety
of barcodes. Finally, invasive barcoding strategies may have
latent effects to the behaviors of barcoded cells, which is
often difficult to evaluate. For example, CRISPR/Cas9-me-
diated gene editing could cause DNA double-strand breaks,
leading to subsequent p53 activation and even cell death
(Haapaniemi et al., 2018; Ihry et al., 2018; Chan et al., 2019),
which might alter the lineage routes as well as lose the
barcoded cells. To circumvent this problem, one compro-
mised but potential solution is to use base editors, which
create fewer allele states without DNA double-strand breaks
(Eid et al., 2018; Jones et al., 2020).

A few factors also influence the retrieval of barcodes. As
barcodes are usually amplified from cDNAs (Fig. 1A), the
transcription efficiency of the barcodes is a critical point for
the recovery of barcodes. Transgene silencing is a common
issue for random transgenic insertions, and adding a tran-
scription enhancer such as ubiquitous chromatin opening
element before a constitutive promoter may attenuate this
effect (Garrison et al., 2007; Chan et al., 2019). Targeted
insertion at the Rosa26 locus can also ensure the barcode
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Figure. 3. Technical considerations for applying single-cell lineage tracing technology. (A) The timing of barcoding affects the
correlation granularity of cell types, which is determined by the internal nodes. Of note, the illustrated continuous barcoding does not
recover all the subclonal information within a clone, as it’s difficult to reconstruct a complete cell phylogenetic tree. Different colors
represent different cell types. (B) Common experimental practice for single-cell lineage tracing. Cells are captured and labeled with
cell barcodes, then cDNAs are extracted and split into two aliquots, one aliquot for querying lineage relationships and one aliquot for
interrogating cell types. (C) Some algorithms dealing with barcode analysis. (D) Multiple tree integration strategies based on cell
types.
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Figure. 4. Integrating multiple technologies to illustrate developmental mechanisms. (A) Available imaging and sequencing
methods. Imaging methods are convenient to track developmental events across different stages and record the spatial locations of
cells, while sequencing methods can interrogate molecular profiles of cells in a high throughput manner. (B) Organoid model is
complementary with in vivo model to study developmental mechanisms in multiple aspects [TF (transcription factor) network is

adapted from (Sagner and Briscoe, 2019)].

expression. As for CRISPR barcodes, some minor factors for
barcode loss may occur in PCR amplification. For example,
large deletion removes the primer sequence, large insertion
overwhelms the sequencing length (Egli et al., 2018).
Another main concern is that a proportion of cells may be
free of gene editing at the time of sequencing, leading to the
loss of lineage information from these cells (Chan et al.,
2019).

Current computational methods

In SCLT experiments, clonal examination and single-cell
transcriptome exploration are separately performed and then
integrated by shared cell identifiers. As single-cell tran-
scriptomic analysis is mature and has been reviewed
extensively elsewhere (Wu and Zhang, 2020; Andrews et al.,
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2021), here we focus on computational methods of clonal
analysis. Dependent on barcode types, different computa-
tional algorithms have been compiled to deal with clonal
analysis (Fig. 3C). For experiments using integration bar-
codes, most of them build custom pipelines to analyze
specific questions. Integration barcodes are similar to the
UMIs (unique molecular identifiers) used in single-cell anal-
ysis. UMI-related software such as UMI-tools may offer a
good start to evaluate the integration barcodes (Smith et al.,
2017). Many other developed algorithms could also be tes-
ted. Specifically, Kong et al. built an analytical pipeline to
present lineage hierarchies of limited layers for their bar-
coding technique called CellTagging, which employed sev-
eral rounds of lentivirus infections to achieve sequential
barcoding (Kong et al., 2020). However, in-house scripts are
unfriendly for comparing results between different scenarios.
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To standardize the analytical procedure, two R-based pro-
grams were developed. genBaRcode focuses on basic error-
correction and routine visualization of barcodes, while bar-
codetrackR steps further to interrogate the different aspects
of clonal tracing by offering convenient functions to show
pairwise lineage relationship, illustrate longitudinal clonal
dynamics and infer lineage bias (Thielecke et al., 2020; Adair
and Enstrom, 2021; Espinoza et al., 2021). As for polylox
barcoding, an in-house algorithm was created to extract
unique barcodes from long reads generated by third-gener-
ation sequencing (Pei et al., 2019).

The bioinformatics tools for CRISPR barcodes focus on
tree reconstruction. Some investigations follow the common
methods of phylogenetic tree reconstruction such as dis-
tance-based clustering, maximum parsimony, and maximum
likelihood (McKenna et al., 2016; Kalhor et al., 2018; Feng
et al., 2021), while others build custom algorithms with
specific assumptions tailored to their barcode designs
(Spanjaard et al., 2018; Bowling et al., 2020). Generally,
distance-based methods aim to cluster cells to create lin-
eage trees by distance matrix, which records the lineage
information as measured by barcode dissimilarity. Alterna-
tively, maximum-parsimony-based methods search for the
tree topology with minimal total steps to generate observed
InDel patterns. Besides tree topology, maximum-likelihood-
based methods also attempt to infer branch length and
mutation parameters. Although the above methods have
been applied in different experimental settings, a few con-
cerns remain. One major issue is the low diversity of
CRISPR barcodes, which limits the tractable cells and is
prone to result in barcode homoplasy. Another problem is
sequence dropouts generated by large deletions across
multiple targets (Fig. 1D), which reduce the accuracy of
reconstructed trees by eliminating the previously recorded
information (Jones et al., 2020; Gong et al., 2021). Recently,
using both ground-truth datasets from a synthetic image-
readable lineage recording technology and in silico datasets
from simulated recording C. elegans or mouse development,
Gong et al. reported systematic evaluations of dozens of
methods which were roughly classified into three different
groups (i.e., distance-based, maximum-parsimony-based,
and machine-learning-based), setting a standard for the
evaluation of future methods. As a new paradigm to recon-
struct trees, machine-learning-based approaches leverage
the features/mutation information in the training set to predict
cell relationships. In this report, the authors summarized that
some of the best-performing methods were distance-based
DCLEAR, maximum-parsimony-based Cassiopeia, and
machine-learning-based AMbeRIland (Gong et al., 2021).
Notably, Cassiopeia has already been demonstrated to be a
powerful tool for building cell lineage trees in mouse
embryogenesis (Chan et al., 2019; Jones et al., 2020). In
terms of base-editing barcodes generated by SMALT design,
the maximum-likelihood method was used to reconstruct the
cell phylogenetic tree (Liu et al., 2021).
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Integration of multiple lineage trees

A thorough and ambitious understanding of cell lineage is to
illustrate the relationship of every single cell in an organism
in a single lineage tracing experiment, which is impractical
for current technology. A more practical way is to integrate
information from multiple lineage tracing experiments, as the
current knowledge of developmental lineages is also
assembled from multiple lineage experiments with various
techniques. Lower animals such as C. elegans have an
invariant cell lineage tree, thus assembling a lineage tree
from multiple small lineage trees is feasible (Sulston et al.,
1983). However, apart from technical limitations, the cell
lineage of human development isn’t invariant per se due to
the stochasticity/plasticity of each cell fate decision (Zechner
et al., 2020), making it unrealistic to assemble multiple small
lineage trees collectively to create a complete lineage tree in
the organismal level. In this regard, cell-type-based lineage
trees might be appropriate for most tracing cases (Fig. 3D).
In this kind of lineage tree, the leaves should be cell popu-
lations of specific cell types instead of a single cell (Wagner
and Klein, 2020). Although currently focusing on mutual
calibrations of lineage trees or cell trajectories, some pioneer
efforts have shed light on the integrative datasets to build a
cell-type based lineage tree by extracting the information
from both lineages and transcriptomes. For example, a sta-
tistical framework, LinTiMaT, attempted to resolve lineage
ambiguities when integrating different individual lineage
trees into a single invariant tree by incorporating gene
expression information across different experiments (Zafar
et al., 2020; Forrow and Schiebinger, 2021).

SUMMARY AND PERSPECTIVES

SCLT integrates the information of both clonal relationships
and single-cell transcriptomics, which greatly improves the
resolution and accuracy compared to traditional lineage
tracing. Its enormous throughput and content help to reveal
the phylogenetic foundations of biological processes that
encompass many cell generations at unprecedented reso-
lutions and scales. For the experimentally tractable system,
three major types of barcodes and their combinations have
been exploited in querying the molecular mechanisms of cell
fate determination. Among the discussed barcoding strate-
gies, CRISPR barcodes and base-editing barcodes are
uprising for their high information capacity and cumulative
features, despite more studies are necessary to achieve
abundant barcode diversity, easy detection, high precision,
and long-term barcoding capacity (Espinosa-Medina et al.,
2019; Liu et al., 2021). As a proof-of-concept, current SCLT
experiments focus on embryogenesis and hematopoiesis,
future interrogations should witness its broad application in
animal development, regeneration, tumorigenesis, and stem
cell dynamics. However, obtaining an accurate and sys-
tematic lineage tree of a species remains a challenging task
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for current practices of SCLT, and new designs are neces-
sary for further improvements.

Recently, the fast development of spatial transcriptomics
has shed light on the understanding of the spatial organi-
zation of cell types and their lineage relationships (Peng
et al., 2019; Peng et al, 2020; Marx, 2021). Several
pioneering investigations have proven the concept of com-
bining lineage tracing and spatial transcriptomics by imag-
ing-based readouts (Chow et al., 2021; Frieda et al., 2017).
A recent study integrating lineage tracing and spatial tran-
scriptomics has demonstrated that the closely located cells
tend to share lineage origins in cerebral organoids (He et al.,
2022). This phenomenon may not be shared by the devel-
opment of neural crest cells and some other long-traveling
cells, as their derivatives are spread around the whole
organism instead of compact clusters. Nevertheless, the
complicated developmental processes may be illustrated by
the microscope-based real-time lineage tracing, as this
technology can offer valuable information about the cell
division number, cell division rate, cell location, cell history,
and so on (Denoth-Lippuner et al., 2021; Huang et al., 2021).
Anchored by cell’'s location, combining lineage-information-
based spatial transcriptomics and in toto imaging will build a
connection between ground-truth cellular history and final
molecular interrogation. Future advances to integrate SCLT,
spatial multi-omics, and imaging techniques should boost
the synthesized studies of animal development and disease
modeling in both space and time (Fig. 4A).

In the last few years, the scientific community has wit-
nessed the fast development of technologies utilizing orga-
noids. As human stem-cell-derived organoids could mimic
the organ/tissue development of humans, SCLT on human
organoids may pave the path to study the lineages of human
cell types, which are usually extracted from the incomplete
somatic mutations nowadays (Fig. 4B). More importantly,
SCLT on human organoids displays the following advan-
tages. First, specific organoids might describe the lineage
transition of human cell types more accurately and control-
lable than their mouse in vivo equivalents, especially for
those complex organs such as the human brain (Lancaster
et al., 2013). Second, manual modulations of the culture
condition enable studying different phases of organ devel-
opment step by step. For example, current breakthroughs
allow for studying the cardiogenesis at multiple overlapping
stages such as on gastruloids, foregut-heart organoids, or
heart organoids (Drakhlis et al., 2021; Rossi et al., 2021;
Hofbauer et al., 2021a, 2021b). As each organoid system
contains several consecutive steps of cardiac development,
it's possible to illustrate the lineage path and molecular
transitions of heart differentiation by sticking their lineages
together. Third, since organoids are cultured in a dish, it's
convenient to combine cutting-edge imaging techniques to
track cell behaviors. In a word, complementary studies of
embryonic development and organoid development would
show a clearer picture of cell fate decisions in the future.
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