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Abstract: The discovery of ways to enhance skin wound healing is of great importance due to
the frequency of skin lesions. We discovered that 4-aminopyridine (4-AP), a potassium channel
blocker approved by the FDA for improving walking ability in multiple sclerosis, greatly enhances
skin wound healing. Benefits included faster wound closure, restoration of normal-appearing skin
architecture, and reinnervation. Hair follicle neogenesis within the healed wounds was increased,
both histologically and by analysis of K15 and K17 expression. 4-AP increased levels of vimentin
(fibroblasts) and alpha-smooth muscle actin (α-SMA, collagen-producing myofibroblasts) in the
healed dermis. 4-AP also increased neuronal regeneration with increased numbers of axons and
S100+ Schwann cells (SCs), and increased expression of SRY-Box Transcription Factor 10 (SOX10).
Treatment also increased levels of transforming growth factor-β (TGF-β), substance P, and nerve
growth factor (NGF), important promoters of wound healing. In vitro studies demonstrated that
4-AP induced nerve growth factor and enhanced proliferation and migration of human keratinocytes.
Thus, 4-AP enhanced many of the key attributes of successful wound healing and offers a promising
new approach to enhance skin wound healing and tissue regeneration.

Keywords: 4-aminopyridine; wound healing; reinnervation; nerve growth factor; tissue regeneration

1. Introduction

Enhancing the healing of skin wounds is an important and challenging medical
problem, whether these are isolated lesions or components of larger traumatic injuries.
As the major protective barrier between the sterile environment inside the body and the
pathogen-rich external world, the evolutionary pressure to optimize efficient healing of
skin wounds has been very high, and this process is normally effective. This long history of
evolutionary selection for optimized skin wound healing raises the question of whether it
is even possible to improve normal healing processes. Moreover, if this is possible, can it be
done with approaches that facilitate efficient movement from the laboratory to the clinic?

One of the challenges in enhancing skin wound healing is that many different cellu-
lar processes must work in concert for effective and comprehensive repair. Along with
wound closure, proliferation, migration, and/or differentiation of keratinocytes, fibroblasts,
Schwann cells (SCs), and neurons, regeneration of hair follicles and other cellular changes
are all important in successful, healthy wound healing [1–4]. In addition, the cells of the
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skin need to produce and establish a healthy microenvironment comprised of extracellular
matrix and specific neuropeptides and growth factors, such as transforming growth factor-
β (TGF-β) and nerve growth factor (NGF) [1,5–8], all of which are necessary to promote
wound healing.

Surprisingly, several calcium channel inhibitors, including amlodipine, verapamil,
diltiazem, nifedipine, and azelnidipine [9–12], promote some aspects of wound healing,
raising the possibility that ion channel modulators may be useful in enhancing repair.
Topical verapamil application increased the rate of wound closure, the density of fibroblasts
and collagen bundles, and the volume densities of blood vessels [10]. Nifedipine and
amlodipine enhanced skin tensile strength and amlodipine caused faster wound closure [11].
Thus, these compounds enhance some aspects of normal wound healing, although not all
components of the healing response were investigated in these reports.

A different class of ion channel inhibitors of potential interest for skin wound healing,
due to its pro-reparative effects on Schwann cells and peripheral neurons, is the potassium
channel blocker 4-aminopyridine (4-AP). It has been recently shown, by genetic manip-
ulations, that the normal function of Schwann cells is important for enabling effective
skin wound repair [1]. These outcomes raise the question of whether a pharmacological
approach to enhancing Schwann cell recovery might have similar benefits. 4-AP is an
interesting candidate for such studies, due to its ability to enhance the recovery of both
Schwann cells and neurons after peripheral nerve crush injuries [13–16]. What 4-AP would
do in skin injuries, however, is unknown and not predictable. 4-AP is best studied as an
inhibitor of multiple voltage-gated potassium channels [17,18], which do not appear to have
been studied in the context of skin wound healing. 4-AP also affects calcium levels, both
by increasing intracellular calcium levels and activating high-voltage activated calcium
channels [19]. Therefore, 4-AP would be predicted to change calcium levels in ways that
are opposite to what occurs with calcium channel blockers, which can inhibit calcium entry
post-injury, leading to the possibility that 4-AP treatment would actually inhibit wound
healing.

We now report that, in mice with full-thickness dorsal skin wounds, the systemic 4-AP
treatment caused more rapid wound closure, restoration of normal epidermal thickness,
tissue structure, collagen levels, and cell proliferation. Thus, the 4-AP treatment enhances
many of the key attributes of successful wound healing. These findings provide strong
support for the hypothesis that 4-AP treatment can enhance both tissue repair and regen-
eration in acute injuries. The extensive prior studies on 4-AP safety and dosing [13–15],
and its approval for the treatment of multiple sclerosis [20], make this compound of great
interest for rapid transition to clinical studies.

2. Materials and Methods
2.1. Study Design

The primary objective of this study was to investigate the possible therapeutic effect
of 4-AP in enhancing skin wound healing and tissue regeneration in C57BL/6 male mice.
Mouse studies were carried out following the NIH’s Guide for the Care and Use of Lab-
oratory Animals (NIH publication No. 86–23, revised in 2011) and the animal protocol
was approved by The Penn State College of Medicine Institutional Animal Care and Use
Committee (IACUC No.: PROTO202001314). Mice were age-matched and randomized to
treatment groups: systemic 4-AP or saline. The number of animals (n) needed was calcu-
lated based on the conservative use of animals for the least sensitive data type and was
determined based on the desired power level greater than 80% and a required p < 0.05. The
total we started with was 8 animals per group. The probability of mice dying in unrelated
experiments was 8% and was also an 8% chance of the splint coming out (nonadherent)
from the wounded mice, and we excluded such mice from the study. The selected number
of animals (n = 5; 2 wound/animal; and total 10 wounds) used per group qualifies for
the classical pre-hoc power analyses. Data were generated by microscopic analysis of
immunohistochemistry, immunofluorescence on fixed skin sections, and immunoblotting
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of tissue and cell lysates. Five animals with 10 wounds were used in functional wound
closure assessments. In the same animals, one wound tissue was used for cellular and
molecular studies (n = 5), and the other wound for tissue protein and molecular analysis
(n = 3). We performed full-excisional wound experiments and functional wound healing
analysis on three independent cohorts of mice and each cohort contained 8 animals per
group.

2.2. Wound Healing Assay
Male C57BL/6 (10-week, 20–25 g body weight) mice were purchased from the Jackson

Laboratory (Bar Harbor, ME, USA). Mice were anesthetized by intraperitoneal injection of
ketamine (100 mg/kg) and xylazine (10 mg/kg) body weight, and the hair was removed
by shaving and hair removal cream. Skin was disinfected using 70% ethanol and betadine
before wounding. The shaved dorsal skin was folded and raised cranially and caudally at
the midline to generate two, symmetrical, 5-mm-diameter wounds using a sterile punch
biopsy tool (Robbin’s instrument, Houston, TX, USA, #RBP50) [1,21,22]. A 5-mm-diameter
silicone ring (Grac3 Bio-labs, Bend, OR, USA, #CWS-S-0.5) was sutured (DemeTech, Miami,
FL, USA #NYLON5-0) around each wound to restrict contraction. After wound creation
and suturing of the silicone ring, wound sites were photographed, and the wound surface
was covered with Tegaderm (3 M) sterile transparent dressing. After surgery, mice were
given SR Buprenorphine (0.05 mg/kg) as postoperative analgesia. Based on the assigned
treatment groups, mice received either saline or 4-AP: a saline group (vehicle control), which
received 100 µL of saline, and a 4-AP group, which received 40 µg/mouse/daily 4-AP
(1.6 mg/kg of 4-AP in 100 µL of saline) intraperitoneally (IP) until day 14 post-wounding.
This dosage corresponds to ~40% of the mouse body surface area and is equivalent to the
dosage of 20 mg/day used in treating multiple sclerosis [23] but is less than the dose that
has been examined in patients with chronic spinal cord injury. Gross wound healing was
monitored daily and images were captured from day 0 to day 14 (days 0, 3, 5, 7, 9, 12, and
14) post-surgery (Figure 1a). Wound areas were measured in pixels using ImageJ-1.53e
software (National Institutes of Health, Bethesda, MD, USA) and normalized/corrected for
each wound area with reference scales. Wound healing is expressed as a percentage with
respect to day 0 wounds [1,21,22], using the following formula.

Wound healing (%) =
(Area of orginal wound at day 0 − Area of wound at postulated day)

Area of orginal wound at day 0
× 100. (1)

2.3. Histomorphometry Analysis

Wound assessments were conducted at 14 days post-wounding using formalin-fixed
(Sigma Aldrich, St. Louis, MO, USA,# HT5011-CS) and paraffin-embedded tissue, serially
cut into 5 µm sections on a Microtome (GMI, Ramsey, MN, USA, # Leica RM2235). Skin
sections were processed for morphometric analysis using hematoxylin and eosin (H&E)
(Sigma Aldrich, St. Louis, MO, USA, #MHS32-1L) and immunofluorescence staining [1,21,
22]. To evaluate the epidermal thickness, and wound-induced hair neogenesis (WIHN),
four fields of view per sample were imaged by light microscopy (Olympus BX53, Olympus,
Tokyo, Japan) at 10 and 40× magnification. Data were averaged for each mouse and then
compared between 4-AP and saline-treated groups. Collagen formation, maturation, and
deposition were carried out using Masson’s trichrome stain as in [24], as per manufacturer
instructions (Sigma Aldrich, St. Louis, MO, USA, # HT15-1KT). The Masson’s trichome
stained slides were imaged by light microscopy (Olympus BX53, Olympus, Tokyo, Japan)
at 20× magnification, and collagen deposition analysis was performed using ImageJ-1.53e
software.

2.4. Immunofluorescence Staining of Tissue

Briefly, immunofluorescence analysis was performed on 5-µm-thick healed wound
sections. The following primary antibodies were used: S100 antibody (Thermo Scientific
Fischer-Invitrogen, # MA5-12969; 1:200), rabbit nerve growth factor receptor–p75-NTR anti-
body (MilliporeSigma/Sigma Aldrich, St. Louis, MO, USA, # AB1554; 1:500), Chicken neu-
rofilament Heavy-NFH antibody (Novus Biologicals, Centennial, CO, USA, # NB300-217;
1:500), mouse alpha-smooth muscle actin–α-SMA antibody (Thermo Scientific Fischer-
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Invitrogen, Waltham, MA, USA, # 14-9760-82; 1:200), rabbit Ki67 antibody (Cell-Signaling,
Danvers, MA, USA, # 9129S; IF-1:400), chicken keratin 15 antibody (BioLegend, San
Diego, CA, USA, # 833901; 1:500), rabbit K17 antibody (gift from Dr. Pierre Coulombe
to AMN; 1:1000), mouse Cytokeratin14 antibody (Novus Biologicals, Centennial, CO,
USA, # NBP2-34270; 1:100), mouse anti-SOX10 antibody (Santa Cruz Biotechnology, Dal-
las, TX, USA, # sc-365692; 1:100), rabbit vimentin antibody (Thermo Scientific Fischer,
Waltham, MA, USA, # 10366-1-AP; 1:200), rabbit NGF antibody (Thermo Scientific Fischer-
Invitrogen, Waltham, MA, USA, # MA5-32067; 1:100), keratin-10 (Sigma Aldrich, St.
Louis, MO, USA, # SAB4501656; 1:100), mouse PGP 9.5 antibody (Thermo Scientific
Fischer-Invitrogen, Waltham, MA, USA, # PA5-29012; 1:200), and rat substance P anti-
body (Novus Biologicals, Centennial, CO, USA, # NB100-65219; 1:100). Sections were
incubated with 5% BSA in 0.1% PBS-T overnight at 4 ◦C. Then, incubated with secondary
antibodies (Thermo Scientific Fischer-Invitrogen, Waltham, MA, USA, Goat anti-Mouse
IgG (H+L) or/Goat anti-Rabbit IgG (H+L) or/Goat anti-Chicken IgG (H+L) or/Goat anti-
rat IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 594 /488/647,
#A11008/A11032/A21449/A21247; 1:500) for 1 h at room temperature. The ProLong™
Gold Anti-fade Mountant with DAPI (Thermo Scientific Fischer-Invitrogen, Waltham, MA,
USA, # P36935) was used as a nuclear counterstain. The immunofluorescence-stained
sections were imaged using ZEISS Axio Observer 7-Axiocam 506 mono–Apotome.2 micro-
scope. The image analysis and quantification were carried out using ZEN 2.6 pro (Zeiss)
imaging software or ImageJ-1.53e software.

2.5. Human Primary Cell Culture Experiments

Foreskin collection and preparation: The human foreskin was rinsed gently with
1X-PBS (ScienCell Research, Carlsbad, CA, USA, #0303) containing an antibiotic. The
hypodermis and blood vessels were removed. Subsequently, the skin was cut into 1–2 mm
pieces and then placed in DMEM medium (ScienCell Research, Carlsbad, CA, USA, #09221)
with dispase-I (Sigma Aldrich, St. Louis, MO, USA, # D46693) at 4 ◦C for 12–18 h. After
dispase-I treatment, the epidermis was separated from the dermis [25–27].

Keratinocyte isolation, culture conditions, and characterization: The isolated epidermis
was placed in a petri dish containing HBSS buffer (Lonza, Basel, Switzerland, # CC-5022)
for 10 min at room temperature, then treated with trypsin (Lonza, Basel, Switzerland,
# CC-5012) at 37 ◦C until the epidermis became loose and the medium became cloudy
due to keratinocyte release. The cloudy medium was collected and trypsin activity was
neutralized using fetal bovine serum (FBS, Thermo Scientific Fischer, Waltham, MA, USA,
# 10082147) in a 1:1 ratio. The epidermis and suspended keratinocytes were centrifuged
at 1500 rpm for 5 min. The pellet was resuspended in KGM-GOLD keratinocyte medium
(Lonza KGM gold and supplements, # 00192151 and 00192152) [25,26,28]. The isolated
foreskin was cultured at 37 ◦C in a 5% CO2 incubator for 1–2 days to allow keratinocytes
to adhere. Adherent keratinocytes were maintained in KGM-Gold medium until cells
reached about 80% confluent. Indirect immunofluorescence analysis was used to identify
and characterize keratinocytes that were processed in the same experimental session. An
equal number of passage 1 cells were seeded on chamber slides. The cells were grown in a
respective complete medium. Cells then were fixed with 4% paraformaldehyde followed
by 0.1% triton X-100 and stained with primary antibodies used against, cytokeratin-14, and
keratin-10 in 5% BSA-containing PBS. After washing, cells were incubated with respective
secondary antibodies and washed with PBS after incubation. After DAPI labeling, the
chamber glass slides were mounted using Prolong Gold anti-fade mounting medium and
then covered with glass coverslips.

2.6. Cell Viability Assay with 4-Aminopyridine
The keratinocytes were cultured in 96-well plates for 18 h. Cells were placed in minimal

media (no serum or growth factors) for 4 h before 4-AP treatment. Cells were treated with
4-AP (at concentrations ranging from 1 to 10,000 µM) inappropriate cell culture medium
for 24 h. The cell viability following 4-AP treatment was assayed by MTT assay according
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to the manufacturer’s protocols (Roche, cell proliferation kit I (MTT), # 11465007001). The
percentage of live keratinocytes was determined using the following formula.

Cell viability (%) =
(OD of 4 − AP treated cells at particular concentration − OD of medium)

OD of control cells (No treatment)− OD of medium
× 100.

2.7. Cell Scratch Wound Healing Migration Assay

Keratinocytes (7 × 104 cells/well) were seeded on tissue culture dishes pre-coated
either with collagen-I (corning life science, Durham, NC, USA, # 354236) on 96-well Im-
ageLock microplates for 6 h (Incucyte-sartorius plate, Goettingen, Germany, # 4379). For
drug treatment, cells were pretreated with 4-AP for 18 h before performing the wound
scratch assay. Next, wound scratches were created using the IncuCyte automated system
(Incucyte-sartorius-Essen BioScience, Goettingen, Germany) [26,29,30]. After scratching,
the cells were washed with PBS, and the KC media was added with or without 1 mM of
4-AP. The plate was incubated in the IncuCyte™ automated imaging system and wound
healing and cell migration were monitored by time-lapse photography capturing images
every hour from 0 to 24 h. The relative area of wound size and cell migration at each
time point was analyzed using the IncuCyte™ Scratch Wound Cell Migration Software
Module (Essen BioScience) and the percent of wound healing was calculated from the area
measured after scratching relative to the basal area as expressed in pixels.

2.8. Tissue Protein Isolation and Western Blot Analysis

For protein isolation, the harvested skin tissue was flash frozen immediately. The
frozen skin tissue was ground to a fine powder using a liquid nitrogen mortar. The
harvested cells and/or tissue powder were dissolved in RIPA buffer containing Halt™
Phosphatase (Thermo Scientific Fischer, Waltham, MA, USA, # 78420) and Protease Inhibitor
Cocktail (Sigma Aldrich, St. Louis, MO, USA, Roche complete tablets mini EASYpack,
# 04694124001). Tissue and cell debris were removed by centrifugation at 14,000 rpm for
30 min at 4 ◦C. The supernatants were collected and the total protein concentration was
determined by BCA protein assays (Thermo Scientific Fischer, PierceTM, Waltham, MA,
USA, # 23225). The proteins (20–30 µg) of the tissue protein samples were subjected to
12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Bio-Rad Laboratories,
Hercules, CA, USA, mini-PROTEAN TGX Gels, # 4561044) and transferred to polyvinyli-
dene fluoride (PVDF) membranes. After the membranes were blocked with 5% non-fat
milk in 1X TBS-T for 1 h, they were incubated with the appropriate primary antibodies
(rabbit nerve growth factor receptor–p75-NTR antibody (Sigma Aldrich, St. Louis, MO,
USA, # AB1554; 1:500), mouse alpha-smooth muscle actin–α-SMA antibody (Invitrogen,
# 14-9760-82; 1:500), rabbit TGF-β antibody (Cell-Signaling, Danvers, MA, USA, #3711S,
1:500), mouse anti-SOX10 antibody (Santa Cruz Biotechnology, Dallas, TX, USA, # sc-365692;
1:100), rabbit NGF antibody (Thermo Scientific Fischer-Invitrogen, Waltham, MA, USA,
# MA5-32067; 1:1000), Mouse GAPDH antibody (Thermo Scientific Fischer, Waltham, MA,
USA, #MA5-15738; 1:1000) at 4 ◦C overnight, then incubated with HRP-conjugated sec-
ondary antibodies (dilution, 1:3000) for 1 h. Immunoreactivity was then detected using
chemiluminescent substrate (Thermo Scientific Fischer, Waltham, MA, USA, SuperSignal™
West Pico PLUS, # 34577). The intensities of the bands were quantified using Gel-imaging
software ((Bio-Rad Laboratories, Hercules, CA, USA, Image Lab 6.1). The quantified band
intensities were normalized using GAPDH and expressed either as normalized intensity or
as ratios concerning saline-treated mice.
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Figure 1. 4-aminopyridine (4-AP) expedites wound closure and enhances skin regeneration. (a) 
Schematic illustration of experimental design to test the beneficial therapeutic effect of 4-AP in the 
C57BL/6 mouse splinted wound model. (b) Representative images of wound healing in control (sa-
line-treated) and 4-AP treated mice at 0, 3, 5, 7, 9, 12, and 14 days post wounding (PWD). Scale bar, 
1 mm. (c) Percent wound healing at each time point relative to the initial wound area in control and 
4-AP-treated mice. Value represents mean ± SEM, n = 5 animals per group, with 2 wounds per 

Figure 1. 4-aminopyridine (4-AP) expedites wound closure and enhances skin regeneration.
(a) Schematic illustration of experimental design to test the beneficial therapeutic effect of 4-AP
in the C57BL/6 mouse splinted wound model. (b) Representative images of wound healing in control
(saline-treated) and 4-AP treated mice at 0, 3, 5, 7, 9, 12, and 14 days post wounding (PWD). Scale bar,
1 mm. (c) Percent wound healing at each time point relative to the initial wound area in control and
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4-AP-treated mice. Value represents mean ± SEM, n = 5 animals per group, with 2 wounds per
animal, statistical significance indicated by asterisks (* = p between 0.01 and 0.05, *** = p between
0.001 and 0.0002, and **** = p between 0.0002 and 0.0001 vs. saline group), comparisons using
two-way ANOVA (Sidak’s multiple comparisons test). (d) Representative images of H&E-stained
sections of normal control skin and full-thickness excisional wounds of saline-control and 4-AP-
treated skin tissue at PWD14. Scale bars = 400 µm. (e) Quantification of epidermal thickness in
H&E-stained sections by ImageJ software. (f) Quantification of the number of de novo hair follicles
within healed wounds. Each image represents 5 images from 5 different mouse wounds and data are
represented as mean ± SEM, n = 5 animals per group, statistical significance indicated by asterisks
(O = saline mouse data points, ∆ = 4-AP treated mouse data points,* = p between 0.01 and 0.05, and
*** = p between 0.001 and 0.0002, vs. saline group).

2.9. Statistical Analysis

The number of animals per group was determined by pre-hoc power analysis of
preliminary data by a qualified statistician to achieve at least 80% power for the primary
outcome in this study. Animals were randomly assigned to either saline treatment group.
All results are presented as mean ± standard error of the mean (SEM). Data were analyzed
using two-tailed Sidak’s for wound healing functional analysis multiple time-point com-
parisons and unpaired data from different experiments by one-way ANOVA followed by
unpaired t-test and nonparametric test after confirmation of normally distributed data. Sta-
tistical analysis was performed using the GraphPad PRISM 9.2.0(332) (GraphPad, La Jolla,
CA, USA) and the star indicates statistical significance of * = p between 0.01 and 0.05,
** = p between 0.01 and 0.001, *** = p between 0.001 and 0.0002, and **** = p between 0.0002
and 0.0001 versus saline considered as significant.

3. Results
3.1. 4-Aminopyridine (4-AP) Accelerates Wound Closure and Enhances Skin Regeneration

Systemic treatment with 4-AP accelerated full-thickness skin wound closure. We
created 5-mm-diameter full-thickness dorsal excisional wounds in 10-wk-old male C57BL/6
mice [21]; mice were then randomized and treated with either saline or systemic 4-AP [31]
daily for 14 days (Figure 1a). Wounds were splinted with silicone rings to prevent wound
contraction and were monitored by digital imaging for morphometry, percentage of wound
healing, and tissue regeneration on days 3, 5, 7, 9, 12, and 14 post wound (PWD) (Figure 1a).

We found that the extent of wound closure in 4-AP-treated mice was more than twice
that of saline-treated mice at PWD3 (Figure 1b,c). Significant differences in wound closure
were noted at every time point examined, including PWD14 (p < 0.0001). At this point,
4-AP-treated mice had complete wound closure, while open wounds were still present in
saline-treated mice (Figure 1b,c). To confirm that saline treated mice had complete wound
closure, we followed a separate cohort of mice to complete wound closure. Saline-treated
mice had complete wound closure at PWD18, four days after complete wound closure in
4-AP mice (data not shown).

Histomorphometry analysis on PWD14 skin sections revealed that 4-AP treatment
increased epidermal thickness compared with saline-treated mice, with the resulting epider-
mal thickness in 4-AP treated mice being restored to that of uninjured skin
(Figure 1d,e) [1,22].

4-AP treated mice also showed a significant increase in wound-induced hair neogene-
sis (WIHN) when compared with saline-treated mice (Figure 1d,f), a feature of successful
skin regeneration [32,33]. The phenomenon of WIHN was described and characterized
by Ito et al., in 2007, and showed that after full-thickness wounding in mice, regenerated
hair follicles within the healed wound establish a stem cell population, express hair follicle-
differentiation markers, produce a functional hair shaft, and successfully transition through
all phases of the hair cycle [32]. 4-AP-treated mice exhibited a 1.8-fold increase in the
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number of hair follicles compared to saline-treated mice (Figure 1f), highlighting that 4-AP
enhances skin regeneration.

3.2. 4-AP Increases Keratinocyte Number and Epithelial Stem-Cell Markers in Healed Wounds

Given the thickened epidermis in healed wounds with 4-AP (Figure 1d,e), we in-
vestigated whether this was associated with increased numbers of keratinocytes and/or
altered epidermal differentiation. We observed a 2-fold increase in the number of keratin-14
positive (K14+) keratinocytes in the epidermis and the de novo hair follicles of 4-AP-treated
mice (Figure 2a) compared with saline-treated mice (Figure 2a–c). In contrast, the expres-
sion of K10, a marker of epidermal differentiation, was not impacted by 4-AP treatment at
this time point (Supplementary Figure S1a,b) [34].

In agreement with the increased numbers of hair follicles noted by histology (Figure 1d,f),
4-AP increased the number of K17+ and K15+ cells and the overall expression of these proteins
further corroborating the increase in hair follicle numbers [32,35,36]. We observed a 1.5-fold
increase in the percentage of K17+ cells, and in K17 protein expression (Figure 2d–f). Similarly,
K15+ cells and protein expression were increased with 4-AP treatment (Figure 2g–i).

K14 and K17 expression also increased in the overlying epidermis in both saline
and 4-AP-treated mice compared to uninjured skin, which is consistent with their known
upregulation in response to wounding (Figure 2a,d) [37].

3.3. The 4-AP Treatment Promotes Increases in Fibroblasts, Myofibroblasts and Transforming
Growth Factor-β (TGF-β)

Fibroblast migration and maturation contribute to the contraction, granulation, and
proliferation phases of wound healing. A key marker of fibroblast differentiation is
α-smooth muscle actin (α-SMA) which signifies fibroblast differentiation into collagen-
producing myofibroblasts [1,3,22]. We, therefore, investigated the effects of 4-AP treatment
on fibroblasts and the expression of a known regulator of fibroblast differentiation, TGF-β.

To test whether 4-AP treatment altered fibroblast maturation during wound healing,
we first performed Masson’s Trichrome staining to examine collagen deposition in the
healing wound (Figure 3). This staining revealed elevated collagen deposition in 4-AP-
treated mice compared to saline-treated mice (Figure 3a,b), with collagen levels like those
seen in normal tissue. This staining also revealed a tissue structure and collagen deposition
pattern very similar to that seen in normal tissue.

4-AP treatment also increased the expression of fibroblast proteins, vimentin, and
α-smooth muscle actin (α-SMA). Immunofluorescence analysis revealed more vimentin+

fibroblasts and elevated vimentin levels in wound tissue from 4-AP-treated mice than
saline-treated mice (Figure 3c,d), which was consistent with Western blot (WB) analysis
for α-SMA expression (Figure 3e,f). We also observed increases in α-SMA, which signifies
fibroblast differentiation into collagen-producing myofibroblasts [1,3]. Increases were also
seen in α-SMA protein (Figure 3c,e–g).

TGF-β plays an important role in promoting myofibroblast differentiation [1,3,8], and
we found significant increases in TGF-β protein expression with 4-AP treatment compared
to saline treatment (Figure 3f,h).

3.4. 4-AP Promotes Reinnervation and Neuropeptide Expression

Normal skin wound healing is also associated with increases in cell division and
increases in non-dividing neurons. 4-AP treatment caused increases in both measures.

Expression of the proliferation marker, Ki-67, was significantly increased in mice
treated with 4-AP compared with saline-treated controls. The proportion of Ki-67+ cells
within hair follicles and epidermis was increased 2.0-fold (Figure 4a,b).

The number of neurons in the skin of 4-AP-treated mice also was increased over that
seen in saline-treated animals. The neuronal number was determined by staining with
antibodies against high molecular weight neurofilament protein (NF-H) [38]. NF-H axonal
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counts were increased 2.5-fold in 4-AP-treated mice compared with saline-treated controls
(Figure 4a,c).
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Fibroblast migration and maturation contribute to the contraction, granulation, and 
proliferation phases of wound healing. A key marker of fibroblast differentiation is α-

Figure 2. 4-AP increases keratinocyte number and epithelial stem-cell markers in healing wounds.
(a) Representative images of Keratin 14 protein expression by immunofluorescence in healed epider-
mis. K14 (green); DAPI (blue) denotes nucleus and dashed line denotes epidermal/dermal border.
(b,c) Percent of K14+ cells and K14 protein integrated density in saline-control and 4-AP-treated skin
wounds at day 14. Scale bars = 50 µm. Data represents 20 images from 5 different mouse wounds and
are shown as mean ± SEM, n = 5 animals per group, statistical significance indicated by asterisks
(O = saline mouse data points, ∆ = 4-AP treated mouse data points, ** = p between 0.01 and 0.001,
and *** = p between 0.001 and 0.0002 vs. saline). (d) Representative images of keratin 17 protein
expression by immunofluorescence in saline and 4-AP-treated skin wounds. K17 (red); DAPI (blue)
denotes nucleus and dashed line denotes epidermal/dermal border. (e,f) Percent of K17+ cells and
K17 protein integrated density in control and 4-AP treated skin wounds at day 14; scale bars = 50 µm.
Data represents 20 images from 5 different mouse wounds and are shown as mean ± SEM,
n = 5 animals per group, statistical significance indicated by asterisks (O = saline mouse data points,
∆ = 4-AP treated mouse data points, ** = p between 0.01 and 0.001, and **** = p between 0.0002 and
0.0001 vs. saline). (g) Representative images of keratin 17 protein expression by immunofluorescence
in saline and 4-AP-treated skin wounds. K15 (green); DAPI (blue) denotes nucleus and dashed line
denotes epidermal/dermal border. (h,i) Percent of K15+ cells and K15 protein integrated density in
saline control and 4-AP-treated skin wounds at day 14. Scale bars =100 µm. Data represents 20 images
from 5 different mouse wounds and are shown as mean ± SEM, n = 5 animals per group, statistical
significance indicated by asterisks (O = saline mouse data points, ∆ = 4-AP treated mouse data points,
**** = p between 0.0002 and 0.0001 vs. saline).
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Figure 3. 4-AP treatment increases fibroblast and myofibroblast numbers and levels of transforming
growth factor-β. (a) Representative Masson’s trichrome stained images of healing control skin and
full-thickness excisional wound of saline-control and 4-AP-treated skin tissue at day 14 (PWD14).
Scale bars = 200µm. (b) Collagen density quantified as average blue pixel density per area in
wound healing tissue harvested on day 14 (PWD 14). Data represents 10 images from 5 differ-
ent mouse wounds and are shown as mean ± SEM, n = 5 animals per group, statistical signifi-
cance indicated by asterisks (O = saline mouse data points, ∆ = 4-AP treated mouse data points,
*** = p between 0.001 and 0.0002 vs. saline). (c) Co-immunofluorescence staining of vimentin
(green), α-SMA (red), and nuclear stain (DAPI-blue) in saline control and 4-AP-treated skin wound
sections at day 14. Scale bars = 50 µm. (d,e) Quantification of vimentin and α-SMA protein stain-
ing intensity (integrated density). Data represent 20 images from 5 different mouse wounds and
are shown as mean ± SEM, n = 5 animals per group, statistical significance indicated by asterisks
(O = saline mouse data points, ∆ = 4-AP treated mouse data points, * = p between 0.01 and 0.05, and
*** = p between 0.001 and 0.0002 vs. saline). (f) Representative Western blots of α-SMA and TGF-β
levels. (g,h) Quantitation of α-SMA and TGF-β levels to normalized to GAPDH (fold change mean
± SEM, n = 3 animals per group, statistical significance indicated by asterisks (O = saline mouse data
points, ∆ = 4-AP treated mouse data points, ** = p between 0.01 and 0.001vs. saline)).

We also found that NF-H-stained axons in the 4-AP-treated mice were more often
encountered in direct association with Ki-67+ hair follicles (Figure 4a) than in saline-
treated controls, in agreement with observations that hair follicles are associated with
sympathetically innervated arrector-pili-muscles [37]. Thus, the association between nerve
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function and hair follicle stem cells under the influence of 4-AP supports reinnervation as a
possible factor in the formation of de novo hair follicles during wound healing.

Another example of the ability of 4-AP to restore aspects of skin structure like that
seen in uninjured tissue was revealed by staining for protein gene product 9.5 (PGP-9.5),
a neuronal peptide associated with wound healing [39]. Fourteen days post wounding,
PGP-9.5+ nerve fibers in the healed wounds were twice as abundant in 4-AP-treated
mice, as reflected by increased amounts of PGP-9.5, as compared with saline-treated mice
(Figure 4d,e). The levels of PGP-9.5 in 4-AP-treated mice were not significantly different
from those seen in uninjured skin tissue (Supplementary Figure S1c,d). This suggests that
4-AP significantly increased the expression of PGP-9.5 during wound healing and that
4-AP likely enhances skin reinnervation.

3.5. 4-AP Increases the Numbers of Schwann Cells (SC) and the Expression of Markers of an Early
Differentiation State

Schwann cells (SC) are critical players in wound healing and are associated with axons
around hair follicles in the wound bed. In the setting of injury, SCs de-differentiate to a
non-myelinating state and begin to secrete neurotrophins such as NGF, a state marked by
expression of p75-NTR [40]. We found that the number of SCs was significantly increased
in the wounds of 4-AP-treated mice (Figure 5a,b). Analysis of expression of S100, a pan-SC
marker, identified SCs within both the hypodermis and dermis of the healed wounds
(Figure 5a). The number of SCs was 3-fold greater in 4-AP-treated mice than in saline-
treated controls (Figure 5a,b). SCs were preferentially located around nerve bundles, as
predicted by the known affiliation of SCs with nerve cells. 4-AP treatment also increased
the expression of p75-NTR (Figure 5a,c–f), which is thought to be expressed in S100+ cells
as a marker of de-differentiation [1,41].

We also found elevated expression of SOX10 and NGF in 4-AP-treated mice. SOX10 is
required for myelin production in SCs and elevated SOX10 expression promotes the conver-
sion of mesenchymal cells into p75-NTR expressing neural crest stem cells (NCSC) [1,42–44].
Conversely, depletion of SOX10 expression significantly delays wound healing and tissue
regeneration [1]. NGF plays a significant role in the wound healing process by inducing
nerve sprouting from injured nerve endings [5,7,29,45,46]. NGF also promotes keratinocyte
proliferation and migration of dermal fibroblasts [6,47]. NGF also acts on non-neuronal
cells to sensitize them to substance-P, which in turn further stimulates more NGF secretion,
ensuring that keratinocytes can elaborate and respond to neuronal factors along with
neurons [48,49].

We found significantly increased SOX10 protein expression by both immunofluores-
cence and Western blot analysis (Figure 6a,b,e,f). Substance-P and NGF protein expression
was also increased in healed wounds from 4-AP-treated mice compared to saline-treated
mice (Figure 6a,c–g). These factors, which are known to be associated with both nerve
regeneration in the wound bed and accelerated healing [1,5–7,29,45,49], were increased
within the wound with 4-AP treatment.

3.6. 4-AP Effectively Stimulates Proliferation and Migration in Primary Cultures of Human
Skin-Derived Primary Cells In Vitro

We next found that the effects of 4-AP on keratinocytes and SCs in vitro were similar
to outcomes observed in vivo, suggesting that 4-AP may act directly on these cell types. In
these experiments, we cultured primary, normal human epidermal keratinocytes (NHEKs)
in the presence or absence of 4-AP [25,26].

Following initial isolation from the human foreskin, we confirmed the purity and
identity of keratinocytes by immunohistochemistry using characteristic protein markers
(Supplementary Figure S2a). There was a modest decrease in cell viability at higher 4-AP
concentrations (>10 mM), but no obvious impact on cell viability at 2 mM concentrations
of 4-AP (Supplementary Figure S2b) [38]. To determine the effect of 4-AP on wound
healing in vitro, automated wound scratch assays were performed [29,38] on confluent
monolayers of keratinocytes with and without 1 mM 4-AP, a standard 4-AP dose used in
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studies in vitro [38]. 4-AP exposure accelerated scratch closure and keratinocyte migra-
tion (Figure 7a,b; and Supplementary Movies S1–S2) within 3 h, with complete scratch
closure occurring at 18 h. In contrast, control cultures not exposed to 4-AP closed at 32 h
(Supplementary Movies S1 and S2).
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Figure 4. 4-AP promotes division reinnervation and enhanced PGP-9.5 expression. (a) Representative
image of co-immunostaining for Ki-67+ cells (red) and NF-H+ cells (yellow) surrounding de novo
hair follicles in the healed wound at day 14 and dashed line denotes the epidermal/dermal border.
Scale bars = 20 µm. (b,c) Ki67+ and NF-H+ cells were quantified. Data represents 20 images from
5 different mouse wounds and are shown as mean ± SEM, n = 5 animals per group, statistical
significance indicated by asterisks (O = saline mouse data points, ∆ = 4-AP treated mouse data points,
* = p between 0.01 and 0.05, and *** = p between 0.001 and 0.0002 vs. saline). (d) Representative
images of PGP-9.5 protein expression by immunofluorescence staining of healed wounds. PGP-9.5
(red) and nuclear stain DAPI (blue) and the dashed line denotes the epidermal/dermal border. Scale
bars = 20 µm. (e) Quantification (integrated density) of PGP-9.5 protein expression. Data represents
20 images from 5 different mouse wounds and are shown as mean ± SEM, n = 5 animals per group,
statistical significance indicated by asterisks (O = saline mouse data points, ∆ = 4-AP treated mouse
data points, ** = p between 0.01 and 0.001 vs. saline).
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Figure 5. 4-AP increases the number of Schwann cells and the expression of markers of an early SC
differentiation state. (a) Representative image of co-immunostaining of S100 (green) and p75-NTR
(red) in wound sections and dashed line denotes epidermal/dermal border. Scale bars = 50 µm.
(b,c) Quantification of S100+ and p75-NTR+ expressing cells in healed wounds. Data represents
20 images from 5 different mouse wounds and are shown as mean ± SEM, n = 5 animals per
group, statistical significance indicated by asterisks (O = saline mouse data points, ∆ = 4-AP treated
mouse data points, ** = p between 0.01 and 0.001, and *** = p between 0.001 and 0.0002 vs. saline).
(d) Representative image of Western blot of p75-NTR and GAPDH. (e,f) Normalized integrated
densities and the ratio of p75-NTR protein expression represented as mean ± SEM, n = 5 animals per
group, statistical significance indicated by asterisks (O = saline mouse data points, ∆ = 4-AP treated
mouse data points, *** = p between 0.001 and 0.0002 vs. saline).Biomedicines 2022, 10, x FOR PEER REVIEW 14 of 20 
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ure 7c–f), suggesting that 4-AP promotes a more proliferative, stem-like phenotype in 
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Figure 6. 4-AP enhanced expression of transcription factors, neurotrophic factors, and neuropeptides
associated with reinnervation. (a) Representative image of triple co-immunostaining of wound skin
for the transcription factor SOX10 (green), neuropeptide substance-P (SP—yellow), nerve growth
factor (NGF—red), and nuclear stain DAPI (blue) and dashed line denotes epidermal/dermal border.
Scale bars = 50 µm. (b–d) Quantification of SOX10, substance-P, and NGF expressing cells in healed
wounds. Data represents 20 images from 5 different mouse wounds and are shown as mean ± SEM,
n = 5 animals per group, statistical significance indicated by asterisks (O = saline mouse data points,
∆ = 4-AP treated mouse data points, * = p between 0.01 and 0.05, ** = p between 0.01 and 0.001, and
*** = p between 0.001 and 0.0002 vs. saline). (e) Representative image of Western blot of SOX10, NGF,
and GAPDH. (f,g) Normalized integrated densities for SOX10 and NGF immunoblot. Mean ± SEM,
n = 3 animals per group, statistical significance indicated by asterisks (O = saline mouse data points,
∆ = 4-AP treated mouse data points, ** = p between 0.01 and 0.001, and *** = p between 0.001 and
0.0002 vs. saline).
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SOX10 and NGF expression in 4-AP treated keratinocytes were both increased
(Figure 7c–f), suggesting that 4-AP promotes a more proliferative, stem-like phenotype in
keratinocytes that contributes to accelerated scratch closure [29,42].
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Figure 7. 4-AP accelerates in vitro keratinocyte wound closure. (a) Representative images of in-vitro
keratinocyte scratch assays with 4-AP and vehicle control at indicated time points. The yellow lines
indicate the wound borders at the beginning of the assay and were recorded every hour until 24 h.
Scale bar =100 µm. (b) The relative percentage of wound closure was calculated as the ratio of the
remaining wound gap at the given time point compared to time 0. Each image represents 9 images
from 3 biological replicates and data represented as mean ± SEM, n = 3 biological replicates per
group, statistical significance indicated by asterisks (O = saline mouse data points, ∆ = 4-AP treated
mouse data points, ** = p between 0.01 and 0.001, and **** = p between 0.0002 and 0.0001 vs. control).
(c–f) A representative Western blot and normalized integrated densities for SOX10 and NGF. Mean
± SEM, n = 3 biological replicates per group, statistical significance indicated by asterisks (O = saline
mouse data, ∆ = 4-AP treated mouse data, * = p between 0.01 and 0.05, and *** = p between 0.001 and
0.0002 vs. control).

4. Discussion

We found that, in mice with dorsal skin wounds, the systemic 4-AP treatment caused
more rapid wound closure, restoration of normal epidermal thickness, tissue structure, and
collagen levels, and increased vascularization and cell proliferation. Hair follicle numbers
were also increased in 4-AP-treated mice, as determined histologically and by analysis of
K15 and K17 expression, as were numbers of K14+ keratinocytes. Levels of vimentin (a
marker of fibroblasts) and α-SMA (a marker of collagen-producing myofibroblasts) were
increased, as were the numbers of α-SMA+ cells. 4-AP treatment also increased the numbers
of axons and S100+ Schwann cells and increased the expression of SOX10. Levels of several
factors involved in skin repair also were increased (i.e., TGF-β, NGF, and Substance P).
Thus, 4-AP enhanced many of the key attributes of successful wound healing. As an already
approved therapeutic agent, 4-AP appears to offer a promising new approach to wound
healing and skin regeneration.

Enhancing normal skin wound healing is a difficult challenge because of how effective
this process already is. Expediting and enhancing the wound healing process, however,
could help in restoring the skin barrier even more quickly and in mitigating infection
complications. The many millions of years of evolutionary optimization of this process
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have resulted in a complex orchestration of division, migration, and differentiation of
multiple cell types, processes that depend on multiple growth factors and extracellular
matrix components. Interference with any combination of these individual contributors can
inhibit normal healing, emphasizing the extent to which healing requires the orchestrated
interplay of many different components (including, for example, contributors as diverse as
Wnt signaling, hair follicle development, β1 integrins, keratinocyte migration, extracellular
matrix, macrophages, neovascularization, multiple growth factors, Schwann cells, appro-
priate TGF-β signaling, HIF-1 regulation, control of inflammation, etc. [1,2,32,50]. Despite
the advances made in understanding the events required for effective skin wound healing,
it has proven difficult to identify approaches that can enhance normal repair processes.

The ability to enhance normal wound healing with 4-AP is surprising for several
reasons. 4-AP has the ability to enhance multiple processes associated with successful
wound healing simultaneously. Our results are surprising because interfering with ion
channel function seems less specific than more targeted approaches of cell transplantation or
growth factor/cytokine manipulation during wound healing. Nonetheless, several calcium
channel blockers also can enhance at least some aspects of the skin wound repair [10,12].
Only a subset of the outcomes in the present study was examined in these previous studies,
which prevents a full comparison of the potency of 4-AP with these other calcium channel
modulators. Nonetheless, these earlier studies do support the idea that modulating the
function of at least some ion channels is a potentially useful approach to enhancing wound
healing. That said, the benefits obtained with calcium channel blockers also raise concerns
about whether 4-AP would be effective for this purpose, or whether it might even have
adverse effects. This is because treatment with calcium channel blockers, such as verapamil,
acts to inhibit calcium entry post-injury. In contrast, several studies on 4-AP predict that it
might increase intracellular calcium levels [38,51,52]. Therefore, while it is intriguing that
different classes of ion channel modulators can enhance the healing of normal skin wounds,
the prior indications that 4-AP and calcium channel blockers might have opposite effects
on intracellular calcium levels makes it difficult to offer a unifying hypothesis for these
observations. Regardless of whether or not a common mechanism exists for the effects
of these two classes of ion channel modulators, the data from our studies and previous
studies on calcium channel blockers indicate that treatment with ion channel modulators
offers a promising approach for enhancing the repair of skin wounds.

The ability of 4-AP to enhance regenerative processes post-injury was discovered only
recently, and the present work provides still stronger support for the potential utility of this
compound as a pro-regenerative agent than our previous findings. In our previous studies
on peripheral nerve crush injuries, we found that 4-AP caused a more rapid return of motor
function, a more rapid and greater return of nerve conduction, and increases in numbers of
neurons and myelination [13]. The more rapid restoration of myelination and physiological
function provides evidence for the pro-regenerative effects of 4-AP treatment. Some of the
benefits observed in our previous studies could have been due, however, to the protective
effects of this drug, as recently reported in models of CNS damage and multiple sclerosis
patients [38,53]. However, in the case of full-excisional skin wound healing, outcomes such
as those reported herein clearly require potential endogenous tissue regeneration.

The utilization of 4-AP to promote tissue repair is a qualitatively new use for this
well-studied and clinically utilized drug. The positive tissue regenerative effects of 4-AP in
the skin are very novel from the extensively studied ability of this drug to provide transient
symptomatic relief, without evidence of regenerative changes, in chronic neurological
illnesses and injuries such as multiple sclerosis, myasthenia gravis, cerebellar gait ataxias,
downbeat and upbeat nystagmus, and spinal cord injury [54,55]. In neurological cases, the
behavioral benefits of 4-AP are lost when treatment is terminated and the drug is cleared
from the body. In contrast, the regenerative changes seen in acute traumatic injuries suggest
that, in these settings, 4-AP treatment provides benefits that can endure long after treatment
ends.
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Whether any single target of 4-AP is most critical in skin wound healing, or whether
modulation of multiple processes by this drug is critical, will be an interesting but challeng-
ing puzzle to solve. Wound healing processes are intricately connected and coordinated.
We initiated the present experiments based on our previous findings that 4-AP treatment
of acute peripheral nerve injuries enhanced SC and neuronal function post-injury and the
importance of SC and neuron function in wound healing [1,5,13,56]. The multiple effects
of 4-AP treatment, however, suggest that SCs and neurons were not the only components
of successful wound healing impacted by this drug. For example, NGF, Substance P, and
TGF-β levels were all elevated by 4-AP treatment, and each of these has been shown to
have pro-reparative effects in skin wound lesions [1,7,29]. Substance P acts as mediator of
wound healing by accelerating the inflammatory responses and enhances myofibroblast
formation to produce collagen, keratinocytes migration, and re-epithelialization, but it is
considered as a mediator of sensory symptoms such as pain, suggesting that possibility
that pain responses may also be affected [46,48,49]. Our in vitro studies also indicated
that 4-AP can have direct effects on keratinocyte migration and expression of SOX10 and
NGF by these cells, indicating that the actions of 4-AP are not restricted to neuronal cell
types. Consideration of direct molecular targets of 4-AP is also complex, includes multiple
potassium and calcium channels, and may also include the ability to sequester intracellular
calcium [57]. Skin cells, including keratinocytes, are dependent on Ca2+ signaling for
proper differentiation programs further increasing the complexity of this problem. Eluci-
dating the exact molecular mechanism(s) by which 4-AP enhances skin wound repair is
challenging, but nonetheless, its translatability to the clinic is very promising. In contrast
with the challenges in the mechanistic analysis of the effects of 4-AP, the translation of our
findings to clinical studies is relatively straightforward. 4-AP fits the very definition of
drug repositioning: using existing clinically useful compounds in novel applications. The
ability to accelerate skin wound healing and skin regeneration is novel. Extensive prior
studies on 4-AP safety and dosing [58], and its FDA approval in 2010 for the treatment of
multiple sclerosis, make the transition of this compound from laboratory back to the clinical
arena for wound healing therapy relatively straightforward. Indeed, our findings that
4-AP treatment can be used to distinguish between incomplete and complete peripheral
nerve injuries have already transitioned to clinical trials on the diagnosis of such injuries
(https://clinicaltrials.gov/ct2/show/NCT04026568; accessed on 1 July 2022) [13,15]. More-
over, our findings that 4-AP treatment enhances functional recovery from peripheral nerve
damage have transitioned to clinical trials focused on enhancing recovery from peripheral
nerve damage associated with radical prostatectomy, as manifested by urinary incontinence
and erectile dysfunction (https://clinicaltrials.gov/ct2/show/NCT03701581; accessed on
1 July 2022) [13,15,56]. Thus, the possibility of bringing the present findings forward for
clinical examination seems a promising one. In a broader sense, the large numbers of avail-
able drugs that modify ion channel function [59,60] offer multiple additional candidates of
interest for their potential use in regenerative medicine.

5. Conclusions

The present study provides rationale for the novel therapeutic use and mechanism
for 4-AP in cutaneous wound healing and tissue regeneration. 4-AP enhances numerous
attributes of successful wound healing: re-epithelialization, dermal regeneration, and
reinnervation. 4-AP may be acting on keratinocytes to upregulate transcriptional and
neurotrophic factors. This work may provide a basis for the further study of 4-AP-mediated
wound-healing effects by inducing nerve growth factor to promote tissue regeneration.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines10071649/s1, Figure S1: 4-AP induced neuronal
peptide wound healing and did not alter keratinocyte K10 expression; Figure S2: Characterization
of human skin-derived primary keratinocytes and cell cytotoxicity assay with 4-AP; Video S1: An
example time-lapse phase contrast images depicting the migration video of keratinocytes without
treatment (control) during wound scratch closure. Images were recorded every one hour. Scale bar,
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100 µm; Video S2: An example time-lapse phase contrast images depicting the migration video of
keratinocytes after 4-AP treatment during wound scratch closure. Images were recorded every one
hour. Scale bar, 100 µm.
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