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Abstract: Accurate pre-operative determination of parathyroid glands localization is critical in the
selection of minimally invasive parathyroidectomy as a surgical treatment approach in patients
with primary hyperparathyroidism (PHPT). Its importance cannot be overemphasized as it helps
to minimize the harmful side effects associated with damage to the parathyroid glands such as
in hypocalcemia, severe hemorrhage or recurrent laryngeal nerve dysfunction. Preoperative and
intraoperative methods decrease the incidence of mistakenly injuring the parathyroid glands and
allow for the timely diagnosis of various abnormalities, including parathyroid adenomas. This article
reviews 139 studies conducted between 1970 and 2020 (49 years). Studies that were reviewed focused
on several techniques including application of carbon nanoparticles, carbon nanoparticles with
technetium sestamibi (99m Tc-MIBI), Raman spectroscopy, near-infrared autofluorescence, dynamic
optical contrast imaging, laser speckle contrast imaging, shear wave elastography, and indocyanine
green to test their potential in providing proper parathyroid glands’ localization. Apart from reviewing
the aforementioned techniques, this study focused on the applications that helped in the detection
of parathyroid adenomas. Results suggest that applying all the reviewed techniques significantly
improves the possibility of providing proper localization of parathyroid glands, and the application of
indocyanine green has proven to be the ‘ideal’ approach for the diagnosis of parathyroid adenomas.

Keywords: parathyroid gland; parathyroid adenoma; indocyanine green; carbon nanoparticles;
autofluorescence; Raman spectroscopy; dynamic optical contrast imaging; laser speckle contrast
imaging; shear wave elastography; imaging techniques

1. Introduction

Parathyroid glands (PGs) are small, nodular, endocrine structures that lie posterior to the thyroid.
They are involved in the production of parathyroid hormone (PTH), which is a major hormone
involved in the calcium homeostasis [1,2]. Any disruptions in PTH production might induce various
parathyroid abnormalities such as primary hyperparathyroidism (PHPT), characterized by excessive
PTH release [3]. The prevalence of PHPT is 1:1000 [4,5]. Impaired PTH production might result from
various parathyroid abnormalities such as adenoma, cancer, hyperplasia or neoplasia [6,7]. Increased
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circulating levels of PTH may also be caused by parathyroid carcinoma (though in rare cases (1-2%)),
but more often because of diffuse parathyroid hyperplasia (around 15%), and single or multiple
autonomously functioning parathyroid adenomas (up to 85%) [8–10]. Thence, interrupted calcium
homeostasis leads to further imbalances of other elements in the organism [11,12].

Parathyroid gland surgeries are hindered to some extent because of common issues with proper
localization of the PGs. Extensive vascularization and vascular anastomoses near the PGs remain a
common problem for the surgeons because of the risks of excessive intraoperative bleeding. Likewise,
any damage to the PGs during surgeries can lead to more significant and long-term side effects such
as hypoparathyroidism. Hypoparathyroidism can be permanent or transient, and typically resolves
within 6 months [13]. Postoperative studies regarding hypocalcemia as a result of surgical procedures
showed that transient hypocalcemia is observed in 27% of patients who underwent thyroidectomy,
while permanent in 1% of cases [14]. Similarly, the risk of reoperation after incomplete removal of PGs
during parathyroidectomies can reach even up to 30% (an upper limit); however, as it is affected by
numerous factors, some centers report the risk to be relatively low (<5%) [15–17].

Another diagnostic problem with providing a proper localization of PGs is that due to their
embryonic development, their anatomical position is not completely fixed. Usually, PGs are distributed
on each side of the thyroid with the presence of two pairs in the embryonic development [18–20].
Embryologically, superior glands are developed from the fourth pharyngeal pouch, while inferior
glands originate from the third pharyngeal pouch [21,22]. Eventually, superior glands are located on
the superior border of the thyroid in close relationship with the recurrent laryngeal nerve and inferior
thyroid artery. Because the distance traveled by inferior glands during embryological development is
shorter, their location is more fixed compared to superior PGs [23].

Moreover, the anatomy of PGs varies among different populations and individuals. In the majority
of cases, four PGs are present, nevertheless, there are individuals either with a less or excessive number
of PGs (even up to twelve glands) [24]. The results of a recent meta-analysis, which involved 26 studies
and 7005 patients, showed that 81.4% of patients had four PGs [25]. Regarding the geographical
location, the results of the studies in North and South America revealed a smaller number of patients
with four PGs compared to Europe. Among the studied groups, 4.9% and 6.3% of patients had five or
more PGs, respectively.

Besides, there are cases in which not only additional but also ectopic PGs are present, leading to
several surgical complications [26]. In such thyroid surgeries, when a broader area of lymph nodes must
be dissected, PGs can be easily damaged. Therefore, it is fundamental for the surgeons to maximize
the probability of localizing the PGs properly, to reduce the possible postoperative complications.

Several preoperative examinations of the PGs, including cervical ECT scanning, ultrasonography
(USG) or 99mTc sestamibi scintigraphy (MIBI) are commonly used; however, these methods are often
not entirely sufficient for identifying the proper localization of PGs [27]. However, the effectiveness of
providing a proper localization of PGs was significantly increased by some intraoperative methods,
which appeared to be more frequently used [28]. Establishing the most exact localization of PGs
seems to hold many promising results in reducing the number of surgical complications, including
excessive bleeding or the accidental injury of the recurrent laryngeal nerve [29,30]. Intraoperative
methods of PGs localization enable an intraoperative identification of the parathyroid abnormalities
such as adenomas.

2. Materials and Methods

The authors have conducted a literature review of PubMed, Google Scholar, and Web of
Science databases. The search used the following search string: (parathyroid gland OR parathyroid
adenoma) AND (ultrasonography OR computed tomography OR sestamibi scintigraphy OR carbon
nanoparticles OR Raman spectroscopy OR near-infrared autofluorescence OR autofluorescence
spectroscopy OR autofluorescence imaging OR dynamic optical contrast imaging OR laser speckle
contrast imaging OR shear wave elastography OR indocyanine green OR parathyroid autofluorescence
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OR parathyroidectomy). The literature search included both human and animal studies; also, there
were no limits for the language or year of a publication. Additional relevant articles were obtained by
the further literature search. Finally, 139 articles were included in this study (a time range from 1970 to
2020), among which those that were presenting a particular method of PGs or adenomas detection are
summarized in Table 1.

3. Preoperative Imaging Techniques–Ultrasonography, Computed Tomography
and Sestamibi Scintigraphy

Noninvasive preoperative imaging techniques, such as USG, MIBI, or computed tomography
(CT) are commonly used while diagnosing pathologies within the thyroid region. Preoperative
imaging techniques prevent unnecessary dissection and prolongation of surgery. Even though the
preoperative imaging techniques significantly increase the surgical success as they facilitate localization
of pathological PGs, they do not predict nor improve surgical outcomes (post-operative hypocalcemia or
accidental parathyroidectomy). Among these, USG and MIBI are two modalities most frequently used
for preoperative localization of parathyroid adenomas providing high sensitivity and specificity [31–35].
USG alone is usually efficient enough to localize parathyroid adenoma preoperatively; MIBI is proposed
to patients with nonlocalizing USG (Figure 1) [36,37].
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Figure 1. Parathyroid adenoma detected by USG.

Besides, MIBI is more useful in localizing ectopic parathyroid adenomas, whereas USG – in
intrathyroidal parathyroid adenomas [38]. Furthermore, there is an association between the utility of
either USG or MIBI and the weight of a parathyroid adenoma [37]. However, Ozkaya et al. showed
that correct identification of pathology is provided in 90.9% of cases while applying MIBI, and 87.1%
with USG in patients with a single parathyroid adenoma [39]. Other studies shown the accuracy of
preoperative localization of parathyroid adenomas using USG is higher (93%) comparing to MIBI
(90%); the researchers have also showed that USG has higher sensitivity (98%) than MIBI (93%) [40].
A success rate of a unilateral approach for surgical excision of a parathyroid adenoma is 94.1% while
providing preoperative localization by USG or MIBI [41]. Lee et al. showed that regarding preoperative
localization of PGs, USG has the highest sensitivity (91.5%), while MIBI has the lowest (56.1%) [42].
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Table 1. Summary of analyzed papers.

Ref. Authors Year Origin Method Usage
No. Patients

(Studied
Group)

No.
Controls
(Control
Group)

No./% PGs
Detected
(Studied
Group)

No./% PGs
Detected
(Control
Group)

No.
Parathyroid
Adenomas
Detected

(Studied Group)

Accuracy Sensitivity

[43] Shi et al. 2016 China Carbon nanoparticles Intraoperative 52 45 52/52
(100%)

45/45
(100%) - - -

[44] Yan et al. 2018 China

Carbon nanoparticles
with rapid

parathyroid hormone
detection and

ultrasound-guided
fine needle aspiration

Preoperative 12 - - - 12 Up to 100% 12/12 (100%)

[45] Chen et al. 2017 China

Carbon nanoparticles
& technetium

sestamibi
(99mTc-MIB)

Preoperative
(99mTc-MIB)
Intraoperative

(carbon
nanoparticles)

20 20 160* - - - -

[46] Palermo et al. 2017 Italy Raman spectroscopy Intraoperative 18 - - - 13 100% -
[47] Das et al. 2006 UK Raman spectroscopy Intraoperative 15** - - - 9 - 95%

[48] McWade et al. 2014 USA
Near-infrared

autofluorescence
spectroscopy

Intraoperative 110 6 100% - - - 100%

[49] McWade et al. 2016 USA
Near-infrared

autofluorescence
spectroscopy

Intraoperative 137 - 100%***
98%**** - - 100% -

[50] Kim et al. 2016 Korea
Near-infrared

autofluoresccence
imaging

Intraoperative 8 - 16/16 (100%) - - 100% 100%

[51] Serra et al. 2019 Portugal
Near-infrared

autofluoresccence
imaging

Intraoperative 5 - 10/10 (100%) - - - -

[52] Benmiloud
et al. 2019 France

Near-infrared
autofluoresccence

imaging
Intraoperative 121 120 390 299 - - -

[53] Paras et al. 2011 USA
Near-infrared

autofluoresccence
imaging

Intraoperative 21 - - - - - -

[54] McWade et al. 2013 USA
Near-infrared

autofluorescence
spectroscopy

Intraoperative 45 - 100% - - - -

[55] Kim et al. 2017 Korea
Near-infrared

autofluoresccence
imaging

Intraoperative 38 - 64
92.8% - 1 92.85% 92.75%
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Table 1. Cont.

Ref. Authors Year Origin Method Usage
No. Patients

(Studied
Group)

No.
Controls
(Control
Group)

No./% PGs
Detected
(Studied
Group)

No./% PGs
Detected
(Control
Group)

No.
Parathyroid
Adenomas
Detected

(Studied Group)

Accuracy Sensitivity

[56] Falco et al. 2016 Argentina Near-infrared
autofluorescence Intraoperative 28 - - - 9 - -

[57] Ladurner
et al. 2016 Germnay

Near-infrared
autofluoresccence

imaging
Intraoperative 25 - 27/35 - - - -

[58] De Leeuw
et al. 2016 France

Near-infrared
autofluoresccence

imaging
Intraoperative 35 - 81 - - - 94.1%

[59] Squires et al. 2019 USA
Near-infrared

autofluoresccence
imaging

Intraoperative 59 - 12 - - - 87%

[60] Kose et al. 2019 USA
Near-infrared

autofluoresccence
imaging

Intraoperative 50 - 192/199 (96%) - - - -

[61] Kose et al. 2020 USA
Near-infrared

autofluorescence
imaging

Intraoperative 310 - 496/503
(98.6%) - - 97.6% 98.5%

[62] Henegan et al. 2019 Australia
Near-infrared

autofluorescence
imaging

Intraoperative 1 - - - 1 - -

[63] Alesina et al. 2018 Germany
Near-infrared

autofluorescence
imaging

Intraoperative 5 - 11 - 1 - -

[64] Kahramangil
et al. 2018 Argentina

Near-infrared
autofluorescence

imaging
Intraoperative 210 - (584/594)

98% - - 97-99%*****

[65] Thomas et al. 2018 USA
Near-infrared

autofluorescence
imaging + PTeye

Intraoperative

162 (near-IR
auto-fluorescence

imaging)
35 (PTeye)

-

881
(near-IR

auto-fluorescence
imaging)

383
(PTeye)

-

92.5%
(near-infrared
autoluorescene

imaging)
96.1%

(PTeye)

89.1%
(near-infrared
autoluorescene

imaging)
95.5% (PTeye)

[66] Kim et al. 2017 USA Dynamic optical
contrast imaging

Ex vivo
study

Eventually
intraoperative

81 - - - - - -

[67] Mannoh et al. 2017 USA Laser speckle
contrast imaging Intraoperative 20 -

32 (well
vascularized

PGs)
27

(compromised
PGs)

- - 91.5% 92.6%
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Table 1. Cont.

Ref. Authors Year Origin Method Usage
No. Patients

(Studied
Group)

No.
Controls
(Control
Group)

No./% PGs
Detected
(Studied
Group)

No./% PGs
Detected
(Control
Group)

No.
Parathyroid
Adenomas
Detected

(Studied Group)

Accuracy Sensitivity

[68] Hattapo ğlu
et al. 2015 Turkey Shear-wave

elastography Preoperative 36 - - - - -
90% (for

parathyroid
adenomas)

[69] Azizi et al. 2016 USA Shear-wave
elastography Preoparative 57 - - - - - -

[70] Golu et al. 2017 Romania Shear-wave
elastography Preoparative 22 43 - - 21 - 93%

[71] Stangierski
et al. 2018 Poland Shear-wave

elastography Preoperative 65 35 - - - - -

[72] Chandramohan
et al. 2017 India Shear-wave

elastography Preoperative 44 - - - 39 90.5% 91.1%

[73] Batur et al. 2015 Turkey Shear-wave
elastography Preoperative 92 - - 21 - 85.7%

[74] Vidal Fortuny
et al. 2017 Stwitzerland

Parathyroid
angiography with
indocyanine green

Intraoperative 73 73 - - - - -

[75] Van den Bos 2018 Netherlands Indocyanine green Intraoperative 26 - - - - - -
[76] Sound et al. 2015 USA Indocyanine green Intraoperative 3 - - - 2 - -

[77] Kahramangil
and Berber

2017
2018

USA
China

Parathydoid
autofluorescence Intraoperative 22 - 61/62 (98%) - - -

Indocyanine green Intraoperative 3 - all - - - -
[78] Lang et al. 2016 China Indocyanine green Intraoperative 70 - - - - - -
[79] DeLong et al. 2017 USA Indocyanine green Intraoperative 60 - 60/60 (100%) - 18/18 (100%) - -

[80] Chakedis
et al. 2015 USA Indocyanine green Intraoperative 1 - 1 - 1 - -

- no data; * among 40 patients (studied and control groups combined); ** a total number of parathyroid glands; *** among patients with nontoxic nodular goiter, toxic multinodular goiter,
Hashimoto’s thyroiditis, Graves disease, thyroid adenoma, medullary thyroid cancer, primary hyperparathyroidism; **** among patients with differentiated thyroid cancer; ***** a range of
sensitivity % among three centers.
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Further, considering all three modalities, it was observed that the highest sensitivity was provided
during USG and CT combination – 95.0%, whereas the lowest during MIBI and CT combination –
88.3%. Besides, a combination of all three modalities (USG, CT, and MIBI) presented with the highest
sensitivity equal to 95.4%. Radioisotope techniques might not be sufficient enough in cases of double
parathyroid adenomas or multiglandular hyperplasia [81,82]. Tokmak et al. suggest combining
single-photon emission CT (SPECT-CT) with a dual-phase imaging method while searching for the
localization of parathyroid adenomas preoperatively [83]. Thanseer et al. showed that 18F-fluorocholine
(FCH) PET/CT has a higher accuracy (96.3%) comparing to USG or MIBI, and is effectively useful
in localizing ectopic or small parathyroid lesions [38]. Furthermore, four-dimensional CT (4D-CT)
provides significantly greater sensitivity (88%) for a precise (quadrant) localization of pathological
PGs comparing to MIBI (65%), or USG (57%) [84]. Even though preoperative imaging techniques
do not provide an identification of the majority of ectopic PGs, MIBI seems to be most useful in the
identification of ectopic glands mainly in the thymus and upper mediastinal regions [85]. Despite high
accuracy and sensitivity of preoperative imaging techniques, the need for intraoperative identification
or verification of PGs is usually necessary.

4. Carbon Nanoparticles

4.1. Carbon Nanoparticles Characterization

Carbon nanoparticles were first invented and used as a tracer agent for imaging applications,
especially for lymph nodes and vessel tracing [86]. These are nanosized carbon elements with a
diameter usually less than 100 nm. One of the advantages of a carbon nanoparticle application is
that they provide a clearer lymph node dissection region for surgeons without any toxic side effects
on patients [87–89]. Carbon nanoparticles have a high affinity for the lymphatic system, promptness
of dyeing black and the color contrast with tissues within the operative field. Thus, the carbon
nanoparticles application is beneficial during open surgeries in the mediastinal region since it decreases
the incident rate of PGs damage.

4.2. Carbon Nanoparticles in Parathyroid Glands Localization

The latest research confirmed the possibility of carbon nanoparticle application in PGs detection.
In the following method, Shi et al. applied carbon nanoparticles in the suspension injection (1 mL/50
mg) within the area of the thyroid tissue [43]. The suspension contained nano-sized carbon particles
with a diameter of approximately 150 nm. Carbon nanoparticles do not penetrate into the blood vessels
because of their specific dimensions and are distributed in the lymphatic vessels and capillaries [90].
Because of this property, when the suspension is injected in the thyroid’s tissue region, it enters the
lymphatic vessels specifically instead of the vascular vessels. During the surgery, injected carbon
nanoparticles stain the thyroid and lymph nodes black, while leaving the PGs unstained enabling an
easy differentiation between PGs and adjacent tissues.

While performing the preoperative procedure of applying carbon nanoparticles, it is crucial to
provide a precise injection as possible. Thus, the injection should be done in the lower 1/3 of the ventral
surface to each of the bilateral glands. The needle should not be inserted too deep or too shallow
since it may cause extravasation of nanocarbon, which can eventually lead to the blackening of the
surgical field.

The results of Shi et al. study showed that intraoperative application of carbon nanoparticles
provided a 100% parathyroid detection rate. Furthermore, the rate of mistakenly cut PGs was much
lower in the nanocarbon group (1.9%), comparing to the control group, which did not receive a
carbon nanoparticle injection (15.6%). Moreover, the nanocarbon group presented a significantly lower
hypoparathyroidism rate (19.2%) and postoperative hypocalcemia (13.4%), compared to the control
group (42.2% and 22.2% respectively), because of the lower risk of intraoperative destruction of PGs
while applying carbon nanoparticles during surgery. Shi et al. also showed that serum calcium and
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PTH levels were significantly higher in cohorts in which carbon nanoparticles were used compared
to control groups [43]. Postoperative hypocalcemia requires the intraventricular supplementation of
calcium - it significantly improves the clinical outcome of patients because of the sudden restoration of
proper calcium concentrations.

The application of carbon nanoparticles seems to be a promising method for the intraoperative
detection of PGs. This method enables PGs detection only by dyeing the surrounding tissues and not
the PGs themselves. Therefore, differentiating between healthy PGs and adenomas is not possible with
this method. Nevertheless, Yan et al. used carbon nanoparticles combined with ultrasound-guided
fine needle aspiration and PTH rapid detection for diagnosis of parathyroid adenomas specifically [44].
With the guidance of ultrasound, PTH value was tested by the parathyroid puncture and further
application of carbon nanoparticles was provided to check whether parathyroid adenomas would
be stained black. The usage of this technique enabled a successful detection and diagnosis of all the
parathyroid adenomas (n=12) in a studied group in a relatively short time (approximately 20-30 min).
The sensitivity of this technique was also higher compared to USG, MRI, and MIBI where several
detected parathyroid adenomas equaled to 6, 7, and 9 correspondingly.

The results of the available studies show that the average number of PGs detected during surgeries
is significantly higher in groups where carbon nanoparticles are applied. Accurate detection of PGs
by carbon nanoparticles provides better clinical outcomes, including a lower rate of hypocalcemia
incidents, comparing to the control groups without carbon nanoparticles applied [91,92]. It is mainly
because this method significantly reduces the risk of mistakenly cut PGs. Further, the blood supply can
remain unchanged, preventing excessive intraoperative episodes of bleeding within the operated area.
Due to the application of carbon nanoparticles as a possible method of unequivocal identification of
PGs, the risk of postoperative hypothyroidism is significantly reduced [93–95]. Finally, the application
of carbon nanoparticles provides more accurate localization of lymph nodes for further dissection
during thyroidectomy and better visualization of metastatic lymph nodes [92,96–100].

5. Carbon Nanoparticles Suspension and Technetium Sestamibi (99mTc-MIB)

The study by Chen et al. sought to know whether the combined technique of nanocarbon particles
and technetium sestamibi (99mTc-MIB) would provide a better prognosis for the localization of the
PGs in comparison to 99mTc-MIB alone [45]. Intravenous injection of 99mTc-MiBI is a convenient
method of identifying PGs. Recent studies have shown that small doses of technetium are as effective
as higher doses, which minimize the amount of technetium needed during preoperative application
and potential risks of its usage [101,102].

In the following study, two groups were considered: one group was treated with 99mTc-MIB
alone, whereas the other with a combination of 99mTc-MIB with 0.1% carbon nanoparticles. Because
of the presence of carbon nanoparticles, the thyroid gland and accompanying lymph nodes were
stained dark blue, while the color of other tissues including PGs remained unchanged. Therefore,
the overall duration of surgical procedures was significantly shorter. Additional studies confirmed
that the application of carbon nanoparticles significantly facilitated the localization of pathological
PGs, including hyperplastic or adenomatous glands [103,104].

As expected, the combination of carbon nanoparticles and preoperative suspension of 99mTc-MIBI,
along with the radio guidance for the intraoperative localization of PGs enabled an easier and quicker
detection compared to 99mTc-MiBI technique alone. The overall duration of the surgery was shorter for
a group with carbon nanoparticles and 99mTc-MiBI combined, compared to 99mTc-MiBI alone (97± 16.6
vs. 115 ± 27.1 min, respectively, P = 0.015). Furthermore, a combination of carbon nanoparticles with
99mTc-MiBI provides an identification of PGs with synchronous localization, as well as those within
the abnormal locations in the neck [102,105,106].

Therefore, it can be concluded, that carbon nanoparticles might significantly increase the
effectiveness of localizing PGs. Nevertheless, further studies are needed to assess the utility of
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a combination of nanocarbon particles with 99mTc-MIB in establishing the localization of parathyroid
adenomas specifically.

6. Raman Spectroscopy

Raman spectroscopy is a potential optical diagnostic technique that measures the inelastic
scattering of light, which was described by the Nobel laureate Chandrasekhara V. Raman in 1928 [107].
After that, the Raman effect was particularly useful for medical applications because the scattered
radiation measured is unique for each biomolecule [108]. Since that time, Raman spectroscopy has been
applied in skin cancer margin assessment, diagnosis of endometriosis, differentiation between tumor
and normal brain tissues, or between parathyroid adenomas and hyperplasia [46,109–111]. In this
method, the frequency of a molecule, either vibrational or rotational can be changed with the use of
laser light. This consequently produces a frequency shift, which afterwards is measured and analyzed.
The results of this process are specific to the molecular constituents of the investigated sample.

Raman Spectroscopy–Differentiation Between Parathyroid Adenomas and Hyperplasia

Primary hyperparathyroidism may be attributed to the solitary parathyroid adenoma [112].
Raman spectroscopy provides an accurate differentiation between two pathological conditions of PGs –
either parathyroid adenomas or hyperplasia. The current standard for diagnosis of various pathologies
of PGs is a histopathological study; nevertheless, it is crucial to diagnose such pathologies as early as
possible for a better prognosis and clinical outcome. Since an intraoperative differentiation between
benign or severe pathological conditions might be misleading, an accurate recognition of a specific
pathology seems to be decisive during surgery.

Pathologically, parathyroid adenomas are oval or slightly round, lobulated and encapsulated
tumors that appear greyish after section [113,114]. However, in many cases, parathyroid adenomas
may also contain normal parathyroid tissue, which may rise further differentiation concerns. Raman
spectroscopy allows for an accurate examination of the biochemical composition of a specific tissue.
Das et al. have discussed applications of Raman spectroscopy which may significantly improve
or even replace the need of intraoperative frozen sections for tissue pathology [47]. Palermo et al.
showed that usage of Raman spectroscopy enables the possibility to distinguish between healthy and
adenomatous parathyroid tissues, as the results of his study showed a 100% accuracy in an investigated
sample of 18 patients [46]. Apart from distinguishing between adenomas and hyperplasia, Raman
spectroscopy allows for specific identification of adenomatous histology – whether a parathyroid
adenoma is primarily composed of a chief or oxyphil cells.

Even though Raman spectroscopy demonstrates high potential in differentiation between
parathyroid adenoma and hyperplasia, further research is crucial to validate this methodology.
One of the limitations of this method is the additional time needed to perform the analysis during
surgery, which might extend its duration. Other disadvantages include additional costs and potentially
higher post-operative side effects due to the probable prolongation of a surgery. Nonetheless, Raman
spectroscopy seems to be a promising method of intraoperative differentiation between healthy and
pathologically changed parathyroid tissues, as well as their further diagnosis [46,47].

7. Near-Infrared Autofluorescence

Parathyroid tissue possesses a characteristic of autofluorescence in the infrared wavelength
spectrum [53,115]. Naturally present fluorophore of PGs is excited by 785-nm light and immediately
emits longer wavelength light with a peak intensity at 822-nm [53,54]. The possible source of this
property is vitamin D receptors or calcium-sensing receptors present in PGs cells [54,116]. Thyroid
tissue shows many times lesser emission compared to PGs, whereas other tissues present in the
operative site do not show autofluorescence. A study performed by McWade et al. showed that
emission intensity from the PGs was lower in patients with high BMI, hyperparathyroidism, low
vitamin D and high calcium levels [48]. It was independent of age, sex, ethnicity, and PTH level.
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The usage of near-infrared autofluorescence (NIR) in the localization of PGs has multiple advantages
including no need for exogenous substances, instant feedback, non-invasiveness [49–51]. This method
proved to facilitate the identification of PGs in 68% of investigated patients. Patients operated with
NIR presented significantly lower post-operative hypocalcemia rates (5.2% to 20.9%), a higher mean
number of identified PGs, and reduced autotransplantation rates. There was no difference in the rate
of inadvertent resections [52,77].

Basing on the properties of PGs, several techniques were developed to provide their proper
localization. One of the latest, original technique implemented near-infrared spectroscopy.
The measurements were collected after the thyroid and PGs were exposed by placing the fiber
optic probe to examined sites (S2000-FL® fiber optic spectrometer Ocean Optics, Dunedin, FL, USA).
The procedure required the darkening of the operation field [53,54]. An improvement of this method
was a user-friendly clinical prototype of a device that uses near-infrared spectroscopy – PTeye [55,65].
It was adopted to perform measurements even with operating room lights turned on. Additionally, a
foot-pedal activation method was implemented. All these factors cause that this device provides easily
interpretable data and is more ergonomic for surgeons. However, near-infrared spectroscopy provides
only the point measurements and requires contact with tissues, hence its value in localization of PGs is
lower compared to near-infrared autofluorescence imaging. Falco et al. presented NIR imaging using
a commercial device, the Fluobeam 800 laser (Fluoptics, Grenoble France) [56]. Other research groups
used different either commercial or home-made devices [57,59,77]. The advantage of this technique
is the ability to create a real-time image of a large part of the operation field without direct contact
with tissues.

In 2016, Kim et al. performed a study that modified the technique of visualization of PGs called
NIR-IR imaging [55]. The surrounding structures and surgical tools could be easily visible because of
the additional infrared illumination in broadband (700-1400 nm). Thus, this method provides the spatial
context and enhances the probability of determining a proper localization of PGs in the surgical field.
Further development of NIR was presented in 2018 by the Vanderbilt research group. The overlying
tissue imaging system can display the results of autofluorescence measurements directly on the
operation field. The strong green light marks PGs and supports the surgeon’s visual interpretation.
This method excludes the need of looking at external monitors and issues related to the inappropriate
interpretation of images from the screen [15]. To best of our knowledge, only one study focused on
the identification of primary hyperparathyroidism with NIR. Kose et al., investigated the utility of
near-infrared autofluorescence imaging (Fluobeam device) in the identification of hyperfunctioning
PGs [60]. On a sample of 199 PGs, autofluorescence was detected in 192 cases. Due to abnormal visual
appearance, 77 glands were excised, and 65 appeared to be hyperfunctioning according to Miami
criteria. Eventually, hyperfunctioning PGs showed lower autofluorescence and its heterogeneous
pattern compared to normal functioning glands. Further research has confirmed the utility of NIR
imaging to confirm the presence of parathyroid tissue within surgical specimens [61]. In 2019, a study
by Henegan et al. presented a case of intrathyroidal parathyroid adenoma, which was detected via
NIR imaging [62].

The application of NIR does not provide information about the viability of the PGs since
the fluorescence persists after devascularization. Hence, Alesina et al. proposed combining the
autofluorescence with the application of indocyanine green to assess PGs vascularity during the
resection [63]. Another disadvantage of NIR is the necessity of turning the operating room light
completely off to register the fluorescence, which disrupts the operating room workflow and extends
the operation time. So far, the only method insensitive to light is the PTeye device [55]. Furthermore,
NIR shows a limited ability to localize PGs covered deeply by other tissues since the penetration of
light is a few millimeters of soft fatty-fibrous tissue [58,64].
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8. Dynamic Optical Contrast Imaging

PGs detection has been significantly improved in 2017 by a novel method presented in a study
performed by Kim et al. – dynamic optical contrast imaging (DOCI) [66]. In this method, tissues are
illuminated by LEDs with different wavelengths and fluorescence decay information from endogenous
fluorophores is used to obtain pixel values and create color diagrams [117]. In the ex vivo study,
the 127 specimens were examined by macroscopic characteristics, DOCI maps, and histopathological
images. DOCI maps showed differences in the relative decay between parathyroid and fat, thymus as
well as thyroid tissues in all examined wavelengths (407-676 nm). The wavelengths within the range
of 465-594 nm showed the highest contrast between thymus and parathyroid tissue. Even promising
results of ex vivo studies, DOCI needs to be used in in vivo studies to establish it as a method of
intraoperative PGs detection.

9. Laser Speckle Contrast Imaging

Mannoh et al. used a laser speckle contrast imaging (LSCI) to evaluate PGs viability during the
thyroidectomies and parathyroidectomies [67]. It is a real-time, contrast-free, objective technique
that allows distinguishing vascularized and compromised PGs. LSCI provides the detection of the
movement of particles such as red blood cells, a few hundred microns beneath the tissue surface [118,119].
It is possible due to differences in light scattering, which produce a pattern of bright and dark areas
depending on the velocity of particles. The obtained pattern is called a speckle pattern. The LSCI
was tested on 20 patients with thyroidectomy and compared to a gold standard - surgeon’s visual
assessment of the gland’s viability. Viable PGs had lower speckle contrast compared to compromised
ones. Using statistical methods (Receiver operating characteristic) the threshold to distinguish both
groups was set up to 0.09, which gave 92.6% sensitivity and 90.6% specificity with total accuracy 91,5%.
The validation was conducted on 8 patients undergoing parathyroidectomies. The advantage of this
method is relatively fast and specific identification of damaged PGs compared to the technique of PTH
hormone assay, which gives results after 10 min and does not specify which gland is devascularized.
One disadvantage of LSCI is its susceptibility to any kind of movement of an operation field, including
the patient’s breathing or surgeon’s movement. Yet, in the aforementioned study, the researchers were
able to obtain distinct differences in speckle contrast in the trial.

10. Shear Wave Elastography

Various imaging techniques such as sonography, MIBI, CT, or MRI are used on regular bases to
evaluate parathyroid lesions, however, in some cases, their diagnostic accuracy is limited [120–122].
Differences in the structure of PGs and adenomatous glands can be estimated by the variations of gland
stiffness – parathyroid adenomas are stiffer because of the reduced fat tissue within the pathologically
changed glands. The presence of a fibrous, hard capsule around parathyroid adenoma also increases its
stiffness. Furthermore, parathyroid adenomas are stiffer comparing to hyperplasia or adjacent lymph
nodes. This characteristic was applied in the shear-wave elastography (SWE), which is a potential
technique providing measurements of PGs stiffness [123].

Hattapoğlu et al. showed that among 36 examined patients, the mean shear wave velocity
(SWV) ± SD of parathyroid hyperplasia lesions (n = 4) was 1.46 ± 0.23 m/s, whereas, in case of
parathyroid adenomas (n = 32), SWV was 2.28 ± 0.50 m/s [68]. In a study, a significant difference was
shown between normal thyroid tissue and parathyroid adenoma (P < 0.001). Further, a difference
between thyroid parenchyma and thyroid nodules was also significant (P < 0.001). However, no
significant difference was shown between thyroid nodules and parathyroid adenomas (P = 0.989).
Even though it was the first time of SWE application in the identification and differentiation of
parathyroid lesions such as adenomas, the results turned out to be credible and promising. Azizi et al.
showed that parathyroid adenomas and thyroid tissue present a statistically significant difference in
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SWE (P < 0.0001); according to researchers, SWV measurements also enhances other preoperative
sonographic parameters, providing a more accurate diagnosis of parathyroid adenomas [69].

Application of SWE with Virtual Touch tissue imaging quantification (VTIQ) enabled the
differentiation between parathyroid adenoma and hyperplasia, as well as cervical lymph nodes [124].
Golu et al. suggested that the cutoff value for SWE-Mean should be set at 12.5 kPa to provide an
accurate diagnosis of parathyroid adenoma [70]. According to researchers, subjects with SWE-Mean
value lower than 12.5 kPa present a high probability of parathyroid adenoma presence. It was proposed
that SWE alone would provide sufficient diagnosis without a need for any additional imagistic tests.
Contrarily, Stangierski et al. claim that SWE should constitute only an additional preliminary diagnostic
tool for parathyroid adenoma identification [71]. SWE combined with acoustic radiation force impulse
(ARFI) technology can be applied to increase the diagnostic accuracy of USG in the identification of
parathyroid lesions primarily in patients with hyperparathyroidism [72]. Furthermore, SWE with
ARFI enables the differentiation between parathyroid adenomas and benign or malignant thyroid
nodules [73]. One limitation of SWE is that dimensions of parathyroid adenomas cannot be estimated,
however, according to recent studies, SWE seems to be a valuable, additional technique providing an
accurate parathyroid adenoma identification.

11. Indocyanine Green

Indocyanine green (ICG) is a near-infrared fluorescent agent that has been used since the 1970s,
mainly in retinal angiography [125]. ICG is a non-toxic, inert, organic compound that is injected
intravenously and binds to plasma proteins, which eventually become illuminated with the usage of
a low-energy laser at 806 nm. This property enables a charge-coupled device camera to record the
fluorescence of ICG molecules [78]. Thus, this characteristic has been applied in the visualization
of PGs since the fluorescence intensity of the glands can be measured by the ICG fluorescence
angiography (ICGA) [74,126,127]. ICG is a nonselective agent, which constitutes a limitation of its
intraoperative application in PGs detection since it does not target parathyroid parenchyma specifically.
However, because PGs receive a higher amount of blood compared to surrounding tissues, they emit
a much stronger fluorescent signal, which consequently presents the exact localization of the PGs
(Figure 2) [128].
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ICG, at the very beginning (starting in 2015), has been used as a way of detecting PGs in
dogs [129]. Further studies reported that ICG can apply to humans in many broad specialties like
cholangiography, perfusion assessment of gastrointestinal anastomoses, adrenalectomy, or real-time
lymph node mapping [79]. Further, ICG can be used in assessing blood perfusion within the PGs,
but also in other cases including skin flaps, bowel anastomosis or lower limbs [126]. Several studies
reported that ICG can be used in the intraoperative localization of parathyroid adenomas. The first
successful determination of a parathyroid adenoma with the usage of ICG was performed in 2015 by
Chakedis et al. [80]. In this study, a previously performed sestamibi scan provided false negative results
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since it did not detect the parathyroid adenoma. Contrarily, a CT scan which was also performed
detected a heterogeneous soft tissue mass in the region of the thyroid lobe. In this case, 2.5 mg/mL
bolus of 3 mL of ICG was injected, and the fluorescence was presented on the neck approximately just
20 s after injection. Nerve monitoring provided a successful surgical approach, causing no harm to the
recurrent laryngeal nerve.

In a similar study performed by DeLong et al., it has also been shown that among 54 patients who
have a sestamibi scan performed, 36 of them presented a parathyroid adenoma, whereas 18 were not
detected, even though the adenomas were present [79]. However, when ICG was applied, parathyroid
adenomas were detected in all of the patients presenting a high accuracy of this method. Zaidi et al.,
have shown that the usage of ICG fluorescence angiography enabled the detection of 93% of PGs only
by the naked eye [130].

One of the advantages of ICG application is that regarding previous studies, no cases have shown
false positive incidents of PGs detection. Furthermore, ICG application is relatively inexpensive and
the safety profile for patients is high. This technique is simple for surgeons since instruments used in
such surgeries require the same ones as in laparoscopy in which surgeons are usually familiar with.
ICG is also not harmful to patients, works quickly, and has a short half-life, which also increases the
profile of its lack of toxicity on the organism [76,131]. Regarding ICG limitations, it contains iodine
thus, it should not be used in patients with medical conditions that present excessive amounts of iodine
in the organism, as well as those who are allergic to this substance. Further, ICG requires a specific
source of light and camera filters. Overall, the usage of ICG along with the near-infrared fluorescence
seems to be a promising intraoperative technique of detecting parathyroid adenomas and cases of
hyperthyroidism [80].

ICG is not the only agent used in the intraoperative detection of PGs. Previous studies have also
shown a successful application of aminolaevulinic acid and methylene blue [79,132]. The usage of
aminolaevulinic acid provides clear differentiation between PGs and adjacent tissues [133]. Methylene
blue has also proved its utility to detect the localization of the parathyroid adenomas with the usage of its
low doses [134]. The higher percentage of success (97%) was observed, when higher doses of methylene
were applied, which was also associated with the higher risks of cutaneous complications [135].

12. Indocyanine Green Fluorescence Vs Parathyroid Autofluorescence

Both techniques—ICG fluorescence and parathyroid autofluorescence—are recent techniques
that significantly improve the intraoperative detection of PGs [75]. Regarding ICG application,
it is a promising method that provides a higher rate of PGs detection, as well as fewer incidental
parathyroidectomies [136,137]. The limitations of this technique include interference from background
thyroid fluorescence, which hinders PGs detection, as well as several incidents of false-negative
results. Further, there is still insufficient data about the exact relationship between the intraoperative
usage of ICG and postoperative hypocalcemia [138,139]. Contrarily, parathyroid autofluorescence
does not require the fluorescent dye [131]. In a study performed by Kahramangil and Berber, both
techniques—ICG fluorescence and parathyroid autofluorescence—were compared. The results have
shown that both methods provide very high rates of PGs detection and a significantly lower number of
postoperative hypocalcemia incidents. ICG fluorescence and parathyroid autofluorescence presented
similar PGs detection rates equal to 95% (60 of 63 PGs) and 98% (61 of 62 PGs), correspondingly.
However, regarding hypocalcemia, parathyroid auto-fluorescence resulted in a higher rate of such
incidents (9%) compared to ICG (5%). Even though the utility of both methods in PGs detection is
similar, one major difference is the timing needed for PGs detection. Since autofluorescence signal
detection is not interfered with by the thyroid gland signal, parathyroid autofluorescence provides
PGs detection before the naked eye more often (52% of all PGs) compared to ICG fluorescence (6% of
all PGs). In the case of ICG, the dye uptake by thyroid tissue hinders its usefulness in the detection of
PGs. ICG requires the administration of an exogenous substance to circulation, which is associated
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with the risk of allergic reactions. Further, sodium iodine is present in ICG substance, thus, patients
with iodine allergy and renal insufficiency are susceptible to harmful effects [77].

13. Conclusions

Detection of PGs constitutes a difficult task during surgical procedures within the neck because of
a close relationship with important anatomical structures such as thyroid gland, recurrent laryngeal
nerve, or inferior thyroid artery. Since additional or ectopic PGs might be present, identification
must be as precise as possible, a task which seems to be challenging in both pre- and intraoperative
techniques. Despite, all of the preoperative techniques (USG, CT, MIBI) used in PGs detection presents
a high accuracy and sensitivity, often there is a need for the application of intraoperative modalities.
Intraoperative methods decrease the number of false-negative results, also providing a good approach
in the verification of diagnosis. Because of the different properties of each modality, each of them is
associated with different advantages and disadvantages (Table 2).

Table 2. Advantages and disadvantages of intraoperative parathyroid detection methods.

Method Advantages Disadvantages

Dynamic Optical
Contrast Imaging

Non-invasive
No admission of exogenous substances

Instant feedback
Not enough evidence

Laser Speckle
Contrast Imaging

No admission of exogenous substances
Instant feedback

Assess of viability of PGs

High susceptibility to
movement of the operation field

Autofluorescence
Spectroscopy

Non-invasive
No admission of exogenous substances;

Instant feedback

No information about the viability of PGs
Requires the blackout of the

operating room light
Limited ability to localize PGs covered deeply

by other tissues

Autofluorescence
Imaging

Non-invasive
No admission of exogenous substance

Instant feedback
Contactless

Possibility to differentiate adenomas
Possibility to display on the operation field

No information about viability of PGs
Requires the blackout of the operating room
Limited ability to localize PGs covered deeply

by other tissues

Raman
Spectroscopy

Non-invasive
No admission of exogenous substance;
Possibility to differentiate adenomas

Requires additional time

Carbon
Nanoparticles

Do not penetrate to tissues
Visible in the operation field

Admission of exogenous substance
Requires precise injection

Do not differentiate adenomas

Shear Wave
Elastography

Non-invasive
No admission of exogenous substance;
Possibility to differentiate adenomas.

Dimensions of parathyroid adenomas cannot
be estimated

Indocyanine
Green

Inexpensive
Safe

Possibility to differentiate adenomas
Visible in the operation field

Admission of exogenous substance
Contrast nonspecific for PGs

Contains iodine

The usage of carbon nanoparticles appears to boost the probability of detecting PGs. As it was
presented in a study, a combination of carbon nanoparticles and 99mTc-MIBI significantly facilitated
detection of pathological (either adenomatous or hyperplastic) PGs. Raman spectroscopy enables a
histological differentiation between hyperplastic and adenomatous PGs; it also provides a specific
histological composition of a parathyroid adenoma, which gives information about the prognosis
of a patient. Near-infrared autofluorescence proved to be an easily implemented method that is
noninvasive, sensitive, specific, and highly facilitates the localization of the PGs. Dynamic optical
contrast imaging also uses light radiation to obtain the image of the operative field, although it uses
different wavelengths. The image creation is based on fluorescence decay feedback from various
tissue fluorophores. The research on this method is in the preliminary stage, hence it is difficult to
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compare its performance with better explored near-infrared autofluorescence. Also, laser speckle
contrast imaging is another non-invasive method used during operations on PGs. Its main usage is the
ability to detect microcirculation beneath the superficial layer of tissue. Hence, it may serve as a tool to
examine the viability of the glands. ICG seems to be the most promising method in the identification
of adenomatous PGs from all the previously aforementioned techniques. In the presented studies,
ICG provides detection of nearly 100% of adenomas. Despite some preoperative and intraoperative
techniques have been already investigated, further research is needed to determine which modality
would be the most satisfying in parathyroid adenomas detection.

Author Contributions: Conceptualization, J.B., R.S. and G.G.; methodology, M.Ł.; formal analysis, J.B., R.S.;
investigation, A.F., M.C.; writing—original draft preparation, J.B., R.S., M.Ł., A.F., M.C., A.M. and G.G.;
writing—review and editing, G.G.; supervision, J.B. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

4D-CT Four-dimensional computed tomography
ARFI Acoustic radiation force impulse
CT Computed tomography CT
DOCI Dynamic optical contrast imaging
FCH 18F-fluorocholine
ICG Indocyanine green
ICGA Indocyanine green fluorescence angiography
LSCI Laser speckle contrast imaging
NIR Near-infrared autofluorescence
PGs Parathyroid glands
PHPT Primary hyperparathyroidism
SPECT-CT Single-photon emission CT
SWE Shear-wave elastography
USG Ultrasonography
VTIQ Virtual Touch tissue imaging quantification
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