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Abstract: Avian coronaviruses (ACoVs) are continuously evolving and causing serious economic
consequences in the poultry industry and around the globe. Owing to their extensive genetic
diversity and high mutation rates, controlling ACoVs has become a challenge. In this context,
the potential contribution of wild birds in the disease dynamics, especially in domesticated birds,
remains largely unknown. In the present study, five hundred fifty-seven (n = 557) cloacal/fecal
swabs were collected from four different wild bird species from eight Egyptian governorates during
2016 and a total of fourteen positive isolates were used for phylodynamics and evolutionary analysis.
Genetic relatedness based on spike (S1) gene demonstrated the clustering of majority of these isolates
where nine isolates grouped within Egy/variant 2 (IS/885 genotype) and five isolates clustered within
Egy/variant 1 (IS/1494/06 genotype). Interestingly, these isolates showed noticeable genetic diversity
and were clustered distal to the previously characterized Egy/variant 1 and Egy/variant 2 in Egyptian
commercial poultry. The S1 gene based comparison of nucleotide identity percentages revealed that
all fourteen isolates reported in this study were genetically related to the variant GI-23 lineage with
92–100% identity. Taken together, our results demonstrate that ACoVs are circulating in Egyptian
wild birds and highlight their possible contributions in the disease dynamics. The study also proposes
that regular monitoring of the ACoVs in wild birds is required to effectively assess the role of wild
birds in disease spread, and the emergence of ACoVs strains in the country.

Keywords: avian coronavirus; Egypt; wild bird; phylodynamics; monitoring

1. Introduction

Coronaviruses are classified into three well-accepted genera; alpha-, beta-, and gamma-coronavirus
whereas deltacoronavirus [1,2] is proposed as an additional group in the family. Alphacoronaviruses and
betacoronaviruses have been isolated from mammals, whereas gammacoronaviruses, represented by the
infectious bronchitis virus (IBV), are detected primarily in birds including poultry [2].
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Avian coronvaviruses (ACoVs) are enveloped viruses with a positive-sense and single-stranded
RNA genome of approximately 27.6 kb in length that encodes four major structural proteins; the
nucleocapsid (N) protein, the membrane (M) protein, the envelope (E) protein and the spike (S)
glycoprotein. The S glycoprotein, an integral membrane protein, is post-translationally cleaved into
the S1 (N-terminus) and S2 subunits (C-terminus) [3]. The S1 protein is responsible for host selection,
induction of protective immunity and most of the neutralizing serotype-specific antibodies are directed
against S1 [4,5]. Most of these neutralizing epitopes are mapped in the hypervariable region (HVR) in
the S1 subunit (amino acid positions from 38–67, 91–141 and 274–387) and mutation in these regions
may contribute to the generation of escape mutants [5]. Since the S1 subunit shows higher sequence
diversity (up to 50%) than S2 [6], molecular characterization and serotyping of coronaviruses are
based mainly on the S1 gene sequences [7]. The S1 gene sequence can be used to differentiate all six
IBV genotypes, and 32 different lineages that have been identified worldwide [8]. New genotypes of
IBV are emerging frequently in different parts of the world and many factors are accounting for this
emergence and evolution [9].

ACoV infections are characterized by an acute, highly contagious, and economically important
disease in domesticated poultry. After its first identification in North Dakota, USA [10], ACoV spread
swiftly and many ACoV variant strains have been isolated causing major problems in the poultry
industry, around the globe [3,7–9,11,12]. Contaminated litter, footwear, clothing, utensils, equipment,
and personnel are all potential sources of virus for indirect transmission and have been implicated
in ACoV spread over large distances [12]. However, the role of wild birds in disease transmission,
pathobiology, and evolution of the virus is not well understood.

The wildlife has been under epidemiological surveillance to identify its possible roles as a reservoir
for emerging viruses that may pose a risk to mankind and threaten wildlife. It has now been well
established that the wild birds are important reservoirs for avian influenza A virus [13], and may
likely be for other respiratory and enteric viruses. In recent years, ACoVs have been isolated from
various wild bird species that create a suspicion that wild birds play a role as CoV reservoirs and as
ACoV carrier/transmitter influencing its epidemiology [14,15]. In Egypt, ACoV was first described at
1954 by Ahmed, [16], and subsequently several reports emphasized the prevalence of the disease in
the country that results in great economic losses to the Egyptian commercial poultry industry [17–19].
Currently, the variant IBV are the most prevalent strains in commercial poultry sectors in Egypt,
especially from the early months of 2011. Therefore, genotyping of ACoV field strains is crucial to
detect the emergence of new variant strains as well as evaluating the existing vaccination programs [19].
To date, only limited studies have been performed to systematically monitor the prevalence of ACoVs
in wild bird populations.

The main objective of this study was to investigate the prevalence of ACoVs in the Egyptian
wild birds and to highlight their possible roles in transmission of ACoVs. Screening and downstream
characterization and evolutionary analysis confirm the circulation of ACoVs in wild birds and warrant
the future surveillance investigations at the national levels. Understanding dynamics and richness
of Egyptian wilds birds in carrying avian pathogens will be steppingstone in devising any disease
control and eradication campaign in the country.

2. Materials and Methods

2.1. Sampling History, Collection, and Virus Isolation

A total of five hundred- fifty-seven (n = 557) cloacal/fecal swabs were collected from
randomly-selected wild birds-dense and ACoV-endemic areas in eight Egyptian provinces during the
year of 2016 (Figure 1, Table 1, Table 2, Table 3). Swab samples from live birds were obtained according
to approved procedures by authorized veterinarians of the Central Laboratory for Evaluation of
Veterinary Biologics, Egypt. Samples were blindly propagated for three passages in the allantoic sac of
9 day-old specific pathogen free (SPF) embryonated chicken eggs by standard procedures [20].
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2.2. Polymerase (RdRp) and Spike (S1) Genes Amplification and Sequencing

Viral RNA was extracted from the allantoic fluids using Trizol LS®reagent kit (ThermoFisher,
Life Technologies Corporation|Carlsbad, CA 92008, USA) according to the manufacturer’s instructions.
The eluted RNA in 30µL of nuclease free water was stored at (−70 ◦C) until processing for the amplification.
A single step RT-PCR was performed using the Verso One Step RT-PCR kit (ThermoFisher, Life Technologies
Corporation|Carlsbad, California, USA) using previously reported primers for amplification of partial
polymerase (RdRp) and full length S1 gene [6,21]. PCR products were gel excised and purified individually
using QIAEX® Gel Extraction Kit (Qiagen, Hilden, Germany). Gene sequencing was carried out using
a BigDye Terminator v3.1 cycle sequencing kit (Qiagen, Hilden, Germany) in an ABI PRISM®300 using
sequencing primers as described previously [22].

2.3. Sequence and Phylogenetic Analysis

The obtained sequences for RdRp (MF034358.1- MF034371.1) and S1 genes (MF034369.1-
MF034385.1) were quality checked, assembled, edited using BioEdit software version 7.0.4.1 [23]
and submitted to GenBank using BankIt tool of the GenBank (http://www.ncbi.nlm.nih.gov/WebSub/
?tool=genbank). Analysis of full length S1 protein was conducted to determine the presence of potential
N-linked glycosylation sites among the isolated Egyptian ACoV strains using BioEdit software version
7.0.4.1 [23]. To elucidate the phylogenetic relationships and high level clustering pattern based on full
length S1 gene between ACoVs reported here and previously characterized from Middle East including
Egypt and other parts of the world; we first compiled a dataset of all available S1 gene sequences.
Then, this dataset was aligned in BioEdit version 7.0.1 [23] using Clustal W algorithm and was trimmed
to equal lengths. To avoid sequence length biasness in evolutionary incursion, all sequences that
aligned poorly or with incomplete information were excluded from the analysis. A phylogenetic tree
was constructed using the nucleotide sequences of the S1 genes. For maximum-likelihood analysis
of the phylogenetic relationship, a best-fit model was chosen on which further calculations and an
ultrafast bootstrap equivalent analysis were based. IQ-tree software version 1.1.3 was used for these
operations [24].

2.4. Selection Pressure Analysis

To explore the overall differences in selection pressure on the S1 gene, especially on the
hypervariable regions (HVRs) sequences that define the cross-neutralization and escape mutant ACoV
strains, we analyzed the occurrences of synonymous (dS) and non-synonymous (dN) substitutions
using SNAP web tool (https://www.hiv.lanl.gov/content/sequence/SNAP/SNAP.html) [25], which
plots the cumulative and per-codon occurrence of each substitutions. Six methods (RDP, GeneConv,
BootScan, MaxChi, Chimaera and SiScan) integrated in the RDP v3 program [26] were applied on the
avian CoVs sequences reported here to estimate any recombination event and to detect any putative
recombination breakpoint using the nucleotide alignment of the S1 gene sequences. These methods
were applied using the following parameters: window size = 20, highest acceptable p-value = 0.001 and
Bonferroni correction. For reliable results, any putative recombination events detected by more than
one method were considered.

3. Results

3.1. Occurrence and Distribution of Avian Coronavirus in Wild Birds

A total of 557 samples were collected from randomly selected wild birds dense and ACoV endemic
areas from eight provinces. These samples were individually screened by the RT-PCR targeting the
RdRp gene followed by the full length S1 gene of the ACoVs. From this screening, 2.5% positive rate
(14 out of 557) was detected among all tested fecal/cloacal samples. We classified all species that
were included in the analysis into four different families that reflected both their taxonomy and their
ecology (Table 1). These families were Passeridae (1 species, n = 140), Phasianidae (1 species, n =

http://www.ncbi.nlm.nih.gov/WebSub/?tool=genbank
http://www.ncbi.nlm.nih.gov/WebSub/?tool=genbank
https://www.hiv.lanl.gov/content/sequence/SNAP/SNAP.html
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136), Anatidae (1 species, n = 150) and Ardeidae (1 species, n = 131). Anatidaeily was most frequently
noted as ACoV-positive (4.7%), followed by Ardeidae (3.1%) and Phasianidae (1.5%), while Passeridae
had the lowest prevalence (0.7%). Furthermore, there were notable variations in the proportion of
positive samples between provinces: Sharqia, Dakahlia, Kafr El Sheikh, Gharbia, Qalubia, Menofia
and Benisuef (Table 2). The lowest prevalence rates were observed on Dakahlia (1.2%) and Menofia
(1.7%), whereas Qalubia (2.5%), Gharbia (2.4%), Benisuef (2.3%) were at the mid-point, and the highest
rates were detected at Kafr El Sheikh (5%) and Sharqia (3.3%) (Table 2). However, Giza province did
not show any positive ACoV (Table 2).
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Figure 1. Map of Egypt showing regions (Governorates) of where samples were collected from wild birds.

Table 1. Overview of wild bird samples involved in the study, and the prevalence of Avian
coronaviruses (ACoVs) in different species.

Order Family Genus Species Positive (n) Sampled (n) Rate%

Passeriformes Passeridae Passer P. domesticus 1 140 0.7
Galliformes Phasianidae Coturnix C. coturnix 2 136 1.5

Anseriformes Anatidae Anas A. crecca 7 150 4.7
Pelecaniformes Ardeidae Bubulcus B. ibis 4 131 3.1

Total = 4 4 4 4 14 557 2.5

Table 2. Proportion of sampled wild birds across different Egyptian provinces.

Species Sharqia Dakahlia Kafr El Sheikh Gharbia Qalubia Menofia Giza Benisuef Total

C. coturnix 23 21 20 22 23 15 7 9 140
P. domesticus 22 20 23 18 17 14 12 10 136

A. crecca 23 22 19 21 20 18 13 14 150
B. ibis 23 20 18 21 19 11 9 10 131

Total 91 83 80 82 79 58 41 43 557
Positive (n) 3 1 4 2 2 1 0 1 14

Rate % 3.3 1.2 5 2.4 2.5 1.7 0 2.3 2.5

(n): means number.
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3.2. Viral Sequences and Genomics Analysis

Comparison of nucleotide identity percentages, based up on S1 gene revealed that the
fourteen isolates were 92–100% identity percentage (Table 3). In 2001, an Egyptian variant I strain
(Egypt/Beni-Suef/01), closely related to the Israeli variant strain, was reported in different poultry
farms [18]. Another variant was also identified in 2011 [27] and designated as Egyptian variant II.
Deduced amino acids analysis was conducted to establish the genetic spectrum, origin, evolution,
and the mutation trend analysis for Egyptian ACoVs. Hypervariable regions (HVRs) in the S1 gene
showed distinct patterns among different viruses compared to the H120 and Ma5 strains (Table 4).
In the analyzed sequence of the fourteen viruses in this study, amino acid mutations associated with
virus tropism were identified at positions 38 (38N in only one virus while 38T in thirteen viruses) and
69 (69S in seven viruses and 69A in seven viruses) in the S1 protein of the variant strains. In addition,
seventeen potential N-linked glycosylation sites in most of the Egyptian ACoV strains were found,
with nine NXT and eight NXS sites in all the fourteen isolates reported in this study.

Table 3. Percentage nucleotide identity among reported viruses in this study.

Sequence 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 ID 100% 99% 99% 99% 99% 99% 92% 92% 92% 92% 92% 98% 98%
2 100% ID 99% 99% 100% 99% 99% 92% 92% 92% 92% 92% 98% 98%
3 99% 99% ID 99% 99% 99% 99% 92% 92% 92% 92% 92% 98% 98%
4 99% 99% 99% ID 99% 99% 99% 92% 92% 92% 92% 92% 98% 98%
5 99% 100% 99% 99% ID 99% 99% 92% 92% 93% 92% 92% 98% 98%
6 99% 99% 99% 99% 99% ID 100% 92% 92% 93% 92% 92% 98% 98%
7 99% 99% 99% 99% 99% 100% ID 92% 92% 93% 92% 92% 98% 98%
8 92% 92% 92% 92% 92% 92% 92% ID 100% 99% 100% 100% 92% 92%
9 92% 92% 92% 92% 92% 92% 92% 100% ID 99% 100% 100% 92% 92%
10 92% 92% 92% 92% 93% 93% 93% 99% 99% ID 99% 99% 93% 92%
11 92% 92% 92% 92% 92% 92% 92% 100% 100% 99% ID 100% 92% 92%
12 92% 92% 92% 92% 92% 92% 92% 100% 100% 99% 100% ID 92% 92%
13 98% 98% 98% 98% 98% 98% 98% 92% 92% 93% 92% 92% ID 98%
14 98% 98% 98% 98% 98% 98% 98% 92% 92% 92% 92% 92% 98% ID

1MF034372.1 ACoV/house sparrow/Sharqia-Egypt/VRLCU-1/2016, 2MF034373.1 ACoV/teal/Sharqia
-Egypt/VRLCU-2/2016, 3MF034374.1 ACoV/teal/Dakahlia -Egypt/VRLCU-3/2016,
4MF034375.1 ACoV/teal/Gharbia-Egypt/VRLCU-4/2016, 5MF034376.1 ACoV/teal/Qalubia-Egypt/VRLCU-5/2016,
6MF034377.1 ACoV/quail/Gharbia-Egypt/VRLCU-6, 7MF034378.1 ACoV/cattle egret/Kafr
El Sheikh-Egypt/VRLCU-7/2016, 8MF034379.1 ACoV/quail/Sharqia-Egypt/VRLCU-8/2016,
9MF034380.1 ACoV/cattle egret/Qalubia-Egypt/VRLCU-9/2016, 10MF034381.1 ACoV/cattle egret/Kafr
El Sheikh-Egypt/VRLCU-10/2016, 11MF034382.1 ACoV/teal/Benisuef-Egypt/VRLCU-11/2016,
12MF034383.1 ACoV/cattle egret/Kafr El Sheikh-Egypt/VRLCU-12/2016, 13MF034384.1 ACoV/teal/Kafr
El Sheikh-Egypt/VRLCU-13/2016 and 14MF034385.1 ACoV/cattle egret/Menofia-Egypt/VRLCU-14/2016.
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Table 4. Sequence comparison of hypervariable regions (HVR) amino acid sequences of ACoV isolates with those of the H120 and Ma5 reference strains.

Strain HVR1 (60-88) HVR2 (115-140) HVR3 (275-292)

IBV strain H120 GSSSGCTVGIIHGGRVVNASSIAMTAPSS YKH–GGCPITGMLQQHSIRVSAMKNGQ HNETGANPNPSGVQNIQTY
IBV strain Ma5

house sparrow/Sharqia-Egypt/VRLCU-1 ..Q.Q..A.A.YWSKNFS.A.V.....QN ..SSS.S..L...IP..Y..I...R.NS Y..SN.H..NG..HT.SI.
teal/Sharqia -Egypt/VRLCU-2 ..Q.Q..A.A.YWSKNFS.A.V.....QN ..SSS.S..L...IP..Y..I...R.NS Y..SN.H..NG..HT.SI.

teal/Dakahlia -Egypt/VRLCU-3 ..Q.Q..A.A.YWSKNFS.A.V.....QN ..SSS.S..L...IP..Y..I...R.NS ...SN.H..NG..HT.SL.
teal/Gharbia-Egypt/VRLCU-4 ..Q.Q..A.A.YWSKNFS.A.V.....QN ..SSS.S..L...IP.YY..I...R.NS ...SN.H..NG..HT.SL.
teal/Qalubia-Egypt/VRLCU-5 ..Q.Q..A.A.YWSKNFS.A.V.....QN ..SSS.S..L...IP.YY..I...R.NS Y..SN.H..NG..HT.SL.

quail/Gharbia-Egypt/VRLCU-6 ..Q.Q..A.S.YWSKNFS.A.V.....QN ..SSS.S..L...IP..Y..I...R.NS Y..SN.H..NG..HT.SL.
cattle egret/Kafr El Sheikh-Egypt/VRLCU-7 ..Q.Q..A.S.YWSKNFS.A.V.....QN ..SSS.S..L...IP.YY..I...R.NS Y..SN.H..NG..HT.SL.

quail/Sharqia-Egypt/VRLCU-8 ..G.Q..A.S.YWSKNFT...V.....DT ..SSS.S..L...IP..Y..I...R.NS T.VSN.S..TG..NT.NI.
cattle egret/Qalubia-Egypt/VRLCU-9 ..G.Q..A.S.YWSKNFT...V.....DT ..SSS.S..L...IP..Y..I...R.NS T.VSN.S..TG..NT.NI.

cattle egret/Kafr El Sheikh-Egypt/VRLCU-10 ..G.Q..A.S.YWSKNFT...V.....DT ..NGQ.S..L..LIP.NH..I.....SR T.VSN.S..TG..NT.NI.
teal/Benisuef-Egypt/VRLCU-11 ..G.Q..A.S.YWSKNFT...V.....DT ..NGQ.S..L..LIP.NH..I.....SR T.VSN.S..TG..NT.NI.

cattle egret/Kafr El Sheikh-Egypt/VRLCU-12 ..G.Q..A.S.YWSKNFT...V.....DT ..NGQ.S..L..LIP.NH..I.....SR T.VSN.S..TG..NT.NI.
teal/Kafr El Sheikh-Egypt/VRLCU-13 ..Q.Q..A.A.YWSKNFS.A.V.....QN ..NGQ.S..L..LIP.NH..I.....SR Y..SN.S..SG..NT.NLF

cattle egret/Menofia-Egypt/VRLCU-14 ..E.Q..A.A.YWSKNFS.A.V.....QN ..NGQ.S..L..LIP.NH..I.....SR Y..SN.S..SG..NT.NLF

A dot indicates an identical amino acid. A dash indicates an amino acid deletion.
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3.3. Phylogenetic Analysis

Based on the amplified CoV polymerase (RdRp) gene fragments, the phylogenetic analyses confirmed
that the all detected viruses in this study belonged to gamma-coronaviruses (Figure 2) along with other
ACoVs. Phylogenomic analysis based on S1 gene of the ACoVs collected from Egypt and rest of the world,
indicated that Egyptian viruses reported here were clustered with isolates from Libya, Oman and Kurdistan
and shared ancestors (Figure 3, radiation tree, left panel). A higher resolution analysis of Egyptian ACoVs
reported in this study revealed that five isolates (MF034379.1 ACoV/quail/Sharqia-Egypt/VRLCU-8/2016,
MF034380.1 ACoV/cattle egret/Qalubia-Egypt/VRLCU-9/2016, MF034381.1 ACoV/cattle egret/Kafr El
Sheikh-Egypt/VRLCU-10/2016, MF034382.1 ACoV/teal/Benisuef-Egypt/VRLCU-11/2016 and
MF034383.1 ACoV/cattle egret/Kafr El Sheikh-Egypt/VRLCU-12/2016) were closely
related to Egy/Variant 1 of IS/1494/06 genotype origin and very close to the ancestral
Egyptian virus (JX174183.1 Egypt/Beni-Suef/01) and previously isolated Egyptian viruses
(ck/Eg/BSU-1,4,5/2011) of IS/1494/06 genotype origin (Figure 4). Whilst the majority
of isolates (n = 9) (MF034372.1 ACoV/house sparrow/Sharqia-Egypt/VRLCU-1/2016,
MF034373.1 ACoV/teal/Sharqia -Egypt/VRLCU-2/2016, MF034374.1 ACoV/teal/Dakahlia
-Egypt/VRLCU-3/2016, MF034375.1 ACoV/teal/Gharbia-Egypt/VRLCU-4/2016, MF034376.1 ACoV/
teal/Qalubia-Egypt/VRLCU-5/2016, MF034377.1 ACoV/quail/Gharbia-Egypt/VRLCU-6,
MF034378.1 ACoV/cattle egret/Kafr El Sheikh-Egypt/VRLCU-7/2016, MF034384.1 ACoV/teal/Kafr El
Sheikh-Egypt/VRLCU-13/2016 and MF034385.1 ACoV/cattle egret/Menofia-Egypt/VRLCU-14/2016)
were clustered within the Egy/Variant 2 subgroup and other Egyptian viruses (ck/Eg/BSU-2,3,6/2011) of
IS/885-00 genotype origin (Figure 3, vertical tree, right panel and Figure 4). Taken together, Egy/variant
1 and Egy/variant 2 groups were phylogenetically subclassified into subgroups/subclusters (Figure 4)
based on ACoVs emergence, origin, and evolution as a result of extensive diversity and evolution which
are characteristic features for most of RNA viruses especially ACoVs.
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Figure 3. Phylogenetic tree based on S1 gene, showing the relationship between different ACoV
genotypes worldwide in relation to ACoV isolates reported in this study (left panel-radiation tree; right
panel-vertical tree). The robustness of individual nodes of the tree was assessed using 1000 replications
of bootstrap re-sampling of the originally aligned nucleotide sequences. The scale bar represents the
number of substitutions per site. The year of isolation and geographical origin of the virus sequences
are included in the tree. Trees were constructed using maximum likelihood methods. The reported
isolates in this study are marked with red triangle.
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3.4. Selective Pressure Sites and Recombination Analysis

A pairwise comparison bioinformatics approach (SNAP) was applied to determine the synonymous
and non-synonymous substitution rates and selective evolutionary pressure for the S1 protein. The results
presented in Figure 5 indicate the selection trends where numbers above zero indicate the positive selection,
around zero shows the neutral selection, and below zero indicates the negative or purifying selection.
The selection profiles of the amino acid sequence of all fourteen Egyptian ACoV strains showed different
patterns within the S1 protein. Analysis of subtract synonymous and non-synonymous substitution
rates in the isolates also demonstrated the presence of purifying (negative) selection. The cumulative
difference between the non-synonymous substitution rate (dN) and the synonymous substitution rate
(dS) (i.e., dN-dS) revealed that positive selection along the spike (S1) protein while negative and neutral
selection was also detected (Figure 5). When the S1 genes of ACoV strains were used as the query,
a number of possible recombination sites were identified. Recombination analysis for the aligned sequences
under study report the detection of possible recombination events; (1) AY091552.2 IBV IS/720/99/S and
JX173489.1 IBV/Eg/CLEVB-1/012 strains to produce a recombinant strain MF034384.1 ACoV/teal/Kafr
El Sheikh-Egypt/VRLCU-13/2016 (Figure 6A); (2) KC197206.1 IBV/ck/Egypt/12vir6109-79/2012 and
JX174186.1 IBV Ck/Eg/BSU-3/2011 strains to produce a recombinant strain MF034381.1 ACoV/cattle
egret/Kafr El Sheikh-Egypt/VRLCU-10/2016 (Figure 6B).
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4. Discussion

Continuous generations of natural mutant viruses or quasispecies subpopulations may result in
the adaptation of such viruses to evade the host immune system and to gain higher transmissibility
to new hosts [28]. ACoVs are continuously evolving, and the variant strains are one of the major
emerging problems in the Egyptian poultry industry for the past five years and have resulted in
significant economic losses. Furthermore, the infection predisposes the host for secondary bacterial
infections resulting in an even higher morbidity and mortality rates [29]. Different serotypes have been
reported worldwide and new variant serotypes are continuously being recognized [4]. However, there
is no clear classification criterion for the circulating ACoVs, worldwide, which possesses complications
in establishing epidemiological linking. Previous molecular studies revealed that the S1 subunit of S
gene of ACoV is responsible for determining its serotypes [30] and new ACoV genotypes could arise
as a result of substitutions in the amino acids of the S1 subunit [3]. S1 subunit has three HVRs, located
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within amino acids 38–67, 91–141, and 274–387 [3–5] and these HVRs were considered an essential
determinant of coronavirus serotype specificity [31].

Factors that contribute in the evolution and emergence of ACoV in commercial poultry are
largely unknown. Evidences are that wild birds might constitute transmission vectors for ACoVs
even in a huge geographic territory. It has also been proposed that when an ACoV infects the same
wild bird host, this could lead to the emergence of new variants of ACoV [32] and the possibility of
recombination between different ACoV strains. To assess the ACoV existence and carrying-potential of
Egyptian wild birds for the first time in the country, 557 cloacal swabs were randomly collected from
different wild bird species in different Egyptian governorates. Detection of gamma-coronaviruses
(ACoVs) in wild bird samples from geographically separated populations highlights the potential of
wild birds in the possible dissemination of ACoV. Since most of the ACoV positive wild birds were
migratory and that Egypt has been proposed to be an important gateway in the Middle East and
North of Africa for most of the emerging infectious diseases, it is likely that the mixing of birds and
viruses from different hemispheres can lead to disease transmission. From this and other studies, it is
reasonable to assume that a great variety of hitherto undetected ACoVs exist in wild bird species.
Previous studies that examined the host range and genetic diversity of CoVs have revealed that ACoVs
in wild birds are present mainly in wildfowl (Anseriformes) and waders (Charadriiformes) [22,33,34].
Our results corroborate these findings and indicate that ACoVs are common among different wild
birds. Conclusively, the data show that there is circulation of genetically divergent ACoVs among
wild bird populations in geographically distinct areas of Egypt. Although the number of samples
analyzed in this study was limited, it can be assumed that the genetic variation of ACoVs among
wild birds is much higher than previously thought. Isolates of ACoV that are sequenced and reported
here not only show a high similarity with isolates from Israeli, Libya and Oman strains but are also
highly similar (99–100%) to the strains previously reported from commercial poultry flocks, which
implies that certain strains may have the potential to spread directly or indirectly to distant regions or
to other countries.

Although no discrete and globally accepted classification system exists for ACoV, our results
revealed that most of ACoVs available on GenBank are divided into variant and classic groups based
on the sequence of the full length S1 genes. The classic group has only the Massachusetts serotype
(mass-like/vaccine strains) (GI-1 lineage) according to Valsastro et al. [8]. In 2001, an Egyptian variant
I strain (Egypt/Beni-Suef/01), closely related to the Israeli variant strain, was reported on different
poultry farms [18]. Another variant was also identified in 2011 [27] and designated as Egyptian variant
II. Variant genotype can be subdivided into at least eight subgenotypes according to their origin
and evolution; 4/91 genotype, Taiwan and China like, Australia variant, QX variant, IS/1494/06
(Egy/Variant-1) and IS/885 (Egy/Variant-2). Egy/Variant I and II are belonging to GI-23 lineage,
which represents a unique geographic wild-type cluster confined to the Middle East according to
Valsastro et al. [8]. Some have become dominant in the majority of farms and are involved in respiratory
and renal pathologies in the last five years.

However, previous studies reported that the variant group (GI-23 lineage) represents a unique
geographic wild-type cluster, indigenous and predominate within the Middle East that includes
IS/885/00 and IS/1494/06 [8,18,35], recent studies reported that the majority of the Egyptian ACoV
strains (IBVs) belong to QX-like, 4/91, IS/1494/06 (Egy/Variant-1) and IS/885 (Egy/Variant-2)
genotypes [27,36]. These genotypes were formerly present in the Egyptian commercial farms five
years ago with increasing the mortality rates in broiler flocks but had not been described before
in wild birds because of low surveillance and epidemiological studies directed towards wild birds
worldwide. Our results indicated the prevalence of Egy/variant 1 (IS/1494/06 genotype) (5/14; 35.7%),
in spite of relative abundance of Egy/variant 2 (IS/885 genotype) (9/14; 64.3%). The emergence of
Egy/variant 1 (IS/1494/06-like) and Egy/variant 2 (IS/885-like) in Egypt has been introduced to the
poultry population raises several speculations; it could be due to the introduction of carriers during
importations of chicks from Middle East countries where this genotype was endemic or due to the role
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of migratory birds as a source of infection [19] that has been proposed in this study. Likewise, clustering
of some ACoVs isolated from wild and commercial birds in Libya, Oman, and Kurdistan and allocated
within the same Egyptian clusters either Egy/variant 1 and or Egy/variant 2 highlights the role of
wild birds for transmission of such viruses. These results indicate the circulation of ACoVs in Egyptian
wild birds, which could potentially be through the wild birds of neighboring countries and support
the possible role of wild birds in the transmission of such viruses.

Recombination has been well reported and is thought to be a contributing factor in the
emergence and evolution of different coronavirus genotypes as well as different species of
coronavirus [37]. Thor and colleagues reported that the principal mechanisms for generating
genetic and antigenic diversity within ACoV indicate a progressive evolutionary change that is
the result of recombination events in the ACoV genome that play a major role in the origin
and adaptation of the virus, leading to the emergence of new IB genotypes and serotypes [38].
Many recombination events have been reported in different ACoV strains, not only between field
(wild-type) and vaccine viruses but also among field viruses either within the same genotype
(intra-genotypic) or between different genotypes (inter-genotypic) [39,40], giving rise to new ACoV
genotypes [41]. Recombination analysis for the aligned sequences under study report the detection of
recombination events; 1) AY091552.2 IBV IS/720/99/S and JX173489.1 IBV/Eg/CLEVB-1/012 strains
to produce a recombinant strain MF034384 ACoV/Teal/Kafr El Sheikh-Egypt/VRLCU-13/2016; 2)
KC197206.1 IBV/ck/Egypt/12vir6109-79/2012 and JX174186.1 IBV Ck/Eg/BSU-3/2011 strains to
produce a recombinant strain MF034381 ACoV/Cattle erget/ Kafr El Sheikh -Egypt/VRLCU-10/2016,
which may be a precursor for further variants. Further studies are required to determine the
pathobiological and clinical features of this virus in a chicken model. In addition, continuous sequence
analysis for the currently circulating IBVs is highly recommended to study the possible spread of
this virus and for better understanding of its phylogenetic relatedness to other viruses. These results
indicate a progressive recombination of events that occur among wild birds as well as between the
circulating variant field strains. Positively selected fragments of genes encoding viral proteins exposed
on the surface of the capsid have been documented in other viruses [42,43]. There is an association
between positively selected sites along the S1 subunit identified in this study and mapped neutralizing
epitopes. It has been reported that mutations in the S1 protein often result in changes in antigenicity [5].
Likewise, parts of the hypervariable regions (HVR1, 2 and 3) defined in this study were shown to be
under strong positive selection in the ACoV strains. Taken together, the strong positively selected
motifs among the S1 protein may thus be associated with the immune response and receptor binding
and would thus be important in future ACoV vaccine development.

5. Conclusions

This is the first report confirming the detection of ACoV in wild birds in different Egyptian
governorates. Phylodynamic and evolutionary analysis indicate that wild bird ACoV strains are
closely related to the infectious bronchitis viruses (IBVs) reported from commercial poultry, indicating
their possible threat to commercial poultry. Intensified surveillance of wild birds is an important
means of assessing the relative prevalence of ACoV variants, and this knowledge would aid risk
assessments and risk management of these viruses. Wild bird surveillance that includes virus isolation
may also be a tool for obtaining strains of ACoVs that can be used for vaccine development and
diagnostics. Moreover, this study provides insights into the genetic diversity of ACoVs in wild birds’
reservoirs. Further assessing the prevalence and effects of ACoV infections in wild birds will increase
our knowledge on CoV interactions with their hosts and may suggest as yet unexploited avenues for
combating CoV infections. There is a clear need for a better understanding of ACoV ecology through
full genome sequencing that will provide detailed information on different subgroups, and this would
require comprehensive data through better surveillance of wild birds.
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