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Mining genetic and transcriptomic data using machine
learning approaches in Parkinson’s disease
Chang Su1, Jie Tong2 and Fei Wang 1✉

High-throughput techniques have generated abundant genetic and transcriptomic data of Parkinson’s disease (PD) patients but
data analysis approaches such as traditional statistical methods have not provided much in the way of insightful integrated analysis
or interpretation of the data. As an advanced computational approach, machine learning, which enables people to identify complex
patterns and insight from data, has consequently been harnessed to analyze and interpret large, highly complex genetic and
transcriptomic data toward a better understanding of PD. In particular, machine learning models have been developed to integrate
patient genotype data alone or combined with demographic, clinical, neuroimaging, and other information, for PD outcome study.
They have also been used to identify biomarkers of PD based on transcriptomic data, e.g., gene expression profiles from
microarrays. This study overviews the relevant literature on using machine learning models for genetic and transcriptomic data
analysis in PD, points out remaining challenges, and suggests future directions accordingly. Undoubtedly, the use of machine
learning is amplifying PD genetic and transcriptomic achievements for accelerating the study of PD. Existing studies have
demonstrated the great potential of machine learning in discovering hidden patterns within genetic or transcriptomic information
and thus revealing clues underpinning pathology and pathogenesis. Moving forward, by addressing the remaining challenges,
machine learning may advance our ability to precisely diagnose, prognose, and treat PD.
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INTRODUCTION
Parkinson’s disease (PD) is a progressively debilitating neurode-
generative disease that can lead to severe motor and nonmotor
dysfunction1–3. Although individuals with PD share core pheno-
typic features, such as bradykinesia, muscle rigidity, and tremor,
there is significant heterogeneity that remains incompletely
understood. Over the past two decades, genetics and genomics
research has revealed significant heritability of this complex
disease4–8. Increasing number of genetic risk factors (e.g., genes
and mutations) have been demonstrated to be associated to
PD9–14 or PD phenotypes15–17. Yet, there still remain extensive
gaps in our understanding of the complete heritability and
pathology of PD. Today’s high-throughput techniques such as
next-generation sequencing (NGS) and microarray have been
continuously producing genetic and transcriptomic data of PD
patients. As listed in Tables 1 and 2, a set of PD repositories are
providing rich genetic and transcriptomic data of the partici-
pants10,18–30. This leads to a huge opportunity to investigate the
disease. In this context, it’s natural to refer to the recently
advanced computational technique, machine learning. Compared
to the statistical methods which compute a quantitative measure
of confidence to identify the correlations, machine learning has
demonstrated the capacity in discovering underlying patterns and
insight from rich data and hence has the potential to connect
genetics and transcriptomics with clinical outcomes using more
complex yet accessible approaches31. Our objective is therefore to
introduce the reader to the field of machine learning and discuss
its applications in genetic and transcriptomic data study in PD.
Through the survey of existing studies, this review aims to discuss
current achievements and remaining challenges, as well as to
suggest possible future directions toward developing better
machine learning algorithms with which to identify underlying

patterns from genetic and transcriptomic data for advancing PD
research.

MACHINE LEARNING OUTLINE
The term, “machine learning,” is usually used synonymously with
“artificial intelligence,” which allows computers to learn from data
to uncover patterns and make decisions with minimal human
intervention32. A central component of machine learning is the
supervised learning and unsupervised learning (see Fig. 1a, b).
Figure 1a presents a canonical example of the supervised

learning workflow, where we are given a set of data objects to
learn from. Each object is represented as an array of measure-
ments commonly called “features”. The array of features is then
referred to as a so-called “feature vector.” In a typical supervised
learning, each object is associated with a “label,” which can be a
class the object belongs to such as diagnosis of PD or not, or a
continuous value such as the symptom severity of a patient. The
labels are then used as supervision information for training model.
In this way, constructing a supervised model typically proceeds
with following steps.
After some necessary data preprocessing, a model developer

typically splits the data into training and testing sets, then trains
the model over the training set by fitting the data using a
mathematical function and evaluates the model on the testing set.
Though random training-testing splitting has been a common
strategy, it may result in sampling bias and fitting the model to a
skewed training data. In this context, the cross-validation,
especially K-fold cross-validation33, has been increasingly
engaged. Typically, a K-fold cross-validation divides data into K
roughly equal subsets, a.k.a. so-called folds. One by one, each fold
is used as testing set, meanwhile one by one, each remaining K-1
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folds are used as training set to train model (see Fig. 1c). The cross-
validation strategy also helps to evaluate underfitting and
overfitting issues, where the former occurs when the model
doesn’t capture patterns of the data well and the latter occurs
when the model captures details and noise of training data too
well to predict new data correctly (see Fig. 1d). Optionally a
feature selection procedure can be performed before fitting
model to data to enhance the model training. The selected
features can be specific ones selected from the original, large set
by using statistical testing methods, as well as new, informative
ones produced from the original features by using algorithms like
Principal Component Analysis. Some models (such as random
forest, support vector machine (SVM), and logistic regression) also
allow selecting informative features during modeling fitting34–36.
To evaluate a developed model, usually used performance
measurements include accuracy, sensitivity, specificity, and area
under the receiver operating characteristic curve (AUC-ROC),
which estimates accuracy while comprehensively considering
trade-off between true positive rate and false positive rate. Finally,
the trained model with the most desirable performance is then
deployed to predict unknown labels from new data. In other

words, the model “trained” through supervision by labeled data is
then used to predict labels of new objects.
For the purpose of accelerating understanding of the molecular

biology and pathology of complex diseases, supervised learning
has been used in the analysis of genetic and transcriptomic data
and has achieved promising results37,38. In this context, “features”
are genetic factors (e.g., single-nucleotide polymorphisms [SNPs])
or genomic variables (e.g., gene expression levels), and “labels”
are disease traits, phenotypes, symptom severities. Some
supervised learning models that have been successfully involved
in genetics and genomics include logistic regression, Bayesian,
decision tree, SVM, k-nearest neighbors (KNN), and neural
network models, etc38.
In contrast to supervised learning, an unsupervised learning

model takes input as feature vectors of the objects only. As shown
in Fig. 1b, without any supervision information (i.e., labels), the
unsupervised learning model is more straightforward, typically
aiming at dividing the input data into homogenous groups (a.k.a.
clusters) such that objects within a group have similar patterns
somehow and that from different groups are distinct. Such nature
makes the unsupervised learning important to the study of the
complex diseases like PD, due to that it can, to some extent,

Table 1. Parkinson’s disease repositories with genetic data.

Repository Participant types Genetic data screened Other type of data

HBS (USA, Canada)18 PD and HC Targeted sequencing or Asn370Ser,
Glu326Lys, Thr369Met genotyping

Motor and nonmotor assessments,
biospecimen data, neuroimaging data

DIGPD (France)10 PD and HC Sanger sequencing Motor and nonmotor assessments

CamPaIGN (UK)19 PD and subjects diagnosed with
other causes of parkinsonism/tremor

Sanger sequencing; SNP genotype Motor and nonmotor assessments

PROPARK
(Netherlands)20

PD Targeted sequencing or whole
exome sequencing

Motor and nonmotor assessments

LABS-PD (USA,
Canada)21

PD and HC Targeted sequencing Motor and nonmotor assessments,
biomarkers, imaging data

PICNICS (UK)22 PD Sanger sequencing Motor and nonmotor assessments

DATATOP (USA,
Canada)23

PD Targeted sequencing Motor and nonmotor assessments

PDBP24 PD and HC NeuroX genotyping Motor and nonmotor assessments

Penn-Udall (USA) PD Targeted sequencing Motor and nonmotor assessments

PPMI (USA, Europe)25 PD, SWEED, and HC Whole exome sequence Motor and nonmotor assessments, CSF
biomarkers, neuroimaging data

BioFIND (USA)26 PD and HC Whole genomic sequence of the
GBA1 gene

Motor and nonmotor assessments,
biospecimen data

IPDGC (worldwide)30 PD and HC NeuroX genotyping Not specified

CamPaIGN Cambridgeshire Parkinson’s incidence from General Practitioner to Neurologist, DIGPD Drug Interaction with Genes in Parkinson’s Disease, EMBL-EMI
The European Bioinformatics Institute, HBS Harvard Biomarkers Study, IPDGC International Parkinson’s Disease Genomics Consortium, LABS-PD Longitudinal
and Biomarker Study in Parkinson’s disease, NCBI The National Center for Biotechnology Information, PD Parkinson’s disease, PDPB Parkinson’s Disease
Biomarkers Program, Penn-Udall Morris K Udall Parkinson’s Disease Research Center of Excellence cohort, PICNICS Parkinsonism: Incidence, Cognition and
Non–motor heterogeneity in Cambridgeshire, PPMI Parkinson’s Progression Marker Initiative, PreCEPT Parkinson Research Examination of CEP–1347 Trial,
PROPARK PROFIling PARKinson’s disease, SWEDD scans without evidence of dopaminergic deficit.

Table 2. Parkinson’s disease repositories with transcriptomic data.

Repository Description URL

GEO27 A public functional genomics data repository, provided by NCBI. https://www.ncbi.nlm.nih.gov/geo/

ArrayExpress28 A public database that stores data from high-throughput functional genomics
experiments, provided by EMBL-EBI.

https://www.ebi.ac.uk/arrayexpress/

ParkDB29 A complete set of reanalyzed, curated and annotated microarray datasets of Parkinson’s
disease.

http://www2.cancer.ucl.ac.uk/
Parkinson_Db2/

GEO gene expression omnibus.
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overcome the issues with data labeling and heterogeneity of data.
A usual application area of unsupervised learning is the data-
driven disease subtyping39.
Rather than reviewing the taxonomy and algorithms of machine

learning models in detail, we focus here on published practices of
machine learning in genetic and transcriptomic data analysis in
PD. We discuss the practical problems these machine learning
models are trying to solve as well as the remaining challenges. For
more details of machine learning on genetic and transcriptomic
data analysis in general tasks, the readers may consult several
previous reviews37,38,40.

MACHINE LEARNING-BASED GENETIC AND TRANSCRIPTOMIC
DATA ANALYSIS IN PD
The overarching objectives of machine learning in genetic and
transcriptomic data study mainly fall under two general

categories: PD outcome study; and PD biomarker identification.
Herein, we provide an overview of the existing studies within each
category.

PD outcome study
The use of noninvasive metrics for accurate diagnosis of PD in
early stage and prediction of PD phenotypes are promising
directions in clinical practice. With the advancement of PD
genetics, machine learning models have been more and more
engaged to discover heritability from these data (as shown in
Table 3). Genome-Wide Association Studies (GWAS) on PD
subjects has identified many genetic risk factors such as genetic
locus markers, SNPs, variants and alleles7,9–14,41. Many studies have
directly utilized such risk factors or genetic risk score (GRS) derived
from these factors as features to build machine learning models
for identification of PD. In addition, since PD has shown to be

Fig. 1 Illustrations of machine learning. a An example of supervised learning. A supervised learning model takes input as feature vectors of
the subjects and “true” labels of them, a.k.a. supervision information, and contains the following components: feature selection (optional),
modeling training on training set, model evaluation on testing set, and model deployment for predicting labels of new data. b An example of
unsupervised learning. An unsupervised learning model takes input as feature vectors of the subjects only, without any supervision
information, and then categorizes the subjects into homogenous groups (a.k.a. clusters). c Illustration of the K-fold cross-validation. One by
one, each fold is used as testing set, meanwhile one by one, each remaining K-1 folds are used as training set to train model. d Illustration of
underfitting and overfitting issues. Underfitting occurs when the model doesn’t capture patterns of the data well, while overfitting occurs
when the model captures details and noise of training data too well to predict new data correctly.
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multifactorial, external information such as demographics, clinical
information, and neuroimaging data, are usually combined with
genetic factors for integrative analysis of PD patients (as shown in
Fig. 2a). For example, Nalls et al.42 trained a logistic regression
model for classifying PD case patients versus healthy controls
(HCs) on the Parkinson’s Progression Markers Initiative (PPMI)
population25. GRS, together with olfactory function, family history,
age, and gender, were selected as predictors by using a greedy
feature selection technique known as stepwise regression43. Upon
the PPMI population, the model achieved an AUC-ROC of 0.92
(95% CI [0.90, 0.95]). The GRS was reported to have a higher
predictive contribution than family history, age, and gender.
Replication on data from 825 PD patients and 261 controls from
five independent cohorts (as shown in Table 3) demonstrated the
robustness of the model. Dinov et al.44 developed an end-to-end
machine learning protocol from data characterization, manipula-
tion, processing, cleaning, and analysis to validation, for PD
diagnosis, which flexibly incorporated a series of machine learning
models such as AdaBoost45, SVM, decision tree, etc. By combining
genetic, clinical, demographic, and derived neuroimaging bio-
marker information from PPMI cohort, their best model achieved
an average accuracy over 0.96 of fivefold cross-validation on
separating PDs and HCs. Using GRS derived from 1805 variants
only, Nalls et al.12 achieved an AUC-ROC of 0.69 (95% CI [0.66,
0.73]) in separating PDs and HCs.
Furthermore, there are some studies focusing on predicting the

phenotypes of PD. For example, in order to predict impulse
control disorder (ICD) induced by dopamine replacement therapy,
Kraemmer et al.46 investigated 13 candidate variants from the
DRD2, DRD3, DAT1, COMT, DDC, GRIN2B, ADRA2C, SERT, TPH2,
HTR2A, OPRK1, and OPRM1 genes. The results demonstrated that
adding these variants as predictors significantly increased ICD
predictability (AUC-ROC= 0.76, 95%CI [0.70, 0.83]) compared with

the prediction results with clinical variables alone (AUC-ROC=
0.65, 95%CI [0.58, 0.73], p= 0.002). Variants of OPRK1, HTR2A, and
DDC genes were found to be significant risk factors of ICD.
Latourelle et al.47 designed an ensemble model to predict annual
rate of change in motor signs and symptoms of PD in PPMI and
LABS-PD (Longitudinal and Biomarker Study in Parkinson’s
disease)21 cohorts. Along with demographic, clinical, biomarker,
and dopamine transporter SPECT (DaTscan) features, a wide range
of genetic data were examined including 53 known PD-related
SNPs, 17,403 SNPs identified by linkage disequilibrium pruning
from genome, and ten genetic principal components derived from
genome48. The results showed that these genetic variations were
the most predictive to motor progression comparing with other
features. In another study, Liu et al.49 predicted the progression of
global cognitive impairment through longitudinal analysis of the
patient data from nine different cohorts. Combined with long-
itudinal clinical assessments (e.g., MDS-UPDRS Part I-III), mutations
in the GBA (β-glucocerebrosidase) gene were fed to the proposed
machine learning model, which achieved an AUC-ROCs of 0.86
(95% CI [0.82, 0.90]) and 0.85 (95% CI [0.78, 0.91]) in discovery and
replication populations, respectively. Tropea et al.50 tested for
predictors of progression of cognitive decline, and found that the
APOE E4 allele was the best predictor.
In addition to PD diagnosis and phenotype prediction where

supervised learning is largely performed, data-driven subtyping
has a great potential to illuminate underlying pathologies, where
an unsupervised learning is more appropriate39. One existing
study51 has incorporated genetic data to identify PD subtypes
using machine learning. Combining GRS derived from 28 GWAS
loci and two additional risk variants GBA p.N370S and LRRK2
p.G2019S42, with demographics and clinical assessments at
baseline, an unsupervised learning approach was performed.
Subjects with close patterns in terms of genotype and phenotype

Fig. 2 Machine learning in PD genetic and transcriptomic data analysis. a Applying machine learning to genetic data (usually combined
with other features like demographics, clinical assessments, and neuroimaging features, etc.) for PD outcome study. b Applying machine
learning to transcriptomic data (e.g., microarray data) for PD biomarker identification.
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were gathered into a group, representing a subtype of PD. Three
subtypes with distinct PD progression patterns were identified. To
date, there hasn’t been much work in the area of applying the
unsupervised learning model to genetic and genomic data
analysis in PD, probably due to that identification of the groups/
clusters is usually subjective and more follow-up efforts are
needed for interpreting the identified groups. Yet, it is increasingly
attracting attentions as it provides a novel way to discover
integrated pattern from genetic and phenotypic information and
is promising to personalized medicine.
From these studies we can observe that the genetic information

were usually used as predictors in constructing machine learning
models for PD diagnosis, phenotype prediction, and subtyping. In
many cases, the genetic information have demonstrated to be
more indicative than other clinical features. Even so, it is often the
combination of genetic and clinical features that can create more
robust models overall, compared to the ones based on genetic or
clinical features only.

PD biomarker identification
Identifying biomarkers is critical to the early diagnosis, disease
prevention, as well as medication response assessment. These in
turn will advance efforts to design and interpret disease-
modifying clinical trials that use biomarkers for participant
enrollment or as outcome measures52,53. A scenario where
machine learning models can be applied is discovering the
combination of multiple genes whose expression levels in a tissue
of interest can discriminate PD patients from HCs, or different
phenotypes of PD. Such genes together, constructing a so-called
gene signature, may illuminate disease biology and if highly
predictive, may provide reliable biomarkers. There have been
machine learning models developed for such purpose using the
transcriptomic data, e.g., microarray data38. As shown in Fig. 2b,
machine learning generally transforms the problem into identify-
ing genes as predictors that comprise the model with the best PD
vs. HC predictive performance. Each microarray chip can
simultaneously measure expressions of thousands of genes in a
tissue of interest, e.g., brain or blood. In preparation, a first and
necessary step is preprocessing the microarray data, which usually
includes one or both of the following operations: removing low-
intensity probes or genes; using statistical approaches such as
analysis of variance (ANOVA) to originally select differentially
expressed genes as candidates of biomarkers. Next, after splitting
subjects into training and test sets, the machine learning classifier
model is trained over the training set and evaluated for its ability
to discriminate PDs from HCs over the test set. Then biomarkers
may be determined by selecting predictors (i.e. genes) associated
with a top classification performance, e.g., reaching a higher AUC-
ROC value. Finally the identified biomarkers are validated by using
an independent validation set54,55 or by using qPCR56 to detect
DNA copy numbers and RT-qPCR57 to validate RNA expression
levels of target genes.
Machine learning has been used to analyze transcriptomic data

in PD and demonstrated its capacity to distinguish PDs from
HCs58. To date, using the machine learning based framework,
researchers have identified a number of biomarkers for PD from
the transcriptomic data (see Table 4). For instance, Scherzer et al.54

investigated 105 individuals by scanning genome-wide expression
changes in blood and trained a machine learning model to
discriminate PDs from HCs, where 8 genes were identified as
candidate biomarkers including VDR, HIP2, CLTB, FPRL2, CA12,
CEACAM4, ACRV1, and UTX. Follow-up studies have also success-
fully identified multi-gene biomarkers from blood samples that are
highly indicative of PD57,59,60. In addition, by using other
neurodegenerative diseases that have overlapping clinical phe-
notypes with PD (e.g., Alzheimer’s disease [AD] and atypical
parkinsonian disorders [APD] or Lewy Body Dementia) as control Ta
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cohorts, there were studies demonstrated that the identified
biomarkers are robust and have great potential for helping reduce
misdiagnosis55,56,61.
From these studies we can observe that machine learning

approaches has been used to analyze the transcriptomic data in
PD and has demonstrated its capacity in advancing development
of potential PD biomarkers.

DISCUSSION: LIMITATIONS AND FUTURE DIRECTIONS
We summarize remaining limitations and challenges that the
reviewed studies suffered from, and accordingly discuss potential
future directions which may lead to promising machine learning
approaches to address the issues (see Table 5).

Bias of sample size
In many machine learning applications, a common stumbling
block to biological and medical domains is that the sample size is
insufficient to achieve adequate power. For example, among all
microarray data sets used for identification of biomarkers, to our
knowledge the largest study in which an SVM (i.e., support vector
machine) model was trained using only 205 PD subjects, 233 HCs
and 48 subjects with other neurodegenerative diseases61.
Genotyped subject cohorts with rich clinical data such as PPMI25

and BioFIND26 are also limited (~470 PD subjects, 80 subjects of
SWEDD [i.e., scans without evidence of dopaminergic deficit] and
230 HCs for PPMI, and ~130 PD and 100 HCs for BioFIND).
However, in many scenarios where machine learning has achieved
clinically useful insights, we need tens or even hundreds of
thousands of samples. An undesirable consequence of training on
small-size data is that models can easily overfit to the data and it is
then hard to generalize to new subjects. Creating a large patient
cohort would be ideal but is expensive and time-consuming.
Nowadays there are quite a few publicly available cohort
repositories from observational studies containing both the
genetic and clinical information10,18,19,21–23. Therefore, it would
be highly valuable to develop machine learning approaches that
can integrate multiple such cohort data. There are some existing
studies trying to leverage multiple datasets in the learning
process42,47,49, where the model is still trained on a single data
set and the other data sets are mainly for replication purpose.
Ideally, data from different repositories should be appropriately
combined from which the machine learning model can be learned

more robustly. AMP-PD (Accelerating Medicines Partnership:
Parkinson’s Disease, https://amp-pd.org) established a knowledge
portal which harmonized clinical, genetic, and transcriptomic data
of four cohorts, PPMI, BioFIND, PDBD (Parkinson’s Disease
Biomarker Program), and HBS (Harvard Biomarkers Study), hence
provides the potential of applying a larger-scale machine learning-
based study on PD genetic and transcriptomic data.

Handling whole spectrum genetic information
GWAS has successfully identified hundreds of genetic risk factors
associated with traits of PD, however the factors identified so far
only capture a small portion of the heritability and even an
aggregation of these effects is often not predictive enough for
clinical utility. This issue refers to “missing heritability” in which
effect sizes of individual factors are too small to pass the stringent
significance filters used in many studies62,63. In their current stage,
machine learning models simply utilized GWAS identified genetic
risk factors or GRS derived from them to make up the feature
vectors. Existing studies demonstrated that such classifier is
accurate enough in a cohort study. However, if we want to train
the most accurate possible model that can capture “missing
heritability” and can be generalized to new subjects, using only
known risk factors as predictors will not suffice. There remains a
need to incorporate whole-exome or even whole-genome
information. In addition, when we apply analysis with the use of
multiple platforms, we usually have to aggregate datasets that are
generated using different sequencing technologies, which may
incorporate many cleaning and calling issues that make the results
unreliable and noisy. In this context, analyzing whole spectrum
genetic information also helps to address such issues. Latourelle
et al.47 has made an attempt to investigated a wide range of
genetic information, including known risk SNPs, genome-wide
SNPs, and genetic principal components derived from genome48.
In addition, many optional feature engineering techniques have
also been developed to reducing dimensionality of data. The
state-of-the-art methods include multidimensional scaling64, linear
discriminant analysis65 and autoencoder66, etc. Especially, auto-
encoder66, an important subcategory of deep learning, has shown
impressive effectiveness and efficiency in generating low-
dimensional representation from extreme high-dimensional data
such as genome-wide expression data67. These approaches should
be examined for their utility in future work.

Table 5. Summary points of challenges and potential future directions to address them.

Challenges Potential future directions

Bias of sample size Integrated multiple cohort modeling.

Handling whole spectrum genetic information Engaging appropriate feature engineering tools such as genetic principal component analysis48,
multidimensional scaling64, linear discriminant analysis65, etc.;
Incorporating appropriate deep learning model such as autoencoder66.

Multifactorial modeling Multivariate modeling;
Incorporating kernel approaches and probability models.

Cohort diversity Validation on an external cohort;
Training model on data from multiple populations if possible;
Engaging transfer learning.

Model interpretation Using interpretable models such as Bayesian, rule-based (e.g., decision tree and random forest),
logistic regression models, etc.;
Incorporating or developing model interpretation methods for “black box” models, e.g., deep
learning models.

Model evaluation Evaluation using isolate validation data set;
Applying experimental test evaluation;
Developing visualization tools for model evaluation.

Interdisciplinary issue Deep interdisciplinary collaboration;
Incorporating domain knowledge in model training.
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Multifactorial modeling
It has been clearly demonstrated that PD is a multifactorial
disease, therefore PD prediction or forecast in its early stage needs
to comprehensively consider multivariate information. How to
aggregate heterogeneous information, such as genetic, genomic,
clinical, neuroimaging, social demographic and environmental
exposure data, poses a big challenge to conventional computa-
tional approaches. The most straightforward way to handle
heterogeneous data is to convert each type of data into vector
format prior to processing, and orderly concatenate all vectors
specific to each subject into a long vector. This has been the most
common approach to current PD diagnosis and phenotype
prediction. For example, in addition to genetic data, Nalls et al.42

incorporated demographics, olfactory function and self-reported
family history of PD; Dinov et al.44 further used clinical and derived
neuroimaging biomarker data; Latourelle et al.47 additionally
utilized CSF protein biomarkers, etc. By modeling multifactorial
aspects of PD, all these methods achieved high performance value
(AUC-ROC over 0.80). On the other hand, the kernel approaches68

and probability models69 are alternative techniques that can fuse
heterogeneous data and can be introduced to address this issue in
the future.

Cohort diversity
Like other diseases, the cohort diversity issues may impact the
different aspects of PD research (e.g., clinical trial design70), where
machine learning is expected to play an important role. For
example, one potential diversity problem with the current cohorts
is ethnicity, as most existing genetic and genomic studies are
highly skewed toward the European ancestry71. Genetic factors
have been found to change their roles in PD risk in different
ethnicities (e.g., differences in genetic risk factors have been found
between the European and Asian populations72). Another is the
clinical diversity. For example, PPMI recruits early-stage untreated
PD patients25; while BioFIND recruits patients who are in moderate
to advanced stages26. These diversity issues may hinder the
generalizability of the developed machine learning models. For
example, a model developed on the European cohort may not
perform well on the African or Asian cohort, and a model trained
from PPMI may not work for BioFIND without any adaptations. In
this context, the PD community has taken great steps toward
addressing the cohort diversity issues. The International Parkinson
Disease Genomics Consortium71 and the Global Parkinson’s
Genetics Program (GP2, https://parkinsonsroadmap.org/gp2/)
have initiated efforts in analyzing data and samples worldwide.
AMP-PD is also a good example that provides the platform for
facilitating cross-cohort investigation. On the other hand, the
model developer and end-user should be mindful of these
cohorts’ diversity issues. First, a well-behaved model on a single
population is not sufficient, and external validation on indepen-
dent cohorts is needed. Second, training the model with data from
multiple cohorts is always a good choice whenever possible. Third,
new machine learning strategies like transfer learning73 could be
potentially helpful here. Instead of directly duplicating the entire
model, transfer learning typically fine-tunes the model parameters
trained on one cohort in another cohort, which thus leverages the
knowledge from both cohorts.

Model interpretation
A long-standing concern of machine learning, especially in
medicine, is the model interpretation, because that not only the
model’s prediction performance but also the clues for making the
decision are essential. For example, in biomarker identification, a
researcher would expect to see the contribution of expression
level of a specific gene in discriminating PD and HCs, indicating
why the gene was or was not selected as a biomarker by the

model. In this context, the traditional machine learning models,
including Bayesian, rule-based models (e.g., decision tree and
random forest), logistic regression, SVM, etc., are instinctively
capable to estimate feature contributions while training the
models. This could be one reason why most of the reviewed
studies rely on these approaches. Importantly, some models (e.g.,
SVM and logistic regression) can be extended to contain the
nature of selecting informative features in two ways: (1) plus a
regularization term to reduce contribution of a noninformative
feature to zero34,35; or (2) being embedded in a wrapper such as
greedy forward wrappers36. This results in the pipeline integrating
model training, evaluation, and interpretation in an end-to-end
manner.
In addition, deep learning, a new branch of machine learning,

has made impressive advances in computer and data science74. A
deep learning model usually appears to be a “black box” model
due to its high complexity. Though preliminary studies have
reported a greater computational capacity and flexibility of deep
learning in genetics and genomics38,75 as well as health care76, it’s
encountering a larger challenge in model interpretation. There
have two potential strategies addressing this issue: to measure
changes in model output while involving systematic modification
of the input77; or to engage third-party tools to determine the
feature contributions78. Solving the issue, PD genetic and
transcriptomic data analysis may largely benefit from the
prominent deep learning models.

Model evaluation
Model evaluation is essential for machine learning model
development. Quantitatively, model evaluation tells us how the
model performs with measures such as accuracy, sensitivity,
specificity, AUC-ROC, etc. Typically, multiple random training-
testing splitting or K-fold cross-validation are performed and the
average performance along with standard deviation and statistical
significance are reported. Yet, evaluation is limited to data in hand
and it is hard to keep model performance consistent when
encountering new data. To address this, researchers have tried to
use isolated data sets to evaluate models trained on discovery
sets42,47,49. In addition, experimental tests are also useful in model
evaluation. For example, qPCR56 and RT-qPCR57 were used to
validate gene expression of identified biomarkers. Such domain
experts guided evaluation may enhance model confidence
significantly. Alternatively, qualitative evaluation is another way
for model evaluation, which often engages tools to demonstrate
machine learning findings to enhance stability and interpretability
of the produced model, such as visualizations of feature
importance and comparisons of characteristics of identified
subtypes. It helps to understand machine learning outcomes
intuitively.

Interdisciplinary study
In practice, for effective application of machine learning methods
to achieve good performance, good understanding on both
machine learning methodology and domain-specific knowledge
is necessary. Standing at the crossroads of genetics, transcrip-
tomics, PD, and machine learning fields, it is challenging for
researchers to solve this interdisciplinary problem. For neurolo-
gists in particular, it is challenging to be aware of the
mathematical background of machine learning models to
proficiently develop algorithms. For machine learning developers,
knowing less about genetics, genomics and PD hinders designing
the best model that can appropriately organize genetic and
transcriptomic data as well as fully incorporate domain knowl-
edge. In developing the most appropriate model, neurologists
need to play a crucial role in the entire development life cycle,
from coming up with conception practical and impactful
applications, and providing domain knowledge to guide model
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building, to model evaluation before practice in clinic. To this end,
deep collaboration between neurologists and machine learning
developers is highly recommended.
Another flexible way to address the interdisciplinary issue is to

incorporate prior domain knowledge to guide the model to learn.
In this context, previously identified genotype-phenotype correla-
tions can be used as domain knowledge to enhance PD predictive
modeling. For instance, individuals with PD due to parkin (PARK2)
gene mutations are found to be more prone to levodopa-induced
dyskinesias79,80, and GBA variants have been associated with a
more rapid progression of cognitive dysfunction and motor
symptoms of PD patients16. Injecting such prior associations into a
machine learning model may improve the model robustness in
terms of both computability and interpretability. In this context,
domain experts play a key role in model development by
providing specialized guidance to design rule of model. In
addition, gene-gene interactions are also important genomic
domain knowledge which may help genetic data modeling and
can be downloaded from existing public databases, such as
KEGG81 and BioGRID82. To handle injection of domain knowledge,
powerful techniques have been extensively developed, such as
kernel68 and knowledge embedding83,84 approaches.

CONCLUSIONS
Recent years have seen a clear acceleration in our knowledge and
ability to apply machine learning models to genetic and
transcriptomic data in PD study. Machine learning models that
combine genetic data with demographic, clinical and neuroima-
ging information have achieved significant refinement in PD
diagnosis and disease phenotype prediction, as well PD subtype
identification. In addition, many potential biomarkers in terms of
gene expression levels have been identified through the use of
machine learning models. Intrinsic superiority and current
achievements of machine learning has demonstrated its promise
in genetic and transcriptomic data analysis for advancing PD.
However, remaining limitations of current studies are challenging
machine learning approaches to make further breakthroughs in
thoroughly understanding pathogenesis of the disease. For future
research, developing appropriate machine learning models by
addressing the issues may lead to great improvements in PD
management.
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