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Abstract: Since the 1980s, chronic kidney disease (CKD) affecting all ages has increased by almost
25%. This increase may be partially attributable to lifestyle changes and increased global consump-
tion of a “western” diet, which is typically energy dense, low in fruits and vegetables, and high in
animal protein and ultra-processed foods. These modern food trends have led to an increase in the
consumption of advanced glycation end products (AGEs) in conjunction with increased metabolic
dysfunction, obesity and diabetes, which facilitates production of endogenous AGEs within the body.
When in excess, AGEs can be pathological via both receptor-mediated and non-receptor-mediated
pathways. The kidney, as a major site for AGE clearance, is particularly vulnerable to AGE-mediated
damage and increases in circulating AGEs align with risk of CKD and all-cause mortality. Further-
more, individuals with significant loss of renal function show increased AGE burden, particularly
with uraemia, and there is some evidence that AGE lowering via diet or pharmacological inhibition
may be beneficial for CKD. This review discusses the pathways that drive AGE formation and
regulation within the body. This includes AGE receptor interactions and pathways of AGE-mediated
pathology with a focus on the contribution of diet on endogenous AGE production and dietary AGE
consumption to these processes. We then analyse the contribution of AGEs to kidney disease, the
evidence for dietary AGEs and endogenously produced AGEs in driving pathogenesis in diabetic
and non-diabetic kidney disease and the potential for AGE targeted therapies in kidney disease.

Keywords: advanced glycation end products (AGEs); chronic kidney disease (CKD); diabetic kidney
disease (DKD); diet; diabetes; ultra-processed foods; receptor for advanced glycation end products (RAGE)

1. The Western Diet as a Risk Factor for Kidney Disease

Chronic kidney disease (CKD) is the 12th global cause of mortality with all age
mortality attributable to CKD increasing by 41.5% since the 1980s [1]. Furthermore, patients
with CKD have been amongst the most vulnerable to the recent COVID19 pandemic [2]
with the risk of COVID19 mortality increasing nearly 4-fold in kidney transplant recipients
or those receiving dialysis [3]. With the pathogenesis of CKD often likened to accelerated
kidney aging, epidemiological evidence suggests that underlying causes of CKD have
shifted in the last 50–100 years from glomerulonephritis and congenital diseases towards
diabetes and hypertension [4]. Type 2 diabetes (T2D) alone accounts for more than 40% of
new CKD cases [1] and more than 50% of patients entering renal replacement therapy [4].
The modern western diet, high in animal protein, saturated- and trans-fats, sugar and salt,
whilst low in fruits, vegetables, fibre and other essential nutrients, has been implicated in
this rising incidence of CKD, as a result of direct effects on the kidneys and rising rates of
obesity, hypertension and type 2 diabetes [5–7].
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One major factor that has changed in the diet over this period of rising CKD incidence
is the increased consumption of processed and ultra-processed foods [8], which are also
linked to increased risk of cancer [9], T2D [10], cardiovascular disease (CVD) [11,12] and
all-cause mortality [11,13,14], and ultra-processed food consumption appears to have risen
during the COVID19 pandemic and associated lockdowns [15,16]. Modern food produc-
tion, including the use of high temperatures, high pressure, dehydration, decompression,
irradiation, salt, and preservatives to extend shelf life and palatability, significantly alters
proteins and lipids, forming post-translational modifications, including advanced glycation
end products (AGEs) within foods [17,18]. As the kidney plays a major role in the clear-
ance of AGEs from the body, there has been much debate as to whether consumption of
dietary AGEs can precipitate and/or contribute to progression of CKD and, hence, whether
lowering dietary AGE intake or targeting this pathway might be of therapeutic benefit.

Beyond dietary AGEs, increased consumption of energy dense, nutrient poor foods,
which are high in sugars and salt, and low in essential nutrients, actively contribute to
hemodynamic and metabolic abnormalities, culminating in hypertension, obesity, and T2D
which, in turn, facilitate endogenous AGE production [19]. Circulating concentrations of
AGEs are positively associated with diabetic kidney disease (DKD) [20], loss of renal func-
tion in diabetes [21], and all cause and CVD mortality [22–25], with glycation considered
one of the major pathways to end organ complications in diabetes [19].

2. AGE Chemistry

AGEs can be produced via several chemical pathways, with the Maillard reaction
being the most well-described, non-enzymatic chemistry. This reaction, named after the
French physician and chemist responsible for its discovery, is the covalent non-enzymatic
attachment of a reducing sugar to an amine or amino acid (AA) and can proceed via a
number of chemical pathways. The carbonyl groups in reducing sugars such as glucose,
fructose, ribose and mannose are, by nature, reactive towards amine groups, and this chem-
ical attraction underpins Maillard chemistry [26], forming a Schiff’s base (Figure 1 green).
These then undergo further rearrangement to produce the Amadori product or a Heyn’s
product, depending on whether the originating sugar contained an aldehyde or ketone
group [27]. The resulting Amadori products combine with amine groups on proteins to
form AGEs or undergo further degradation into reactive carbonyls (Figure 1). These highly
reactive carbonyls also react with amino groups of free amines, peptide or proteins to form
AGEs [27] (Figure 1 purple). AGE formation is enhanced by factors including heat, the
presence of oxidants, increases in pH, atmospheric pressure and higher concentrations of
reducing sugars and AAs. In the early steps of this reaction, the reactions are reversible,
but become permanent modifications once AGEs are formed [27].

Maillard chemistry is incredibly diverse. This complexity is in part explained by
the many divergent changes to the sugar moiety. For example, sugars may undergo
various reactions such as oxidation, dehydration and fragmentation reactions prior to the
attachment to amines [28]. Important reactive intermediates of the Maillard reaction are
the reactive carbonyls, including, but not limited to, 3-deoxyglucose (3-DG), glyoxal and
methylglyoxal (MGO) [29–31]. The accumulation of such molecules is known as dicarbonyl
stress, and can dramatically accelerate the formation of AGEs, as they are up to 20,000 times
more potent glycating agents than glucose [28]. Due to the complexity and variety of
starting components, the term AGE refers to a very large heterogeneous population of
variable size and structure (Figure 1). These range from low molecular weight, single
AGE-modified amino acids to complex high molecular weight AGEs with AGE-crosslinks
such as glyoxal lysine dimer (GOLD), 3-deoxyglucosone lysine dimer (DOLD).
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Figure 1. Basic pathways of AGE chemistry and associated physiology and pathology. In the 
classical Maillard reaction (green), AGEs are formed when reducing sugars and proteins interact. 
Initially, reaction intermediates termed Schiff bases are formed. These subsequently rearrange into 
ketoamines known as Amadori products or early glycation products. These are more stable 
products than Schiff bases but, at this point in the reaction, the chemistry is still reversible. After 
further chemistry, the reaction becomes irreversible and forms AGEs (orange). There are several 
other cellular pathways, including the polyol pathway (shown) and lipid peroxidation (where 
oxidants, such as free radicals, “attack” (lightning bolt) lipids that contain carbon-carbon double 
bonds), that can lead to the formation of reactive dicarbonyls, “termed carbonyl stress” (purple) 
rapidly accelerating the formation of AGEs. Beyond proteins, lipids and DNA can also undergo 
glycation, leading to AGEs. Pathways such as the polyol pathway only occur inside the body. AGEs 
have both physiological roles (orange) and pathological effects (red). (Abbreviations: AGEs, 
advanced glycation end products; ROS, reactive oxygen species). 

3. Factors Regulating AGE Accumulation and Turnover in the Body 
In humans and animals, the whole-body AGE load represents the balance between 

endogenous AGE production, exogenous AGE absorption, and AGE clearance 
mechanisms. 

3.1. Endogenous AGE Production—Beyond the Maillard Reaction 
In addition to the Maillard reaction, there are other well-characterised pathways of 

endogenous AGE production within the body. These include glucose auto-oxidation and 
lipid peroxidation, generating α-oxoaldehydes, which can subsequently react with 
monoacids to generate AGEs [32,33] (Figure 1). Additionally, the potent glycating agents 
and highly reactive dicarbonyls, MGO and 3-DG, are produced in cells from fatty acid 
catabolism and anaerobic glycolysis [34], and catabolism of ketone bodies [35] (Figure 1). 
Hence, in states of metabolic or oxidative stress, there is excessive generation of 
endogenous AGEs. 

In the biomedical field, the most commonly measured endogenous AGEs include, 
carboxymethyl-lysine (CML) and carboxyethyl-lysine (CEL), and cross-linking dimers, 
such as pentosidine, glyoxal-lysine dimer (GOLD) and methylglyoxal-lysine dimer 
(MOLD) [36]. AGEs in the skin are also measured both directly by assessment of AGE-
modified collagen in skin biopsies [37,38] but increasingly via skin auto-fluorescence, 
which is a non-invasive point-of-care measurement [39] and considered an indicator of 
systemic AGE load [40]. 

Figure 1. Basic pathways of AGE chemistry and associated physiology and pathology. In the
classical Maillard reaction (green), AGEs are formed when reducing sugars and proteins interact.
Initially, reaction intermediates termed Schiff bases are formed. These subsequently rearrange into
ketoamines known as Amadori products or early glycation products. These are more stable products
than Schiff bases but, at this point in the reaction, the chemistry is still reversible. After further
chemistry, the reaction becomes irreversible and forms AGEs (orange). There are several other
cellular pathways, including the polyol pathway (shown) and lipid peroxidation (where oxidants,
such as free radicals, “attack” (lightning bolt) lipids that contain carbon-carbon double bonds),
that can lead to the formation of reactive dicarbonyls, “termed carbonyl stress” (purple) rapidly
accelerating the formation of AGEs. Beyond proteins, lipids and DNA can also undergo glycation,
leading to AGEs. Pathways such as the polyol pathway only occur inside the body. AGEs have both
physiological roles (orange) and pathological effects (red). (Abbreviations: AGEs, advanced glycation
end products; ROS, reactive oxygen species).

3. Factors Regulating AGE Accumulation and Turnover in the Body

In humans and animals, the whole-body AGE load represents the balance between
endogenous AGE production, exogenous AGE absorption, and AGE clearance mechanisms.

3.1. Endogenous AGE Production—Beyond the Maillard Reaction

In addition to the Maillard reaction, there are other well-characterised pathways of en-
dogenous AGE production within the body. These include glucose auto-oxidation and lipid
peroxidation, generating α-oxoaldehydes, which can subsequently react with monoacids
to generate AGEs [32,33] (Figure 1). Additionally, the potent glycating agents and highly
reactive dicarbonyls, MGO and 3-DG, are produced in cells from fatty acid catabolism and
anaerobic glycolysis [34], and catabolism of ketone bodies [35] (Figure 1). Hence, in states
of metabolic or oxidative stress, there is excessive generation of endogenous AGEs.

In the biomedical field, the most commonly measured endogenous AGEs include,
carboxymethyl-lysine (CML) and carboxyethyl-lysine (CEL), and cross-linking dimers, such
as pentosidine, glyoxal-lysine dimer (GOLD) and methylglyoxal-lysine dimer (MOLD) [36].
AGEs in the skin are also measured both directly by assessment of AGE-modified collagen
in skin biopsies [37,38] but increasingly via skin auto-fluorescence, which is a non-invasive
point-of-care measurement [39] and considered an indicator of systemic AGE load [40].

Under physiological conditions, AGE formation is most common on long-lived pro-
teins in the circulation and connective tissues [19], such as structural components of
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cellular basement membranes and proteins including globulin, immunoglobulins and
albumin [30,41]. However, conditions such as chronic inflammation, hyperlipidaemia and
oxidative stress further accelerate the process of glycation, increasing the likelihood of
short-lived proteins also becoming AGE modified [42]. In the context of diabetes and
dysregulated glucose metabolism, AGEs such as glycated haemoglobin (HbA1C) and
fructosamine-modified albumin are used to monitor long-term glucose control. While
chronic conditions, such as diabetes, hypertension, and CKD, are associated with increased
levels of circulating AGEs and accumulation of AGE modified proteins [43–45], little is un-
derstood about AGE homeostasis in healthy individuals and how this may be interrupted
to contribute to disease risk.

3.2. Exogenous AGE Sources

AGEs and their highly reactive precursors are produced during food manufacturing.
In particular, cooking and food processing conditions favour AGE production. Additionally,
AGEs are widely used in the food industry to improve flavour, shelf-life, colour, aroma
and texture [46]. High-temperature and dry-cooking methods (frying, baking and broiling)
produce higher AGE concentrations than low temperature, aqueous cooking methods
such as steaming and boiling [47,48]. Smoking is another exogenous source of AGEs [49];
however, this is outside the scope of this review.

3.2.1. Quantifying AGEs in Commonly Consumed Foods

Several studies have aimed to estimate the AGE load found in commonly consumed
foods, with the goal of generating reproducible databases for research purposes; however,
quantifying AGEs in food has proven challenging. Studies using immunological meth-
ods [47,48,50] suggest that highly industrialised processes produce food with the highest
AGE content, such as biscuits and cakes [50], and this is exacerbated for products high
in saturated fat [47,48]. In the western diet, however, cooked meats likely constitute the
greatest source of dietary AGEs due to both relative AGE content and high consump-
tion rates [48]. More recently, these data have been questioned due to limitations with
immunological methods, leading to the establishment of ultra-high performance liquid
chromatography-MS/MS (UPLC MSMS)-derived databases of CML [51] and CML, CEL
and MG-H1 [52] quantities in commonly consumed foods. Based on these more recent
findings, foods such as peanut butter, manufactured biscuits and cakes, and canned and
processed meats had the highest quantities of AGEs [52].

3.2.2. Absorption of Dietary AGEs

There is much controversy regarding the quantity and processes used for AGE traffick-
ing across the gastrointestinal (GI) tract. It remains to be fully understood whether dietary
AGEs contribute to disease via: (i) direct entry into the circulation, resulting in tissue
deposition, inflammation, and increased burden on clearance mechanisms; (ii) impacting
intestinal health, permeability and entero-endocrine signalling; (iii) modulation of the GI
tract microbiome, or; (iv) promotion of inflammation within the GI tract. It is possible
that all these factors act in concert to promote the pathophysiology seen in the context of
increased dietary AGE consumption.

The heterogeneity of AGEs that can be produced in food processing is much greater
than those produced physiologically [53]. Therefore, well-characterised AGEs such as
CML, CEL, pentosidine and pyralline are commonly used as biomarkers to gauge AGE
load and uptake from the diet (Table 1). Generally, it is approximated from human and
animal studies that between 10–30% of dietary AGEs are absorbed from the GI tract [54,55].
However, extensive analysis of the literature shows little consensus, with some studies
suggesting greater uptake in humans [56], particularly in infants [57]. There have been
many studies examining the uptake, kinetics, and bio-distribution of orally and intra-
venously administered AGEs and AGE precursors (Table 1). Despite this, there have been
no technologies developed to accurately map this in humans in real-time. Such technolo-
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gies would strengthen our understanding of the link between dietary AGEs and their
associated pathologies.

Table 1. Uptake, elimination and biodistribution studies of AGEs and their precursor Amadori products.

Author Amadori Product
(AGE Precursor)

Study
Population Methodology Key Findings Measurement

Technique

[58] Erbesdobler and
Faist, 2001

Fructoselysine,
Fructoseglycine

Rats and
Humans

In vitro, everted
gut sack, in vivo
ligated jejunal
segments

• 1–3% of ingested Amadori
products were detected in
urine

• Faecal output persisted for
several days

14C Radioactivity

[59] Forster et al.
2005

Pyralline,
fructoselysine,

pentosidine
Humans

Exclusion diet,
followed by a high
AGE test meal

• Low AGE diet lowered
urinary pyralline and
fructoselysine by 90%, and
pentosidine by 40%

• Post high AGE test meals,
50% of ingested pyralline
and 60% of pentosidine
were recovered in urine. 2%
of peptide bound
pentosidine was recovered

Reversed Phase
HPLC with UV

detection

[60] Hultsch et al.
2006 Fructoselysine Rats

Injected and
gavaged 18F
flourobenzoylated
fructoselysine.
Biodistribution and
catabolism study
performed using
PET scanning

• Orally ingested
fructoselysine did not
appear in circulation or
tissues

• Injected fructoselysine
rapidly appeared in
circulation and cleared into
urine over 60 min

PET scan-
ning/Radioactivity

counting

[61] Schwenger et al.
2006 Lactuloselysine Humans

Diet administered
to healthy, diabetic
and renal failure
patients. Plasma
concentrations and
cumulative urinary
excretion examined

• Only small acute increase
(2% of administered dose)
appeared in urine, and
plasma concentrations did
not change

Reverse Phase
HPLC

Author AGEs Study
Population Methodology Key Findings Measurement

Technique

[62] Liardon et al.
1987 CML Rats

Diets varying in
quantity AGEs-
timed urine
collection and
analysis for CML

• Urinary CML varied
according to diet suggesting
it came from exogenous
sources

Mass Spec

[55] Koschinsky et al.
1997

Protein bound
AGEs

Humans (incl.
diabetes

with/without
DKD)

Single meal
challenge, AGE egg
white or fructose +
egg white

• Absorption estimated to be
~10% of total AGEs ingested

• Renal excretion was ~30%
of total absorbed

• In DM patients, excretion
inversely correlated with
albuminuria and was slower

ELISA
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Table 1. Cont.

Author Amadori Product
(AGE Precursor)

Study
Population Methodology Key Findings Measurement

Technique

[63] Miyata et al.1998 Pentosidine Rats

IV injection with
radiolabelled
pentosidine, urine
collected over 72 h

• Radioactivity peaked 1 h
after administration

• 80% of radioactivity
recovered after 72 h, only
20% was intact pentosidine

• Pentosidine reabsorption by
proximal tubule after
glomerular filtration

Radioactivity/
ELISA

[54] He et al. 1999 AGE-Ovalbumin Rats

Fed a single dose of
14C or 125I labelled
AGE-ovalbumin.
Collected tissues,
plasma and 72 h
urine collection.

• ~10% of radiolabelled AGEs
absorbed. Many AGEs still
bound to peptides

Radioactivity/
ELISA

[64] Bergman et al.
2001

CML and CEL
(free) Rats

Biodistribution
study of
intravenously
administered 18F
labelled AGEs
using PET scanning
and radioactive
counting

• CML and CEL accumulated
in liver and kidney at
20 min, were rapidly
excreted into urine and
undetectable by 2 h.

• Small amounts also
accumulated in spleen,
pancreas, heart, lungs
stomach and intestine

• Estimated renal clearance of
CML and CEL was
1.73 mL/min and
3.09 mL/min, respectively

PET scanning

[65] Somoza et al.
2006

CML, LAL, FL
(Casein linked) Rats

Casein linked AGE
feeding (2 dosages)
to metabolic caged
rodents

• AGE-modified casein was
absorbed less

• CML modified casein
demonstrated highest
recovery in urine and faeces

• Only CML impacted kidney
and liver weight and
urinary excretion of AGEs

• The high CML diet
increased plasma CML
5-fold

HP-LC-UV
fluorescence

[57] Sebekova et al.
2008 CML Human infants

Comparison of
circulating AGEs
between breast and
formula fed infants

• Plasma CML was 60%
higher in formula fed
infants than breast milk fed
infants

LC-MS/MS

[66] Roncero-Ramos
et al. 2013 CML Rats

88 days on high or
low AGE
diet—Bread crust
or it’s insoluble
(HMW) or soluble
fractions (LMW)

• Circulating CML did not
differ between groups

• Urinary CML did not
correlate with diet

• Faecal excretion was
influenced by diet

• Increased CML in cardiac
tissue and tail tendon

HPLC-MS/MS



Nutrients 2022, 14, 2675 7 of 28

Table 1. Cont.

Author Amadori Product
(AGE Precursor)

Study
Population Methodology Key Findings Measurement

Technique

[67] Alamir et al.
2013

Extruded or
non-extruded

protein diet CML
Rats

6 weeks feeding on
extruded or
non-extruded
protein diet or
single oral free
CML challenge

• Protein bound serum CML
levels increased 4-fold after
single oral dose and
remained high for 4 h of
monitoring

Unbound CML remained
unchanged

LC-ESI-MS/MS

[68] Xu et al. 2013 CML (free) Mice

Biodistribution and
elimination study
18F labelled CML
in mice. Tracer
labelled CML was
administered either
IV or
intra-gastrically

• IV administered CML
quickly distributed in
bloodstream and cleared via
kidneys within 20 min

• CML detected in a number
of other organs

Intragastric administered CML
showed minimal absorption

PET scanning

[69] Tessier et al. 2016 CML (protein
bound) Mice

30 days feeding
with a diet
enriched with
13C-CML that
could be
differentiated from
native CML in
C57BL/6J and
RAGE knock
out mice

• Mice showed accumulation
of dietary derived CML in
all tissues analysed, but
highest in kidney, intestine
and lungs and independent
of RAGE

Stable isotope
dilution analysis

LC-MS/MS

[70] Tsutsui et al.
2016 AGE-Albumin Mice

Single IV injection
of Cy 7.5 labelled
AGE-BSA.
Fluorescence
kinetics assay
performed

• Injected AGE-BSA showed
strong localisation to liver
and impaired clearance
compared to BSA

• AGE-BSA co-localised with
scavenger cells of liver

IVIS whole
animal in vivo

imaging system

Abbreviations: BSA, Bovine Serum Albumin; CML, Carboxymethyllysine, CEL, Carboxyethyllysine; DKD, Dia-
betic Kidney Disease; DM, Diabetes Mellitus; ELISA, Enzyme Linked Immunosorbent Assay; FL, Fructoselysine;
HMW, High Molecular Weight; HPLC, High Performance Liquid Chromatography; IV, Intravenous; IVIS, In Vivo
Imaging System; LAL, Lysinoalanine; LC- MS/MS, Liquid Chromatography Mass Spectrometry; LC-ESI-MS,
Liquid Chromatography-Electrospray Ionization Mass Spectrometry; LMW, Low Molecular Weight; PET, Positron
Emission Tomography.

3.3. AGE Clearance

Another major factor regulating AGE homeostasis is their clearance from the body.
At the tissue level, this occurs through cellular proteolytic systems, which endocytose
AGEs and break them down via receptor-mediated and non-receptor-mediated pathways
into AGE peptides, which are then released back into the circulation [71]. At the systemic
level, clearance of AGEs is thought to occur via the liver [72,73] and the kidney [63], where
clearance of not only AGEs, but reactive carbonyl precursors, such as MG-H1, 3-DG and
glyoxal and AGE-peptides, is important to maintain AGE homeostasis, although trafficking
studies in humans are lacking. Animal models suggest that AGEs are filtered by the
glomeruli, reabsorbed by proximal tubule cells and further processed and cleared into the
urine [63,74]. In humans, AGE concentrations are commonly inversely related to renal
function [42,44,75,76]. More recently, Haus et al. demonstrated that in obese but healthy
humans, during a 24-h period of hyperglycaemia, plasma concentrations of several AGEs
and oxidative products decreased concordant with an increase in the fractional excretion
of these products into the urine [77]. Given its role in AGE clearance, the kidney has been
highlighted as an important site of AGE mediated pathology [78–84], with renal function
vital for AGE homeostasis, but potentially vulnerable to AGE-mediated damage.
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Animal models demonstrate that uptake and clearance of intravenously administered
AGEs also occur via the liver by endothelial, Kupffer and parenchymal cells [72]. However,
the rate of clearance is dependent on the degree of AGE modification, with minimally AGE-
modified bovine serum albumin (AGE-BSA) remaining in the circulation for significantly
longer duration [73]. Concordant with the kidney, rodent models suggest that the liver also
appears to be vulnerable to AGE-mediated pathology, particularly in the context of high
AGE consumption [83,85].

4. AGE Receptors—Facilitators of Clearance and Mediators of Pathology

There are a number of receptors that have been characterised as binding AGEs, includ-
ing the Receptor for Advanced Glycation End Products (RAGE), AGE Receptor 1 (AGER1;
OST-48), AGE Receptor 2 (AGER2; 80K-H), AGE Receptor 3 (AGER3; Galectin 3) and the
class A macrophage scavenger receptors types 1 and 2 [86]. The majority of studies focus
on RAGE, since AGE binding induces cellular signal transduction. Other AGE receptors
may play a role in AGE clearance and detoxification [87], such as AGER1, which has also
garnered significant attention.

4.1. RAGE

RAGE, a member of the immunoglobulin superfamily of receptors [88,89], is the most
widely studied of the AGE receptors. As a multi-ligand, pattern recognition receptor,
RAGE also binds to s100 calgranulins [90], amphoterin/high mobility group box 1 protein
(HMGB1) [91], lipopolysaccharide (LPS) [92], β amyloid [93], transthyretin [94], Mac-1 [95],
complement 1q [96] and potentially DNA [92]. RAGE is highly expressed on mucous
membranes such as those present in the lung and the GI tract, and within the immune
system [97]. In the healthy kidney, RAGE localisation and gene expression occurs in the
vascular smooth muscle, the epithelia of the proximal and distal tubule and is significantly
upregulated in various inflammatory and non-inflammatory disease settings [98,99]. RAGE
is significantly upregulated on podocytes in multiple diseases settings including diabetic
nephropathy [99–101].

The RAGE gene, AGER, can be differentially spliced to form more than 20 different
variants [102,103]. The full length form of RAGE (flRAGE) consists of three immunoglobulin-
like domains known as the V1(variable), C1 and C2 domains; a transmembrane helix and a
short highly charged cytoplasmic domain that is essential for signal transduction (Figure 2) [104].
As well as the full length isoform, there is an N terminal truncated form of the recep-
tor that lacks the AGE binding capacity (Figure 2) [105]. Two secreted forms of RAGE
exist, which form the circulating pool: endogenous secretory RAGE (esRAGE), which
is a product of AGER transcription and soluble RAGE (sRAGE), which is cleaved from
cell membranes by the proteases a-disintegrin and metalloproteinase domain-containing
protein 10 (ADAM-10) (Figure 2) [106,107].

AGE-flRAGE binding initiates a number of signalling cascades (Figure 2), including
mitogen-activated protein kinase (MAPK) [108–110], janus kinase/signal transducer and
activator of transcription (JAK/STAT) [111,112] and rho GTPases [113–115]. Furthermore,
RAGE ligand binding results in nuclear translocation of transcriptional factors such as
nuclear factor kappa B (NF-κB) [94,116] and early growth response protein 1 (Egr-1) [117].
These pathways, activate downstream pro-inflammatory pathways inducing chemotactic
cellular migration, proliferation and apoptosis (Figure 2) [118]. These are in line with the
known physiological role for RAGE in host-pathogen defence.
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Figure 2. Isoforms of the receptor for AGEs (RAGE) and their interactions with AGEs and down-
stream pathways activated. RAGE is a multi-ligand member of the immunoglobulin superfamily
of receptors. It can exist as different isoforms including membranous isoforms (full length RAGE,
dominant negative RAGE, N truncated RAGE) as well as soluble secreted and cleaved isoforms. The
cytoplasmic domain is essential for RAGE signalling. The secreted isoforms are thought to act as
decoys, binding to RAGE ligands and preventing them from binding to membranous forms of RAGE
activating downstream signalling. In a low AGE environment (left), circulating sRAGE is believed to
act as a decoy receptor, binding circulating RAGE ligand such as AGEs and preventing binding to
membranous isoforms of RAGE. In a high AGE environment (right), circulating sRAGE levels are
commonly decreased or sRAGE capacity is saturated and is no longer sufficient to prevent RAGE
downstream signalling.

Animal and human data indicate that RAGE expression is likely modulated by envi-
ronmental factors, including AGEs [119,120] and disease states such as diabetes [98,101].
Whilst increased levels of full length, membrane-bound RAGE are associated with disease
progression and poor outcomes in both animal models and humans [100,101,104], circu-
lating soluble forms are inversely correlated with metabolic parameters, including body mass
index (BMI), serum triglycerides, HbA1c, insulin resistance [121], and chronic disease [122–127],
and positively associate with longevity [128,129]. This is supported by animal studies that
have conclusively shown that administration of sRAGE or esRAGE is protective or has
positive outcomes for a number of disease states [101,130–132]. This evidence has led to
the hypothesis that soluble forms of RAGE may act as a competitive antagonist for AGEs,
modulating their ability to interact with receptors such as membrane-bound RAGE, thereby
preventing downstream signalling (Figure 2) [133,134].

4.2. AGER1

AGER1, also known as OST48, is a 48-kDa, type I transmembrane receptor protein [135]
that localises to the plasma membrane [136] and endoplasmic reticulum (ER) [137]. The
primary role of OST48 is as a subunit of the multiprotein oligosaccharyltransferase complex
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responsible for the N-linked glycosylation of asparagine residues during protein translation
at the ER; therefore, it is expressed in all tissues, but particularly glandular cells (proteinat-
las.org) [138,139]. In AGE biology, it is postulated to facilitate AGE clearance by lowering
AGE levels in the intra- and extra-cellular environment and facilitating their clearance into
the urine [140,141]. Additionally, it appears to be a negative regulator of the inflammatory
response in some cell types [142].

In several chronic disease states, such as diabetes, CKD and autoimmune diseases
AGER1 levels are down-regulated [82]. Dietary AGEs and other dietary factors appear to
influence AGER1 levels. For example, restricting of AGE consumption has been shown
to increase AGER1 in peripheral blood mononuclear cells (PBMCs) in CKD patients [140]
and in the kidney, spleen and liver of healthy, but aged, mice [143]. Similar increases
in PBMC AGER1 have been observed in clinical trials of a Mediterranean diet, low in
AGEs [144,145] and a diet high in monounsaturated fatty acids (PUFAs) [146]. However,
global over-expression of AGER1 increased urinary AGE clearance and improved insulin
effectiveness in experimental diabetes in mice, but resulted in increased tubulointerstitial
fibrosis [147]. Similarly, overexpression of AGER1 in the podocytes of mice resulted in
glomerulosclerosis and podocyte damage and a decline in GFR, despite increasing renal
AGE clearance, this was further exacerbated by diabetes [148].

5. AGE-Mediated Pathology
5.1. AGEs Can Induce Both Receptor Mediated and Non-Receptor Mediated Pathology

AGE-mediated pathology can result from the deposition of AGEs and the subsequent
crosslinking of structural proteins in cells and organs and tissues or through AGE-receptor
interactions, both of which impair tissue and cellular function. For example, collagen
AGE modification and crosslinking of other extracellular matrix proteins leads to struc-
tural alterations, including changes in packing density [149] and surface charges [150]
and the loss of structural integrity. This results in stiffening of the vasculature and expan-
sion of cellular basement membranes in diabetes and CKD. AGE-RAGE binding activates
pro-inflammatory signal transduction cascades increasing cytokine and growth factor ex-
pression [19,151,152]. As such, the AGE-RAGE axis is implicated in diabetes complications,
CKD and end-stage renal diseases (ESRD), but also many other chronic diseases, including
Alzheimer’s disease, atherosclerosis, cataracts, Parkinson’s disease, sarcopenia, vascular
dementia and aging [153,154]. In humans, several studies show strong associations between
circulating AGEs and inflammatory markers in elderly [155], young (adolescent) [155], and
diabetic [156] populations. However, low and high AGE dietary studies in humans have
been contradictory in their findings with some authors reporting no effects of dietary AGEs
on systemic inflammation [157].

5.2. Dietary AGEs and AGE Pathology

The contribution of dietary AGEs to various pathologies remains to be fully eluci-
dated. In rodent studies, chronic dietary exposure to excess CML results in damage to the
glomerulus of the kidney, and albumin in the urine [158], insulin resistance [159,160], and
insulin secretory defects [161,162]. In both wild type and T2D models, excess AGE dietary
consumption elevates fasting plasma glucose levels, and worsens proteinuria, albuminuria
and kidney [79,163–165] and liver [85] injury. Conversely, low AGE diets extend lifespan
and improve age-related glucose abnormalities and renal outcomes and increase AGER1
expression in C57Bl6K mice [143]. Low AGE diets can also prevent type 1 diabetes (T1D)
when administered to pregnant and weaning mothers in non-obese diabetic (NOD) mouse
models of T1D [166] and attenuate insulin resistance and improve vascular and renal
outcomes [81,167,168] and wound healing [169] in other diabetic models.

In humans, many benefits have been shown with AGE restriction in the diet. In indi-
viduals with T2D and renal failure, excessive AGE intake positively correlated with serum
biomarkers of oxidative stress, inflammation, endothelial dysfunction, hyperglycaemia and
hyperlipidaemia [170,171]. Conversely, dietary AGE restriction in healthy individuals and



Nutrients 2022, 14, 2675 11 of 28

those with T2D have demonstrated favourable outcomes in circulating 8-isoprostanes and
tumor necrosis factor alpha (TNFα) [140,141], improvements in cognitive function [172]
and insulin sensitivity [141,173]. The effects of dietary AGEs on insulin sensitivity is vitally
important, since abnormalities in glucose homeostasis are potent risk factors for CKD de-
velopment and progression. In animal models, increasing circulating AGEs [174,175] and
consumption of diets high in AGEs [160,162,167,176] irrefutably result in decreased insulin
sensitivity, independent of other dietary factors [119,160]. In humans, several studies have
demonstrated a relationship between high AGE diets and insulin signalling defects [177]
with acute changes in insulin secretion following high AGE meal challenges [178,179].
Additionally, two independent randomised crossover dietary intervention studies have
found that low AGE diets improve insulin sensitivity [173,180], and renal function [79]
following a 2-week, or 4-week, high and low AGE dietary protocol, respectively. Although
a recent study failed to recapitulate these findings with regard to insulin sensitivity [157].

5.3. Dietary AGEs and the Microbiome

One of the most interesting frontiers in AGE biology is their interaction with the
microbiome. Many dietary AGEs are not easily absorbed by the small intestine, passing
instead to the colon where they are available for metabolism by the colonic microbiome [53].
Only limited in vivo data exists regarding the effects of ingested AGEs on the colonic
microbiome. In adolescent males, CML intake was negatively associated with Lactobacilli
and positively associated with Enterobacteria following two weeks on a high or low AGE
diet (randomised crossover design) [181]. Meanwhile, in dialysis patients, dietary AGE
restriction resulted in alterations to the gut microbiome [182]. However, both studies are
limited by small study size and understanding the physiological relevance of reported
microbial changes is challenging. In mice however, 22 weeks consuming a diet enriched
with the AGE MG-H1 induced significant microbial changes in the gut that were associated
with metabolic dysregulation and increased systemic inflammation [183]. Similarly, in mice
fed a heat-treated high AGE diet for 24 weeks, significant expansion of Helicobacteraceae and
contraction of Saccharibacteria populations was observed, which coincided with an increase
in gut permeability, increased circulating lipopolysaccharide (LPS), complement activation
and onset of changes associated with early CKD. This was attenuated by a diet high in
resistant starch [165].

It is reasonable to assume that probiotic or prebiotic supplementation that modulates
the microbiome may, in turn, contribute to circulating and tissue AGE burden. How-
ever, whether this occurs through modulation of enteroendocrine factors, inflammation
or gut-barrier permeability remains to be fully elucidated. Indeed, a recent meta-analysis
found that pre-, pro- and symbiotic-supplementation reduces fasting insulin levels, hy-
perinsulinaemia and circulating AGEs in individuals with diabetes [184], suggesting the
link between the microbiome, glucose homeostasis and AGE burden is an important one.
However, these biota-based effects were modest, and the authors highlight the challenges
of this type of human study where variation is significant and highly dependent on mi-
crobiome composition at baseline. A small, randomised control trial in women with T2D
found supplementation with the prebiotic resistant dextrin significantly increased serum
sRAGE and reduced the serum concentrations of AGEs CML, pentosidine, malondialde-
hyde (MDA) [185]. However, the study included only a small number of participants
and did not assess microbiome composition. Further, the prebiotic supplementation with
dextrin also reduced blood glucose concentrations, body weight and energy intake, and
so it is almost impossible to determine the causative factors driving changes in circulating
AGE concentrations. Another randomised crossover study comparing the effects of pre-
biotic supplementation on circulating AGEs, in individuals with pre-diabetes, may help
further elucidate the contribution of the microbiome to AGE burden within the body [186].
This study has completed recruitment (ACTRN12613000130763) but to our knowledge
the data have not been published. This remains an interesting and novel area requiring
further investigation.
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6. AGEs and Kidney Disease

Regardless of the presence of diabetes, previous studies have established a link between
elevated circulating AGEs and a progressive decline in renal function [20,21,75,187–189].
Since dialysis does not as effectively remove AGEs [190], individuals receiving haemo-
or peritoneal-dialysis show higher circulating AGE concentrations compared to healthy
individuals [191,192]. Circulating AGEs also show a positive association with markers
of inflammation and oxidative stress in uremic patients [193] and predict cardiovascular
disease mortality in stable renal transplant recipients [194]. Moreover, elevated circulating
concentrations of sRAGE are positively associated with the incidence of diabetic kidney dis-
ease (DKD) [195] and CKD [196,197]. In the ADVANCE study of 3763 individuals with T2D,
both circulating AGEs and sRAGE were positively associated with incident CKD, progressive
CKD, and mortality which led researchers to propose that the AGE:RAGE axis may represent
an important target for the prevention and management of diabetic nephropathy [198].

The relationship between endogenous AGE production and renal function has been
demonstrated in studies using skin collagen fluorescence as a biomarker of AGE bur-
den. Skin collagen autofluorescence is significantly increased in CKD patients without
diabetes [199–201] and predicts those individuals with progressive CKD [199,202]. In
individuals with diabetes and established CKD, skin autofluorescence is also inversely asso-
ciated with estimated glomerular filtration rate eGFR, a measure of renal function [203,204],
and positively associated with incidence of CKD [204] and mortality [205]. Furthermore,
in young adults with T1D but without established kidney disease, skin autofluorescence
and eGFR predicted approximately 25% of variance for DKD risk [206]. In a longitudinal
study of individuals with T1D, the Diabetes Control and Complications Trial (DCCT), and
its follow-up study, Epidemiology of Diabetes Interventions and Complications (EDIC),
skin collagen CML concentrations predicted individuals who developed nephropathy and
cardiovascular disease [207,208], and this was independent of glycaemic control. These
results indicate that AGE production and its accumulation is implicated in CKD as more
than simply a biomarker for glucose homeostasis.

Increases in AGE concentrations in individuals with CKD are likely due to both
reduced renal clearance and accelerated endogenous AGE production. In vitro, AGEs
(CML and pentosidine) and reactive precursors form more rapidly and to significantly
greater levels in serum from uremic patients compared to healthy controls [209]. This
suggests that circulating factors that promote or stimulate the rapid formation of AGEs
are present in the bloodstream of individuals with reduced renal function. In diabetes,
increased circulating and urinary excretion of AGEs appears to predict development
and progression of DKD [210], even in young adult populations without established
kidney disease [211]. However, in a prospective study of T1D patients with early DKD,
there was a decrease in circulating AGE concentrations associated with increased urinary
CML clearance. This was associated with future rapid GFR decline [212]. A decrease
in circulating AGEs might be the result of glomerular hyperfiltration, which is common
in diabetes and may lead to a reduction in low molecular weight AGEs [213]. However,
in cross-sectional data from patients with diabetes of long duration, urinary AGEs were
positively associated with albuminuria, independent of isotopic GFR [210], suggesting
tubular processing and excretion of AGEs is an important determinant of urinary AGE
concentrations, as suggested by Kern et al., who also concluded that urinary AGEs are a
useful early marker of tubular damage [214]

6.1. Mechanisms by Which AGEs Damage the Kidney

AGEs accumulate in the renal compartment where they mediate kidney damage
(Figure 3). Cross-linking of matrix proteins by AGEs leads to stiffness and altered struc-
tural function at sites such as the glomerulus, peritubular vasculature and arterioles of the
kidney, promoting glomerulosclerosis, atherosclerosis and thickening of the basement mem-
brane [26]. AGE accumulation in the glomerulus is also associated with podocyte epithelial
mesenchymal transition [215,216]. Similarly, in vitro exposure to high concentrations of
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AGEs induces tubular-epithelial-myofibroblast transition via RAGE dependent pathways,
contributing to tubulointerstitial fibrosis [217–219]. AGE interactions with membrane-
bound forms of RAGE, ultimately lead to the induction of a number of pro-inflammatory
cytokines and chemo-attractants [220–225] via the activation of Nuclear Factor kappa B
(NF-κB) and JAK-STAT pathways, promotion of inflammation via interleukin 1 β (IL-1β)
and TNFα pathways [226,227], and the stimulation and production of NADPH oxidase and
mitochondrial derived ROS [101,228]. These aforementioned pathways are well described
in the development of fibrosis, glomerulosclerosis, apoptosis and cell death and are charac-
terised contributors to the progression of DKD and CKD in both humans and pre-clinical
models [19]. Accumulation of RAGE ligands, including AGEs, stimulates increased RAGE
expression on podocytes in humans and rodent models [98,100,101] and numerous studies
have shown RAGE knock-out in diabetic mice improves renal injury [228–230].
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Figure 3. Renal handling of AGEs and their contribution to renal pathology. In vivo evidence from
rodents suggests AGEs accumulate in the kidney, which is also a major site for AGE clearance. Low
molecular weight (LMW) AGEs are freely filtered by the glomeruli, while lysosomal degradation
and autophagy of AGEs appears to occur within the tubules, with AGE modification impairing
exocytosis of proteins by the tubular cells. AGE accumulation in the kidney contributes to a number of
pathological pathways, including glycation and crosslinking of structural proteins, dedifferentiation
of specialised epithelial cells such as podocytes, and RAGE activation leading to further inflammation,
ROS and cellular apoptosis. Together these can contribute to, or exacerbate hemodynamic changes,
glomerulosclerosis, tubulointerstitial fibrosis, proteinuria, albuminuria and loss of GFR. As renal
function declines, renal capacity to excrete AGEs is reduced, leading to increased AGE burden within
the body, as is seen with CKD. However, evidence that AGEs alone, in the absence of diabetes or
underlying renal conditions, can induce renal dysfunction has largely come from rodent models.
with only limited associative studies in humans.

6.2. Renal Handling of AGEs

In vivo uptake and trafficking studies in healthy rats have shown that intravenously
injected low molecular weight AGE-peptides, but not AGE-BSA, are freely filtered at the
glomerulus and detected in urine [74]. However, both in vivo and in vitro data suggest
that, once filtered, AGEs bind to and/or enter proximal tubule cells [63,74,217,231,232],
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where their removal is dependent on lysosomal degradation and autophagy [233]. This
is supported by in vitro studies in renal proximal tubule cells, which can degrade AGE-
modified albumin and release them into the supernatant However, exocytosis of glycated
albumin peptide fragments was slow compared to non-glycated fragments, suggesting that
renal tubule processing of AGE modified proteins is impeded by glycation [231]. Ultimately,
this may lead to increased accumulation of AGEs within proximal tubule cells and disrupt
autophagosome lysosomal pathways [234]. Supporting this, Tessier et al. showed that
in mice, the kidneys were amongst those organs with the highest levels of dietary AGE
accumulation following 30 days on an 13C-CML-BSA enriched diet [69]. Overall, it appears
that the transport of free- and/or protein-bound AGEs across the renal filtration barrier
and tubular cells may depend on protein size and the degree and site of glycation.

6.3. Exogenous AGEs and Kidney Function

There is a paucity of studies examining the longitudinal effects of high AGE consump-
tion on risk of kidney disease in healthy humans. One prospective study using dietary
questionnaires demonstrated a 2-fold increase in CKD risk with high AGE consumption
from dietary fat sources [235] even after adjustment for diabetes and hypertension, however,
human studies examining the effects of dietary AGEs on direct measures of kidney function
are lacking [236]. A small pilot study of 10 healthy participants demonstrated that the
degree of glycation of isocaloric protein loads differentially affected renal haemodynamics,
with high AGE loads increasing renal perfusion and renal oxygen consumption [237]. In
overweight individuals without diabetes, a randomised cross-over study showed that in-
creased AGE consumption for 2 weeks increased systemic inflammation, albuminuria and
decreased eGFR, while paradoxically increasing urinary AGE clearance and reducing circu-
lating levels [79]. In agreement, several studies in patients with diabetes [156] and healthy
individuals [173] have demonstrated a significant effect of increased dietary AGEs on other
determinants of kidney disease such as increased endothelial dysfunction and oxidative
stress [156], as well as adverse effects on insulin sensitivity and circulating lipids [173]
when compared to low AGE diets. Even a single oral AGE challenge was sufficient to in-
duce endothelial dysfunction and oxidative stress in healthy individuals and in those with
diabetes [238]. However, not all studies of high/low AGE dietary interventions in healthy
adults have reported changes in endothelial dysfunction and inflammation [239,240]. This
is possibly because the AGE content of the high AGE diets used were similar to that of a
typical Western diet and may have been comparable to the patients’ diets at baseline.

In animal models, significantly more work has been undertaken to measure the direct
effects of exogenous AGEs on the kidney. Animals fed a high CML diet accumulate AGEs
preferentially in the kidneys [69,241] and, in models with established kidney disease,
such as the remnant kidney model, high AGE diets for a period of 5–13 weeks (study
dependent) increased proteinuria [164,242,243], fibrosis and glomerular injury [243]. In
healthy rats without kidney injury, a 4-week high fat/high AGE diet increased serum
creatinine, suggestive of decreased GFR, which was associated with enhanced kidney CML
deposition and markers of oxidative stress and inflammation [244]. In contrast, a more
recently published study examining the effects of a high CML diet for 18 months in healthy
male mice reported no effects on kidney ageing [245]. This may indicate that where there
is no pre-existing kidney injury, a genetic predisposition to kidney disease, or risk factors
such as insulin resistance, enrichment of the diet with single AGEs is not a potent driver of
renal changes compared to a baked heterogeneous AGE diet.

While the majority of studies have reported on the impact of AGEs on kidney disease
risk factors (e.g., diabetes, hypertension), few have assessed effects on kidney function.
However, as highlighted above, there is much to be untangled regarding whether kidney
changes (functional and structural) are actioned via direct renal uptake and trafficking of
ingested AGEs or mediated indirectly by AGE effects on, and renal interactions with, the
vascular, GI tract, enteroendocrine systems and the microbiome.
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6.4. Therapeutic Targeting of AGEs in Kidney Disease

There are several classes of therapeutic agents aimed at targeting AGEs. A thorough
review of these can be found here [246]. Several of these agents have been trialled in
experimental models of DKD or CKD and in clinical trials.

6.4.1. Carbonyl Scavengers

Carbonyl scavenging is one approach that has been trialled quite extensively since
the early 1990s. Aminoguanidine (Pimagedine), a carbonyl scavenger, was found to lower
AGEs and attenuate the DKD-driven rise in albuminuria and prevent mesangial matrix
expansion in rats [247]. However, aminoguanidine was found to bind to a number of
targets including functional endogenous carbonyls, making it inappropriate as a therapeutic
agent [248]. Furthermore, two clinical trials were performed, ACTION I and ACTION II,
but they failed to show efficacy and ACTION II was terminated early due to safety concerns
and off target effects [248].

6.4.2. Vitamin B and Its Derivatives

The B group vitamins and a number of their derivatives have also been trialled as AGE
lowering therapies. These include thiamine, benfotiamine, and pyridoxamine [246]. These
agents are thought to reduce AGEs by increasing the activity of the thiamine-dependent
enzyme, transketolase. The resulting stimulation of the pentose phosphate pathway should,
in theory, reduce glycolytic intermediates. Clinical trials of thiamine and benfotiamine
and their efficacy in the context of kidney disease are lacking. However, pyridoxamine,
which is thought to act by inhibiting the conversion of Amadori products and by chelation
of dicationic metal ions has shown efficacy in animal models of kidney disease [249–251]
and to effectively reduce CML, CEL and transforming growth factor β (TGFβ) in DKD
patients [252]. Unfortunately, a phase III clinical trial examining the efficacy of pyridox-
amine in DKD, PIONEERIII, began recruiting in 2014 but was terminated due to financial
constraints in 2016. As yet, the study has not been recommenced.

6.4.3. AGE Cross Link Breakers

N-phenacylthiazolium bromide (PTB) was the first reported compound capable of
breaking the crosslinks formed by AGEs, leading to the development of a class of com-
pounds known as “cross link breakers” [253]. While PTB demonstrated efficacy for reducing
AGEs in diabetic rodents [254], PTB was not effective at preventing or attenuating DKD in
rodents [255,256] and due to its in vivo instability further compounds were developed [246].
4,5-dimethyl-3-phenacylthiazolium chloride (ALT-711®, Alagebrium chloride) is the most
well studied of the PTB analogues. Alagebrium has cross link breaking properties but also
appears to be a MG scavenger, and exhibit antioxidant and chelating properties. It has
demonstrated efficacy in reducing blood pressure, mesangial matrix expansion and tubu-
lointerstitial fibrosis in rodent models of DKD [257,258] and hypertension [259]. Due to loss
of the clinical sponsor and patent during the global financial crisis, various Phase II clinical
trials both in heart failure (NCT00739687 and NCT00516646) and DKD (NCT00557518) had
to be prematurely terminated.

6.4.4. RAGE Blockade

AGE-RAGE blockade is another potential therapeutic target for chronic kidney disease.
RAGE knockout in mice prevents or attenuates DKD [101,168,260] and deletion of RAGE
from bone marrow derived cells reduced renal functional changes as well as immune
infiltration seen with experimental (STZ induced) diabetes [261]. Long term treatment
with the RAGE decoy receptor, sRAGE, has been shown to improve measures of DKD
in the db/db model of T2D and obesity [101] and RAGE blockade by antibodies was
effective at slowing progression of DKD in models of T1D [262] and T2D [263]. More
recently, AGE targeted aptamers that prevented AGE-RAGE signalling protected against
DKD in a mouse model of T2D and obesity [264]. Similarly, RAGE aptamers given early in
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diabetes or at diabetes induction showed significant potential attenuating progression of
DKD in rats [265] and showed effectiveness in reducing markers of kidney injury in uni-
nephrectomised deoxycorticosterone acetate (DOCA)/salt-induced hypertensive mice [266].
Although there is considerable pre-clinical evidence for RAGE blockade as a therapeutic
option in kidney disease, to our knowledge no agents have reached the clinical trial phase
for kidney disease.

7. Conclusions

AGEs are an important mediator of pathology, particularly in diabetes and kidney
disease where AGE homeostasis is unbalanced by impaired clearance and increased endoge-
nous production. Given the evidence presented, dietary AGEs appear to be an important
contributor the body’s AGE pool, but may also act to accelerate endogenous AGE pro-
duction through increased oxidative stress, endothelial dysfunction and by precipitating
glucose abnormalities. Critical experiments need to be performed in humans to under-
stand the extent to which dietary AGEs contribute to the onset and progression of CKD in
humans, since AGE-lowering strategies show some promise in clinical studies performed
to date.
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