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In the last decades, studies in rodents have highlighted links between in utero and/or neona-
tal exposures to molecules that alter endocrine functions and the development of genital
tract abnormalities, such as cryptorchidism, hypospadias, and impaired spermatogenesis.
Most of these molecules, called endocrine disrupters exert estrogenic and/or antiandro-
genic activities. These data led to the hypothesis of the testicular dysgenesis syndrome
which postulates that these disorders are one clinical entity and are linked by epidemiologi-
cal and pathophysiological relations. Furthermore, infertility has been stated as a risk factor
for testicular cancer (TC). The incidence of TC has been increasing over the past decade.
Most of testicular germ cell cancers develop through a pre-invasive carcinoma in situ from
fetal germ cells (primordial germ cell or gonocyte). During their development, fetal germ
cells undergo epigenetic modifications. Interestingly, several lines of evidence have shown
that gene regulation through epigenetic mechanisms (DNA and histone modifications) plays
an important role in normal development as well as in various diseases, includingTC. Here
we will review chromatin modifications which can affect testicular physiology leading to the
development ofTC; and highlight potential molecular pathways involved in these alterations
in the context of environmental exposures.
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TESTICULAR CANCERS
Testicular cancer (TC) is a rare solid tumor which account for
1% of cancers in men. However, it is the most common cancer
in men in their 20s and 30s (Ziglioli et al., 2011). It is a real san-
itary problem as it affects men during their reproductive years.
Interestingly, the development of TC has been associated with
urogenital abnormalities (Olesen et al., 2007). TC development
has been associated with cryptorchidism, hypospadia, and hypo-
fertility. Indeed, epidemiological studies argue for an increased
risk of testicular germ cell tumor in males who suffer for fertility
troubles (Burns et al., 2010).

EPIDEMIOLOGY
In developed countries, the prognosis for TC is excellent, with
a 5-year survival rate >95%. Despite it represents the most fre-
quent solid cancer in young men, it seems a quite rare pathology
(Richardson et al., 2012). Thus all these data has led to consider tes-
ticular tumors as a curable neoplasm. It has to be noted that there
are some geographic and racial variation in the risk of TC develop-
ment (Richiardi et al., 2004). Indeed, in US, Hispanic men had the
largest increase in incidence rates for non-seminomas (Townsend
et al., 2010). Next to this, the genetic predisposition has been sug-
gested as men with familial history of germ cell TC (TGCC) have
a 4- to 10-fold increased risk to develop also such tumor (Greene
et al., 2010). The analysis of this genetic risk seems to be associated
with an autosomal recessive mode of inheritance that must result

of the combined effects of several alleles. It was estimated that 25%
of TC susceptibility account for by genetic effects (Turnbull and
Rahman, 2011). If TCs are quite rare in African men, the mor-
bidity and mortality of TC is quite high in developing countries
(Ugwumba and Aghaji, 2010). These data highlight the impact of
poverty and paucity of resources to detect and treat cancers. In
that line, it has been reported that socioeconomic position has an
impact on the risk of TC development as well as the survival rate
(Richardson et al., 2012).

The main way to identify TC as soon as possible is auto-
palpation by men to look at increased size or the appearance of
“hard” testis (Umeh and Chadwick, 2010). After identification of
the anomalies, biopsies will help to characterize the type of TC.
Then imaging will also play a key role to determine the lymphatic
extension and potential metastasis (Brunereau et al., 2012).

There are several kinds of TCs that need to be characterized by
the physician using anatomopathological approach. There are sev-
eral kinds depending on cell type at the origin of the development
of TC (van de Geijn et al., 2009); thus there are intratubular germ
cell neoplasia (IGCN), atypical germ cells with maturation arrest
(MA), pseudolymphovascular invasion, real lymphovascular inva-
sion in germ cell tumors, macroscopic Sertoli cell nodules, and
Sertoli cell tumors. However, we can thus distinct germ cell tumors
versus non-germ cell tumors. The most common TC are germ cell
one which represent 95% of these tumors. There are two main
types described which are seminoma and non-seminomatous
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germ cell tumors, with a third one which is the spermatocytic
seminoma (Mannuel et al., 2012).

Here we will focus this review on germ cell cancers. Their inci-
dence has been reported to be continuously increasing in the last
decades in men of different industrialized countries.

Regarding the two major groups of testicular germ cell cancers
which are the seminomas and non-seminomas, each represent
approximately 50% of germ cell tumors. It is interesting to note
that around 15% of TGCC contain a mix of seminoma and non-
seminomatous tumors (Aschim et al., 2006).

Seminomas are managed with orchiectomy and surveillance
or radiotherapy in stage I and chemotherapy in more advanced
stages (Warde et al., 2011). On the other side, non-seminomas
which consist of several histologic types, such as choriocarcinoma,
teratoma, yolk sac tumor, and embryonal cell carcinoma, each with
different tumor marker profile, are less sensitive to radiation and
are frequently treated with chemotherapy (Warde et al., 2011).

GENETIC ASSOCIATION
The development of TGCC is associated with many chromoso-
mal abnormalities (Summersgill et al., 1998). Indeed, TGCC are
aneuploid; with non-seminomatous tumors and seminoma being
respectively hypotriploid and hypertriploid. The major associa-
tion is with the gain of material from the chromosome arm 12p in
both seminoma and non-seminomatous tumors (Atkin and Baker,
1982). The analyses of these chromosomal reorganizations lead to
the characterization of potential candidates involved in the TGCC
pathology. Among them, there is amplification of the KRAS and
Cyclin d2 genes (Rodriguez et al., 2003). They are associated with
malignant transformation and proliferation. Next to these genes,
there are also those implicated in the cell pluripotency such as
Stella and Nanog (Clark et al., 2004).

The strongest association for TGCC susceptibility is for single
nucleotide polymorphisms (SNPs) at the 12q22 within the kit-
ligand gene (Kanetsky et al., 2009). It is correlated with a 2.5-fold
increased risk of disease. This gene has been involved in several
aspect of primordial germ cell (PGC) development. Indeed, it
seems to act on PGC migration and survival (Gu et al., 2009).
These impacts might rely on the downstream target KRAS which
then activate the p110 catalytic subunit of the PI3K pathway which
in turn through AKT pathways will act on proliferation, survival,
and migration (Sasaki et al., 2003). KRAS could also mobilize the
MAPK pathways reinforcing its impact on proliferation, survival,
and migration processes.

Next to this, as testicular physiology is under the control of
the endocrine functions mainly through the activity of androgen
and estrogen receptors, it was deeply studied if polymorphisms
of genes involved in hormonal metabolism could be associated
with a higher risk of TCs. Even if some reports are contradictory,
the studies focused on the androgen receptor (AR), the estrogen
receptors and genes involved in either synthesis or degradation of
the hormones.

Regarding the estrogen receptors, it was demonstrated
that polymorphisms in ERα are associated with azoospermia
(Romerius et al., 2011) and are more likely to be associated with the
risk of seminoma and metastasis (Brokken et al., 2012); whereas
polymorphisms in ERβ are more likely to be link to altered

spermatogenesis (Aschim et al., 2005) and with risk of TGCC.
New to this, polymorphisms in 17-β hydroxydehydrogenase-4
which convert androgen and estrogen to weaker hormones were
associated with TGCC (Chia et al., 2010; Ferlin et al., 2010). In
these metabolic pathways, polymorphisms in cytochrome P450
Cyp-1A1 gene, encoding a hormone-metabolizing protein, were
identified and inversely correlated with TC. Their effects were more
or less severe regarding the different polymorphisms suggesting
that it may contribute to susceptibility to TGCC development
(Figueroa et al., 2008; Kristiansen et al., 2011).

In this hormonal context, one of the most studied genes
in regards to polymorphisms is the AR. The AR gene has two
polymorphic regions in exon-1 with CAG codon encoding for glu-
tamine and GCN which encode for glycine. Changes in the length
of these polymorphic trinucleotide repeats, (CAG) and/or (GGN),
lead to altered transactivation of the AR which has been shown to
play a role in several forms of endocrine cancer such as prostate
cancer. Regarding TC some studies are a bit contradictory show-
ing either or not link with increased risk of TGCC (Rajpert-De
Meyts et al., 2002; Garolla et al., 2005). However, it appears that
the increased risk of seminoma was associated with the shorter
CAG repeat length. This suggests that an increased AR transacti-
vation may be involved in the development of seminoma and/or
progression of carcinoma in situ (CIS) to seminoma (Davis-Dao
et al., 2011). It is also demonstrated that the combination of altered
number in repeat for both CAG and CGC is important for the
correlation with TC. Indeed, Garolla et al. (2005) showed that
the combination of CAG (20 repeats) and GGC (17 repeats) was
more frequent in patient with TGCC (8 versus 1.7% in control
patients).

Like most of the cancer pathologies, TCs seem to be the results
of either genetic and environmental factors. It has been stated
that TCs derive from a precocious lesion, the CIS of the testis,
also known as IGCN or testicular intraepithelial neoplasia (TIN;
Sonne et al., 2008). This lesion deserves great attention, because
the diagnosis of CIS may lead to a precocious diagnosis of TCs.
Usually, the diagnosis of CIS is incidental.

If there is a consensus on the fact that the process of the TC
pathology may found its origin during embryonic life of the indi-
vidual, it can also be suspected that there might also be some other
events participating to its appearance. Indeed, it seems quite a long
process that TC occurs in the 20s or 30s of life when first event
took place in fetal life. Thus it could be hypothesized that there
might be a second hit at puberty, like hormone burst that could
provoke the definitive occurrence of TC. This clearly highlights
the importance of the microenvironment. A study on patients
with testicular maldescent shows that there is around a two-fold
increased risk to develop TGCC if the orchidopexy is performed
after the age of 13, compare to men who had the operation before
their 13 (Walsh et al., 2007). Thus placing the testes in the scrotum
before puberty decreases the incidence of TGCC; suggesting that
intra-abdominal location at puberty promotes testicular tumori-
genesis. Gene expression profiling carried out on TGCC samples
demonstrate marked differences between the histological subtypes
of TGCC. This reflects stages and patterns of differentiation. It
also supports a model of differentiation from IGCN to semi-
nomas or embryonal carcinomas. Gene expression patterns and
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genomic imprinting analyses in TGCC show similarity to PGCs
and gonocytes (Ziglioli et al., 2011).

ENVIRONMENTAL ISSUES
THE TESTICULAR DYSGENESIS SYNDROME HYPOTHESIS
In 1993, Skakkebaek and colleagues proposed that various dis-
orders of male reproductive health, namely cryptorchidism,
hypospadias, subfertility, and testicular germ cell tumor, derived
from perturbations of embryonal programing and gonadal devel-
opment during fetal life (Sharpe and Skakkebaek, 1993). Thus
they defined it as testicular dysgenesis syndrome (TDS; Skakke-
baek et al., 2001). The anomalies may lead to early symptoms,
such as hypospadias and undescended testis, as well as late effects
such as testis cancer and infertility. The most frequent abnormality
due to TDS may be impaired spermatogenesis.

A fetal origin is obvious with regard to two symptoms of TDS:
hypospadias and cryptorchidism. Moreover, studies suggested that
the precursor cells of testis cancer, CIS testis, are similar to fetal
gonocytes. The accepted etiology for germ cell cancer suggests
that developmental arrest of fetal germ cell differentiation is a
main event leading to persistence of gonocytes, which in turn
develop into CIS. The causes remain unknown, although dis-
turbances in the microenvironment provided by the Sertoli and
Leydig cells may play a major role. Moreover, spermatogenesis is
strictly controlled and depends on a succession of signals provided
by the local environment (Skinner et al., 1991; Verhoeven, 1992;
Jégou, 1993).

Among all the studies on testicular functions, there are several
windows of time that must be critical for its development. Next to
the importance of the fetal development, it appears that puberty
must be an important timing. This is when hormone levels will
reach optimal concentrations leading to the secondary sexual char-
acters. This will also coincide with the appearance of the TGCC,
as men are affected between 15 and 35 years old.

Hormones play major impacts on testicular functions through-
out the life of the individuals. Indeed, testis is a key target
for androgen and estrogen actions. These hormonal sensitivi-
ties have been studied for decades (Verhoeven et al., 2010). The
role of testosterone is evident in patients with complete androgen
insensitivity syndrome (Sultan et al., 1993).

Moreover, testicular descent occurs in two phases: the trans-
abdominal phase, which animal studies suggest depends on the
insulin-like hormone 3 (INSL3) produced by interstitial Ley-
dig cells (Kaleva and Toppari, 2005; Ferlin et al., 2006, 2009).
It has been demonstrated that the expression of the Insl3 gene
is under the control of the estrogen signaling pathway (Ceder-
roth et al., 2007). Then, the inguinoscrotal phase is dependent on
androgens.

Androgens play a crucial role in the control of spermatoge-
nesis. Molecular details have been discovered using transgenic
mice invalidated (knock-out, KO) for AR either in the testis or
in different testicular compartments. Such mice have low testos-
terone levels with altered expression of steroidogenic enzymes,
even Leydig cell mass is altered (Wang et al., 2009). AR is involved
in autocrine action of testosterone on Leydig cells. Testosterone
deficiency is responsible for spermatogenesis arrest due to altered
Sertoli functions (Wang et al., 2009).

In mouse ERα have been demonstrated to be involved in the
maturation of the spermatozoa (Lubahn et al., 1993). These KO
mice present an excess of fluid which increases the pressure within
the seminiferous tubules and leads to the germ cell loss (Eddy et al.,
1996; Hess et al., 1997). Surprisingly, the ERβ-KO mice show no
testicular phenotype (Couse and Korach, 1999).

The deficient male mice for Cyp19 (Cyp19-KO), encoding for
the enzyme responsible for the aromatization of testosterone into
estrogens, develop normally and their genital tract is anatomically
similar to that of the wild-type (Robertson et al., 1999). Males are
fertile; however, some of Cyp19-KO males exhibit an altered sper-
matogenesis by the age of 5 months (Robertson et al., 1999). By the
age of 1 year, all males develop abnormal spermatogenesis with a
blockage of germ cell maturation at the spermatid stage. This is due
to an increase in apoptotic rates when compared to the wild-type
animals. The observation of abnormal acrosome development in
the Cyp19-KO mouse suggests that acrosome biogenesis could be
estrogen-dependent (Robertson et al., 1999). Interestingly, estra-
diol have been demonstrated to play a role as a survival factor
for the human germ cells (Pentikäinen et al., 2000), and also is
beneficial for sperm motility (Carreau and Hess, 2010). Moreover,
next to these data, deleterious effects of numerous endocrine dis-
ruptors on sperm count and male genital tract (cryptorchidism,
hypospadia, and infertility) have been documented (Iguchi et al.,
2001; Sikka and Wang, 2008) particularly in the context of in utero
and/or neonatal exposures.

Imbalanced equilibrium between the estrogen and androgen
levels in utero is hypothesized to influence TC risk. Thus, alter-
ations in genes involved in the action of sex hormones may
contribute to variability of an individual’s susceptibility to TC.
Mutations in testosterone pathway genes may alter the level of
testosterone in vivo and hypothetically the risk of developing TC
(Kristiansen et al., 2012). In regard with the hypothesis of the
TDS and the known impact of steroids on testicular development
and functions, it has been hypothesized that endocrine-disrupting
chemicals could play a role in these pathologies.

ENDOCRINE DISRUPTERS
The endocrine disrupters (EDs) are compounds which may be
of industrial or natural origin and which act to dysregulate
steroid function and metabolism. They produce their effects by
mimicking, antagonizing, or altering endogenous steroid levels
(androgens or estradiol, E2) via changing rates of their synthesis
or metabolism and/or expression or action at receptor targets.

The question of environmental endocrine disruption has been a
topic of public concern for many years and remains high on the sci-
entific agenda. Indeed the number of chemical used is constantly
increasing in developed countries, it is supposed that humans and
animals can be exposed to a growing number of contaminants
which can accumulate in their bodies and may have adverse con-
sequences for health. Large range of chemicals (banned or still in
use) have been characterized as EDs. Among these EDs, highly
produced, Bisphenol A (BPA; Rubin, 2011) is present in plas-
tics, including beverage and food storage containers and in the
ink used for thermal paper receipts. Some individuals have also
been exposed to contaminants with adverse effects originating
from medical use (diethylstilbestrol, DES; Bullock et al., 1988),
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or dietary habits (phytoestrogens; Naciff and Daston, 2004). More
surprisingly, in China, human excretions were suspected to be the
major contributor of estrogens in municipal wastewater (Zhou
et al., 2012).

Moreover, studies have made correlations between elevated
levels of phthalates in urines of pregnant women and lower mas-
culinization of their progeny (Suzuki et al., 2012). EDs have also
been detected in the maternal milk (Hines et al., 2009).

Regarding the urogenital development and more particularly
testis, the impacts of EDs have been quite well described on
human and rodent models (Volle et al., 2009; Toppari et al.,
2010; Desdoits-Lethimonier et al., 2012). This is mainly true for
hypospadia, cryptorchidism, and infertility; but the link with
TGCC remain to be defined.

It has been demonstrated that EDs with estrogenic activity lead
to a decrease of expression of steroidogenic genes which by the
end result in lower testosterone concentrations (Joensen et al.,
2008). However, the mechanisms seem to differ between species.
This highlights the difficulties to find good experimental models.
Indeed, one will claim that human cells will not react as murine
cells; and other may assume that cell lines or explants tissues might
not totally react as in the body. Indeed, endocrine systems are really
complex and need to be analyzed in regard of the complexity of
integrative physiology.

The effect of such EDs in human pathology is quite difficult to
establish. It is really difficult to have standardized cohort between
the studies, which is due to the history of patients (environmen-
tal and genetic factors). This heterogeneity leads to inconsistent
studies which do not allow definitive conclusions on the potential
involvement of EDs in TGCC.

It has been demonstrated that there was a six-fold increase in
the risk of seminoma among plastic workers exposed to polyvinyl
chloride (PVC; Ohlson and Hardell, 2000). However, Hardell et al.
(2004a) did not found association between PVC exposure and TC.

Another study from Hardell et al. (2006) show that chlorinated
biphenyls (PCBs) could play a role during fetal exposure in the
etiology of TC as case mothers were identified to have significantly
higher concentrations of these PCBs. However, regarding PCBs,
no different risk pattern could be demonstrated for seminoma and
non-seminomatous TC (Hardell et al., 2003, 2004b).

However, several studies have demonstrated some effects of
these molecules on risk of TGCC (Hardell et al., 2003, 2004b, 2006;
McGlynn et al., 2009). In their study McGlynn et al. (2009) asso-
ciated PCBs with a decrease risk of TGCC development. Different
PCBs are either associated with decrease risk of either seminoma or
non-seminoma. In the same line of evidence, it was demonstrated
that in patients with seminoma there was differences in concentra-
tions of different PCBs (Purdue et al., 2009). Some PCBs (44, 49,
and 52) were found to be lower accumulated in patients with semi-
noma compare to congeners; whereas other PCBs (99, 138, 153,
167, 183, and 195) were significantly higher accumulated in these
patients. This suggest that rather than specific concentration of
one or another PCB, it may be the relative concentrations of mul-
tiple one that might be relevant to established clear correlation
with the risk of TC.

Moreover, evidences suggest that exposures to pesticides
could be risk factor of TC development. Indeed, a recent

study reported a significant association between TC develop-
ment and use of insecticides such as organochlorine pesticides,
namely dichlorodiphenyldichloroethylene (p,p′-DDE) isomer and
hexachlorobenzene (Giannandrea et al., 2011).

Next to this, as TC development seems to be either associ-
ated with genetic predisposition and or environmental exposure,
it might be of interest to analyze the potential combination of such
anomalies. Consistent with this hypothesis, as polymorphisms in
AR and some organochlorine pesticides have been associated to
risk of TGCC development, and that some of these organochlorine
pesticides present anti-androgenic activities, Biggs et al. (2008)
have studied the potential interaction of AR polymorphisms and
exposure to p,p′-DDE and the association with TC risk. According
to their study, they were not able to demonstrate any association
between p,p′-DDE exposure and TC risk, either or not in combina-
tion with (CAG)n length. However, a point to take in consideration
is that p,p′-DDE concentration was measured in adult patients, but
as TC is supposed to found its origin in fetal life, this must be the
exposition in this period of life that must be significant to define
such association. However, it will be difficult for instance to estab-
lish such correlation as we do not have access to fetal/neonatal
blood of these patients. However, it could be though to perform
some clinical trials to collect blood of new borns and make assay
for pesticides concentrations. Then it will be necessary to follow
these boys and see if they will further develop TC, and perform
correlation with fetal/neonatal concentrations of pesticides.

ED and insulin-like-3
Next to their steroidogenic function, Leydig cells during devel-
opment express the insulin-like-3 gene which is responsible
for gubernaculum maturation (Ivell and Anand-Ivell, 2011). In
human, INSL3 is produced by prenatal, neonatal, and adult Ley-
dig cells to various extents (Ivell and Anand-Ivell, 2011). INSL3
production seems to be dependent on the state of Leydig cell dif-
ferentiation, and is stimulated by the long-term trophic effects
mediated by luteinizing hormone (LH; Toppari et al., 2007). This
finding clearly helps in understanding the complete process of
testis descent. The role of the INSL3 on testis descent was high-
lighted by the fact that mouse KO for the gene encoding Insl3
results in cryptorchidism (Adham and Agoulnik, 2004). Moreover,
animal model of ED exposures demonstrated that INSL3 pro-
duction is sensitive to estrogenic or anti-androgenic compounds.
This clearly suggests that maternal exposure to EDs during preg-
nancy can result in cryptorchidism, a factor that predispose to TC
development.

ED and steroidogenesis
This link is of particular importance. Indeed, if CIS have been
described in boys at birth (Jacobsen and Henriques, 1992), TCs
appear in young men between 15 and 35 years old, suggesting that
puberty and probably the increase of hormone concentrations
must be key events.

The impact of EDs on steroidogenesis has been demonstrated
for several decades now. EDs have been described to inhibit
critical cellular functions involved in steroidogenesis, such as
transport of cholesterol into the mitochondria, the expression of
steroidogenic genes or the activity of these enzymes (Vanparys
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et al., 2012). Indeed, it has been demonstrated that exposure of
adult rats to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCCD) led to
lower production of testosterone in response to human choriog-
onadotropin (hCG), relative to testes from control rats (Kleeman
et al.,1990). The addition of pregnenolone is able to restore normal
testosterone secretion. This highlights that the impact on steroid
synthesis might results from altered cholesterol synthesis or mobi-
lization to the mitochondria (Moore et al., 1991). TCDD was also
observed to reduce the number and size of the Leydig cells (John-
son et al., 1994). Moreover, the use of primary culture of Leydig
cells also demonstrate that TCDD represses Cyp11a1 expression,
through the alteration of the ability of hCG to increase intracellular
cAMP levels (Lai et al., 2005).

The impact on the animal phenotypes will depend on the age at
exposure. Thus fetal/neonatal exposure will lead to altered inter-
nal genital organs. Indeed, experimental models have shown that
disruption of the androgen signaling results in feminization of
external genitalia (Nagahama et al., 2004). In animal models, expo-
sures to low concentrations of EDs are able to alter testosterone
synthesis without any effect of feminization. However, the most
interesting thing is that even after neonatal exposure, the adult
testosterone concentrations are decreased suggesting long-term
impact that is specific to this particular window of exposure (Volle
et al., 2009). This has been clearly highlighted as the exposition of
adult animal lead to transitory testosterone decrease, associated
with temporary germ cell death. In human, majority of the results
relies on epidemiological studies and correlative data (Woodruff,
2011). However, several studies using testicular explant models
have tried to characterize the impact of EDs on human Leydig
cells (Desdoits-Lethimonier et al., 2012). By the end, all these data
led to the idea that fetal cells must be more sensitive than adult
Leydig cells.

Regarding the signaling pathways involved, and as main regu-
lators of the expression of steroidogenic genes, a reduced activity
of the cAMP-mediated PKA pathway would also be expected to
reduce the mobilization of cholesterol by cholesterol hydrolases.
However, at the molecular level, it has been demonstrated in mouse
that neonatal exposure to EDs with estrogenic activity leads to a
decrease of testosterone synthesis through ER receptors and that
the orphan nuclear receptor SHP must be a key intermediary for
this effect (Volle et al., 2009). Indeed, the SHP KO mice seem to be
less sensitive to estrogenic EDs than their wild-type littermates. It
was also demonstrated that the impact of SHP on steroidogenesis
is due to the repression of either expression and/or activity of the
nuclear receptors Sf-1 and Lrh-1 (Volle et al., 2009). It is to note
that SHP was not involved in early post-natal decrease of testos-
terone production induced by estrogenic EDs. This highlights that
the involved molecular pathways affected by EDs are multiple and
complex.

ED and germ cell differentiation
Spermatogenesis, leading to spermatozoa formation, is a com-
plex process with multiple steps involving mitosis, meiosis, and
spermiogenesis. It takes place in the seminiferous tubules. There,
germ cells are organized from the base of the tubule to the lumen.
Germ cells are supported by the nursing Sertoli cells, which extend
from the base to the lumen of the seminiferous tubules. Efficient

spermatogenesis also relies on the integrity of tight junctions
between the Sertoli cells which form the blood–testis barrier (BTB;
Cheng and Mruk, 2012). BTB has many functions in the testis such
as maintaining a particular immune context and also the control
of the flow of nutrients and growth factors that are required for
the development of germ cells.

The key role of retinoids in the differentiation process of germ
cells was highlighted by two studies demonstrating stra8 as a key
factor (Bowles et al., 2006; Koubova et al., 2006). It also involved
the timely regulation of the gene encoding for cyp26b1, an enzyme
responsible for retinoid degradation. Indeed, CYP26B1 in Sertoli
cells acts as a masculinizing factor to arrest male germ cells in
the G0 phase of the cell cycle and prevents them from entering
meiosis (Li et al., 2009). This induction of retinoid pathway to
induced entry in meiosis seems to be inhibited by the nuclear
receptor SHP, a co-repressor of the retinoid acid receptors RAR
(Volle et al., 2007). In the opposite manner, the FGF9 signaling
pathway acts to determine germ cell fate to enter meiosis (Boisen
et al., 2001).

EPIGENETIC AND TESTICULAR CANCERS
TRANSGENERATIONAL EFFECTS: ROLE OF EPIGENETIC MODIFICATIONS
Epigenetic refers to changes of DNA information without any
change of the sequences. It relies on histones post-transductional
modification (acetylation, methylation. . .) or of DNA methylation
levels. Thus, inheritance of these information requires germline
transmission of epigenetic patterns between generations. The epi-
genetic programing of the germline occurs during embryonic
development in a sex-specific manner (Western, 2009). These pro-
cesses are crucial for reproductive functions, as most of mouse
models with specific germline invalidation for gene responsible
of DNA or histones modifications led to sterile animals (Peters
et al., 2001; La Salle et al., 2007). Regarding the male germline,
it becomes imprinted following sex determination. Thus after
puberty when spermatogenesis is fully functional, there are also
specific epigenetic modifications along the different steps of germ
cell differentiation from spermatogonial precursors up to testicular
spermatozoa. Indeed, it has been demonstrated that throughout
the different steps of spermatogenesis, germ cells have a dynamic
of the epigenetic modifications. This is highlighted by the changes
in the expression levels of the enzymes involved in these modifica-
tions. If DNA methyltransferases (Dnmts) are mainly expressed
in the spermatogonia, histone methyltransferases (HMTs) are
mainly expressed at the spermatocyte levels (Godmann et al.,
2009). Then other histone modifications such as hyperacetylation
of the H4 histone play a key role in the removal of histones and
their replacement by protamines during spermatogenesis (Dhar
et al., 2012). Such epigenetic modifications have also been demon-
strated to be associated with infertility as for example reduced
expression of Dnmt3b in patients with spermatogenic arrest
(Adiga et al., 2011).

If the EDs cannot alter the DNA sequence, there are numer-
ous of studies demonstrating that they can impact the epigenome.
Indeed, environmental factors can alter the epigenetic programing
which will impact the development of the offsprings. Interest-
ingly, it has been demonstrated in the last decade that these
effects could also potentially impact the subsequent generations
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(Huang et al., 2011; Schoevers et al., 2012). Such effect was first
demonstrated for the exposure with vinclozolin, a compound
with anti-androgenic activities (Anway et al., 2005). Thus expo-
sure during embryonic gonadal sex determination can alter the
male germline epigenetics (e.g., DNA methylation). The epige-
netic mechanism involves the alteration of DNA methylation in
the germline that appears to transmit transgenerational adult onset
disease, including spermatogenic defects and cancer (Anway et al.,
2005). At the molecular level, the authors identify by global tran-
scriptomic approach that the expression of genes involved in these
processes such as the Dnmt or responsible for histone modifica-
tions was affected by vinclozolin treatment (Anway et al., 2005).
All these data suggest the main involvement in transgenerational
transmission.

Potential link between epigenetic and TGCT?
These modifications in epigenetic programing by EDs are of par-
ticular interest as they have been suspected to be responsible of the
increased rate of pathologies related to the TDS such as TCs. This
potential association between ED and epigenetic in TGCT devel-
opment is highlighted by the fact that recently, number of studies
have demonstrated the modified epigenetic profile of tumor cells
compare to “normal” cells (Okamoto and Kawakami, 2007; Brait
et al., 2012). Indeed, it appears that tumor cells show an epige-
netic pattern similar to undifferentiated spermatogonial stem cells
(Almstrup et al., 2010). Indeed, CIS cells have a permissive and
fetal-like chromatin structure (Almstrup et al., 2010). This is con-
sistent with the fact that CIS, precursor of TGCT have already been
identify in testis of embryos.

DNA methylation. DNA methylation is an important event
during germ cell development. These enzymatic modifications
of DNA rely on Dnmts. Among them, expression profiles of
DNMT3a and DNMT3l suggest that they might act during pre-
natal germ cell development for the establishment of de novo
methylation. On the other side, DNMT1 and DNMT3b rise shortly
after birth in the male (Godmann et al., 2009). It was thus hypoth-
esized that these two Dnmts must be involved in the maintenance
of methylation patterns in proliferating spermatogonia.

The use of mouse models invalidated for genes encoding these
enzymes highlights their crucial involvement during spermato-
genesis. Dnmt3a−/− males show a greatly reduced number of
spermatocytes (Yaman and Grandjean, 2006; La Salle et al., 2007).
This suggests a major involvement for progression through meio-
sis. In the same line, the males invalidated for Dnmt3L participate
to the acquisition of DNA methylation at paternally imprinted
regions, unique non-pericentric heterochromatic sequences, and
interspersed repeats, including transposable elements. Moreover,
Dnmt3L−/− males present alterations of meiotic process leading
to spermatogenesis arrest, and spermatocytes apoptosis (Webster
et al., 2005). As Dnmt3L expression is restricted to gonocytes, the
presence of defects in later stages suggests alteration of processes
required for completion of spermatogenesis.

The major role of these epigenetic alterations has been demon-
strated in carcinogenesis. Indeed, it has been shown that DNA
methylation is associated with repression of tumor suppressor
gene expression. This epigenetic process is one of the most studied

in the research field, and has been recognized as a major mech-
anism during TGCC progression (Manton et al., 2005; Ellinger
et al., 2009). Moreover, the DNA methylation pattern seems to
correlate with histological features of the different types of TGCC.
Undifferentiated TGCC (seminomas, IGCN unclassified, and
gonadoblastomas) are hypomethylated, whereas more differen-
tiated TGCC (teratomas, yolk sac tumors, and choriocarcinomas)
show a higher degree of methylation. Embryonal carcinomas
show an intermediate pattern. Thus such parameters could be
used to discriminate between seminoma and non-seminoma
(Brait et al., 2012).

Such impact involved modifications of genes encoding for
enzymes involved in DNA methylation. Consistent with cell type
origin of TGCC, the Dnmts are mainly expressed in fetal testis
and in the more undifferentiated cell type (spermatogonia) during
adult normal spermatogenesis.

Regarding cancers, Dnmt1 was not expressed in seminoma, but
upregulated in embryonal carcinoma (Omisanjo et al., 2007). In
contrast, the expression of Dnmt3a was found up-regulated in
TGCC compared to non-tumor testicular tissues (Yamada et al.,
2004). The expression pattern of Dnmt3b has been deeply stud-
ied and show that it could be used as a predictive marker for
relapse of stage I seminomas (Arai et al., 2012). Lastly, Dnmt3l was
overexpressed in the non-seminoma tumors (Minami et al., 2010).

These changes in Dnmts expression will lead to main alter-
ation of transcriptomic profile between tumors and normal tissues
(Alagaratnam et al., 2011). Among them, two targets are of par-
ticular interest as they are genes of pluripotency. Indeed, early
fetal germ cells and undifferentiated germ cell tumors have in
common the expression of pluripotency markers such as the tran-
scription factors Nanog and Oct3/4. Regarding Nanog promoter,
it was found hypomethylated in spermatogonia and hypermethy-
lated in sperm (Nettersheim et al., 2011). This selective repression
might reflect that the cells need to suppress pluripotency in order to
prevent malignant transformation. Finally, methylation of CpGs
in the Nanog promoter in germ cell tumors and derived cell lines
correlated to differentiation state. In the same line, the study
Oct3/4 showed that seminoma and embryonal carcinoma were
hypomethylated (De Jong et al., 2007).

Histone methylation. Many enzymes are involved in histone
methylation with specific or redundant level of methylation. These
differences rely on the modified histone, targeted amino-acid
residues and the number of methyl groups that are added to
histone. These modifications are performed by several members
of the HMT family. On those involved in spermatogenesis, the
Suv39h1 and suv39h2 mediate histone H3 di and/or trimethyla-
tion at lysine 9 (Schotta et al., 2003). They are involved in meiosis
as double KO mice present defects in male meiosis and highly
pronounced apoptosis of stage IV spermatocytes during the tran-
sition from mid to late pachytene (O’Carroll et al., 2000; Peters
et al., 2001).

G9a, a mammalian HMTase, is a candidate for H3-K9 methy-
lation in non-heterochromatic loci (Tachibana et al., 2007). G9a is
essential for early embryonic development and plays a dominant
role in H3-K9 methylation of euchromatin. Its role was high-
lighted as mice lacking G9a are sterile, with germ cells undergoing
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apoptosis during the pachytene stage (Tachibana et al., 2007).
Interestingly, it was demonstrated that G9a was a target of retinoid
signaling pathway, a key regulator of germ cell differentiation,
and that it was inhibited in the context of estrogenic exposure
leading to the increased germ cell apoptosis induced by EDs (Volle
et al., 2009).

Another HMT is the enhancer of zeste 2 (EZH2) which
trimethylate histone H3 at the lysine 27 (Chang and Hung,2012). It
was demonstrate that during spermatogenesis, EZH2 is restricted
to round spermatids in the perinuclear acrosome region (Lambrot
et al., 2012). This localization is concomitant with the dra-
matic epigenetic reorganization that occurs during spermiogenesis
leading to an extreme compaction of the chromatin.

DNA methylation, histone methylation are epigenetic mod-
ifications functioning in transcriptional control and have been
implicated in the deregulation of gene expression in cancer. As
mentioned above, the CIS cells present epigenetic profile similar
to ES cells. Such properties of chromatin have been associated
with a high transcriptional and proliferative activity. This is due
to lower levels of DNA methylation and of histone methyla-
tion (H3K9me2 and H3K27me3; Almstrup et al., 2010). This
is consistent with a lower expression of the gene encoding for
the EZH2 in the TGCC compared to normal testis tissues (Hinz
et al., 2010). This suggests that in TGCC EZH2 does not exert its
often assumed oncogenic properties during malignant transfor-
mation and progression. High EZH2 levels in normal testicular
tissue and the inverse association of its expression levels with
the severity of spermatogenic failure point to its potential value
as a molecular marker for spermatogenic defects and may indi-
cate an important physiological role of EZH2 during intact
spermatogenesis.

It has been suggested that histone H2A and H4 arginine 3
dimethylation might be a mechanism by which IGCNU and semi-
noma maintain the undifferentiated state; while loss of these
histone modifications (Eckert et al., 2008) could be involved in the
somatic differentiation observed in non-seminomatous tumors.

In healthy testis, the distribution of histone H3 methylation
was dependent on the developmental stage of spermatogenic
cells and in non-seminoma, histone H3-K4 and K9 methy-
lation was detected in all histological subtypes (Lambrot and
Kimmins, 2011). This suggested that histone H3-K4 and K9
methylation could be associated with abnormal gene expression
in non-seminoma. Histone modifications determine epigenetic
patterns of gene expression with methylation of histone H3
at lysine 4 (H3K4), and are often associated with active pro-
moters. LSD1/KDM1 is a histone demethylase that suppresses
gene expression by converting dimethylated H3K4 to mono- and
unmethylated H3K4 (Wang et al., 2011). Interestingly, LSD1 pro-
tein level is highly elevated in pluripotent cancer cells and in
human testicular seminoma tissues that express Oct3/4 (Wang
et al., 2011).

Histone acetylation. This is another histone modification that
must also lead to gene repression. These modifications are
performed by specific enzymes so-called histone deacetylase
(HDCA). Such post-translation modifications are implicated in
normal spermatogenesis (Fenic et al., 2008). Indeed, H3K9ac was

shown in spermatogonia, spermatocytes, elongating spermatids,
and ejaculated spermatozoa of fertile and infertile men (Steil-
mann et al., 2011). In spermatogonia, the stainings for H3K9ac,
H3K18ac, and H3K23ac were strong. Then spermatocytes, the
stainings for H3K9ac, H3K18ac, H3K23ac, and H3K4me3 were
reduced in the preleptotene to pachytene stage, but in diplotene
stage the stainings for H3K18ac, H3K23ac, and H3K4me3 seemed
to become intense in later stages (Song et al., 2011a).

The main involvement of histone acetylation during spermato-
genesis is the hyperacetylation of histone H4 during spermiogen-
esis (Dhar et al., 2012). This signal seems to play crucial role for
removal of histones and their replacement by protamines, which
is key feature for nucleus condensation, and thus formation of
spermatozoa. There are multiple members classified in differ-
ent subfamilies. Interestingly, choriocarcinomas showed generally
high expression for all three class I HDAC isoforms (Gryder et al.,
2012). However in contrast with other types of tumors, no diag-
nostic or prognostic values for HDAC1–3 in TGCC could be
inferred (Fritzsche et al., 2011).

Impact of TGCC treatment. Some testis tumors are treated using
cisplatin (Koychev et al., 2011). Recent report analyzed the impact
of such treatment on the integrity of spermatozoa chromatin in
rats (Maselli et al., 2012). As expected, the cisplatin treatment lead
to susceptibility of DNA to denaturation and the number of strand
breaks were significantly increased in mature sperm. After a recov-
ery period, it was noted that mature sperm did not show significant
DNA damages. However, the protamination level of the sperm of
these animals was significantly decreased. This was associated with
an up-regulation of the histones H1.2, H4, H2A1, and H2B1A.
This suggests long-term effect of cisplatin treatment that could
have consequences for progenies even after the arrest of cancer
cure.

Small non-coding RNA. Next to these well studied epigenetic
processes, it also appears that microRNA and small RNA play
important roles in both germ cell differentiation and transmission
to subsequent generations (He et al., 2009; Suh and Blelloch, 2011;
Buckley et al., 2012). Indeed, achieving the correct spatial and tem-
poral expression of germ cell-specific genes is fundamental to the
production of spermatozoa (Song et al., 2011b). Notably, for the
regulation of genes involved in the repression of protein transla-
tion is central to many embryonic processes, and is particularly
active during spermatogenesis.

The miRNA and siRNA are generated by the nuclear RNase
III enzyme Drosha and the cytoplasmic RNase III enzyme Dicer
(Papaioannou and Nef, 2010). The involvement of these particu-
lar RNA has been highlighted by the generation of mouse models
invalidated for genes encoding Drosha or Dicer (Korhonen et al.,
2011; Wu et al., 2012). These invalidations led to sterility due
to disrupted spermatogenesis characterized by depletion of sper-
matocytes and spermatids leading to oligoteratozoospermia or
azoospermia. miRNAs mostly act by destabilizing target mRNAs
or inhibiting their translation. Next to this, the PIWI-interacting
RNAs (piRNAs) are predominantly expressed in the germ cell
lineage (Kibanov et al., 2012). The analyses on this particular
class of RNA suggest that they have a potential role in epigenetic
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regulation of cell polarization. Moreover piRNA seem to be
involved in silencing of transposon expression.

Many miRNA and siRNA have been implicated in the differ-
ent steps of spermatogenesis. Among them, miR-449 and miR-34
seems to have common targets on the E2F signaling pathway which
is mainly involved in the regulation of male germ cell development
(Bao et al., 2012). Mir-17-92 (Mirc1) cluster and Mir-106b-25
(Mirc3) cluster miRNAs were suggested to cooperate in regulating
spermatogonial development (Tong et al., 2012). The overexpres-
sion of miR-184 was demonstrated to promote the proliferation of
a germ cell line, GC-1spg (Wu et al., 2011). It was also shown that
transient inhibition of miR-21 in SSC-enriched germ cell cultures
increased the number of germ cells undergoing apoptosis (Niu
et al., 2011).

Interestingly, several miRNAs are unique to testis. Regarding
the involvement of miR199a-5p was highlighted by the study
showing an inverse relationship between miR-199a-5p and embry-
onal carcinoma antigen podocalyxin-like protein 1 (PODXL)
expression (Cheung et al., 2011). This suggests that PODXL must
be a downstream effector mediating the action of miR199a-5p.
This is of particular interest as PODXL, an anti-adhesive protein,
is expressed in aggressive tumors.

Next to this, miR-371-373 and miR-302 clusters are overex-
pressed in malignant TGCC (Novotny et al., 2012). It downregu-
lates mRNAs involved in biologically significant pathways involved
in cellular senescence induced by oncogenic stress.

Among other examples, miRNA-383 expression is downregu-
lated in the testes of infertile men with MA (Lian et al., 2009).
These results suggest that it functions as a negative regulator
of proliferation, in part, through inactivation of the pRb path-
way. Thus an abnormal expression of miRNA-383 may potentiate
the connections between male infertility and testicular germ cell
tumor.

Therapy issues. A percentage of tumors are resistant to cisplatin
treatment. It seems to be associated with the high cytoplasmic
expression of p21. Interestingly, it was demonstrated that there is
an inverse association between cisplatin resistance and the expres-
sion of Oct4 and miR-106b (Koster et al., 2010). Thus, it was
suggested that modulation of the Oct4/miR-106b/p21 pathway

could open new perspectives in the treatment of chemoresis-
tant TC.

CONCLUSIONS/PERSPECTIVES
The increasing incidence of reproductive tract diseases and par-
ticularly TC, during the last decades, is of concern. Indeed, even
if it is a well curable disease with a good 5-year survival rate, it
affects men during the time of their reproductive life (between
15 and 40), suggesting that it may affect both fertility and also
health of the progeny. It cannot be exclude that germ cells gen-
erated at the beginning of carcinogenesis could transmit altered
DNA material, due to genetic, epigenetic perturbation. This higher
rate of appearance for TC cases is supposed to be associated with
exposure to environmental chemicals. This also need to be deeply
studied as in our modern society, men are exposed to an increas-
ing amount of chemicals. This suggests that the incidence of TC
could be even more important in the future decades. All these
potential consequences point out the importance to study the
involved mechanisms in appearance, and progression of TGCC.
This means that we have to better understand the etiology for such
cancers.

In long-term perspective, an increased knowledge of genetic,
epigenetic, and gene expression patterns correlated with data of
anatomopathology will lead to a better definition and understand-
ing of the pathology. It also suggests that there is a need to analyze
patients in a case by case approach in order to identify genetic, epi-
genetic alterations, and modifications of gene expression patterns.
This will help to propose personalized therapy that would prob-
ably help in improving survival rate and life quality of survivors
and avoid relapse.
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