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Abstract The megalencephaly-capillary malformation (MCAP) syndrome is an overgrowth
disorder caused by mosaic gain-of-function variants in PIK3CA. It is characterized by mega-
lencephaly or hemimegalencephaly, vascular malformations, somatic overgrowth, among
other features. Epilepsy is commonly associated with MCAP, and a subset of individuals
have cortical malformations requiring resective epilepsy surgery. Like other mosaic disor-
ders, establishing a molecular diagnosis is largely achieved by screening lesional tissues
(such as brain or skin), with a low diagnostic yield from peripheral tissues (such as blood).
Therefore, in individuals with MCAP in whom lesional tissues are scarce or unavailable or
those ineligible for epilepsy surgery, establishing amolecular diagnosis can be challenging.
Here we report on the utility of cerebrospinal fluid (CSF)-derived cfDNA for the molecular
diagnosis of an individual with MCAP syndrome harboring a mosaic PIK3CA variant
(c.3139C>T, p.His1047Tyr). The proband presented with asymmetric megalencephaly
without significant dysgyria. He did not have refractory epilepsy and was therefore not a
candidate for epilepsy surgery. However, he developed diffuse large B-cell lymphoma
(DLBCL) in late childhood, with four CSF samples obtained via lumbar puncture for cancer
staging during which one sample was collected for cfDNA extraction and sequencing.
PIK3CA variant allele fractions in CSF cell-free DNA (cfDNA), skin fibroblasts, and peripheral
bloodwere 3.08%, 37.31%, and 2.04%, respectively. This report illustrates the utility of CSF-
derived cfDNA in MCAP syndrome. Minimally invasive–based molecular diagnostic ap-
proaches utilizing cfDNA not only facilitate accurate genetic diagnosis but also have impor-
tant therapeutic implications for individuals with refractory epilepsy as repurposed PI3K-
AKT-MTOR pathway-inhibitors become more widely available.

INTRODUCTION

The PIK3CA-related megalencephaly-capillary malformation (MCAP) syndrome (MIM
#602501) is a multisystem overgrowth disorder caused by mosaic gain-of-function (activat-
ing) variants in PIK3CA (MIM #171834). The most common features of MCAP include diffuse
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or focal brain overgrowth (i.e., megalencephaly [MEG] or hemimegalencephaly [HMEG]),
cortical abnormalities (predominantly polymicrogyria and focal cortical dysplasia), vascular
malformations, digital anomalies (cutaneous syndactyly, polydactyly), and other skin and
connective tissue abnormalities (Fig. 1; Dobyns andMirzaa 2019). Activating PIK3CA variants
cause a wide range of overgrowth phenotypes, collectively termed PIK3CA-related over-
growth spectrum (PROS). Given that these disorders are caused by mosaic variants, the yield
frommolecular diagnostic testing is higher when affected or lesional tissues are available for
testing (Yeung et al. 2017). Previous studies have shown that affected tissues (e.g., skin fibro-
blast) have a higher diagnostic yield than peripheral blood or saliva (Mirzaa et al. 2016;
Kuentz et al. 2017). Therefore, obtaining affected tissues in PROS is important for establish-
ing an accurate molecular diagnosis.

Among the neurological phenotypes that fall under PROS, PIK3CA mutational hotspots
(notably variants c.1624G>A p.Glu542Lys, c.1633G>A p.Glu545Lys, c.3140A>T
p.His1047Leu, and c.3140A>G p.His1047Arg) can be associated with more severe brain

Figure 1. Phenotypes and variant allele fraction (VAF) in megalencephaly-capillary malformation (MCAP) and
hemimegalencephaly. MCAP syndrome is characterized by megalencephaly/hemimegalencephaly and cuta-
neous capillary malformation with focal segmental overgrowth. This figure illustrates the phenotypical differ-
ences between MCAP syndrome and isolated hemimegalencephaly (HMEG). Although both syndromes can
be caused by the same variants in PIK3CA, the distribution of the variant results in different phenotypes
andmolecular diagnostic yields accordingly. MCAP syndrome is caused by PIK3CA genetic variants with wider
tissue distribution; thus, it can be diagnosed by sequencing affected tissues (skin) or, less reliably, peripheral
blood. The table shows diagnostic yields from different tissues. However, in cases with isolated HMEG, affect-
ed brain tissue is required for molecular diagnostics because peripheral blood and skin samples have a very
low yield. When cerebrospinal fluid (CSF) cell-free DNA (cfDNA) is available, hypothetically molecular diagno-
sis can be achieved without affected brain tissues in isolated HMEG. (ND) No data. ∗Mirzaa et al. 2016;
∗∗Kuentz et al. 2017; ∗∗∗Pirozzi et al. 2021.
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phenotypes such as focal cortical dysplasia (FCD), HMEG, and dysplastic megalencephaly
(DMEG) with or without severe segmental body overgrowth, whereas less-activating somatic
variants cause MCAP that is most often characterized by diffuse megalencephaly and poly-
microgyria (PMG) (Mirzaa et al. 2015). Among the common comorbidities associated with
these PIK3CA-related brain phenotypes is epilepsy. About 30% of individuals with MCAP
have seizures and refractory epilepsy is not uncommon, especially in those with cortical dys-
plasia (Mirzaa et al. 2012; Jansen et al. 2015).

Establishing a molecular diagnosis early in individuals with PIK3CA-related brain pheno-
types is not only helpful to better understand the disorder and its prognosis, but it can also
have important therapeutic implications, especially as PI3K-AKT-MTOR pathway inhibitors
are beginning to show promising results in treating epilepsy and neuropsychiatric disorders
in associationwith other disorders within this pathway such as the tuberous sclerosis complex
(TSC) (French et al. 2016; Kilincaslan et al. 2017). Select MTOR, AKT, or PI3K inhibitors have
been proposed as therapeutic options for treating refractory epilepsy in children with activat-
ing mutations of this pathway. However, for individuals not eligible for epilepsy surgery, es-
tablishing the molecular cause to determine whether these molecularly targeted therapies
can be used poses an important diagnostic challenge (Mirzaa et al. 2015). Therefore, alter-
native approaches for detecting mosaic variants are warranted, especially for those with
brain-restricted mosaic variants.

Free-floating cell-free DNA (cfDNA) has recently become a standard source for cancer
genomic profiling and prenatal diagnostics (Wan et al. 2017; Dines et al. 2018). cfDNA
from cerebrospinal fluid (CSF) has also recently emerged as an alternative source for molec-
ular diagnostics in brain tumors (Wang et al. 2015; McEwen et al. 2020; White et al. 2021).
Detection of somatic cancer variants in CSF-derived cfDNA has further encouraged re-
searchers to investigate whether mosaic variants underlying other developmental brain dis-
orders can be detected in CSF cfDNA. Two recent studies have shown that known somatic
variants in the brain were detectable in CSF-derived cfDNA in individuals with HMEG, FCD,
ganglioglioma, and subcortical band heterotopia (SBH) (Kim et al. 2021; Ye et al. 2021).
These studies show that CSF-derived cfDNA can serve as a “proxy” tissue source to resected
brain tissues for sequencing. Therefore, utilizing CSF-derived cfDNA has emerging potential
in achieving a molecular diagnosis for individuals with mosaic brain malformations and other
developmental brain disorders. Cell-free DNA obtained by minimally invasive procedures,
such as lumbar puncture, can facilitate an earlier molecular diagnosis as well as consideration
of medical management options (i.e., PI3K-AKT3-MTOR pathway inhibitors) prior to more
invasive surgical resection. It can also offer a potential biomarker to monitor disease activity
and treatment response. Here, we report the first report of an individual with MCAP syn-
drome secondary to a mosaic PIK3CA variant that was successfully detected in CSF-derived
cfDNA, confirming his diagnosis.

RESULTS

Case Report
This boy was delivered at term following an uncomplicated pregnancy. Shortly after birth, he
was identified to havemacrocephaly, right-sided asymmetric overgrowth, and abnormal skin
pigmentation with extensive deep purple-red vascular markings that were widely distributed
over his body. He was initially clinically misdiagnosed with Klippel–Trenaunay syndrome
(KTS). He also had thrombocytopenia requiring a platelet transfusion at 2 d of life. His neu-
rological exam showed diffuse hypotonia. Cranial magnetic resonance imaging (MRI) ob-
tained soon after birth showed asymmetric brain overgrowth and cerebellar tonsillar
herniation (Fig. 2, panels). At later follow-up, he had progressive hydrocephalus requiring
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ventriculoperitoneal shunt placement at 6 mo of age. He later underwent laser treatment for
the capillary malformation on his upper lip and right cheek. History is also notable for intes-
tinal lymphangiectasia leading to episodes of diarrhea and nutritional deficiency during his
early childhood. Developmentally, he had moderate speech delays with major delays in his
gross motor skills.

Early physical examinations showed apparent macrocephaly and right-sided asymmetric
overgrowth of the face and extremities. Measurements performed at 3 yr of age showed that
his right ear was 6 cm (97th percentile) while the left was 4.7 cm (50th percentile). His right
hand measured 9.9 cm (third percentile) frommiddle fingertip to wrist, whereas his left hand
measured 9.3 cm (∼1st percentile) (Jones et al. 2013). His head appeared megalencephalic
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Figure 2. Phenotypic features observed in the proband. (A,B) Extensive capillary malformations were seen on
both arms and legs, more prominent on his left arm (arrowheads). Segmental overgrowth was seen on his legs
as well. (C–E,H) Lower extremity magnetic resonance imaging (MRI) showed overgrowth of adipose tissue (ar-
rowheads) on right leg. (F,G,J) Brain MRI T2-weighted axial and T1-weighted coronal imaging showed right
hemimegalencephaly and mildly enlarged and dysplastic right ventricle at age 19 yr. Arrows indicate the en-
larged side. Cerebellar tonsillar ectopia was seen on T1-weighted sagittal imaging (arrow). (I ) At 6 mo of age,
computed tomography (CT) of head showed asymmetric brain size and hydrocephalus (arrowhead). (K ) CT of
chest at 19 yr showed diffuse pleural effusion (arrowheads), which later was found to have lymphoma cells in it.
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with a prominent venous pattern over the scalp. His occipitofrontal circumference (OFC) at
3 yr of age was 58.5 cm (+5.8 SD), and later grew to 65.5 cm (+7 SD) at 19 yr of age. He also
had pinpoint elevated capillary malformations that ranged in size from 5×5 mm to 1×1 cm
all over the scalp. After laser ablation, he had residual vascular staining on his right cheek,
right upper lip, and more extensive irregular vascular patterns over the left arm (Fig. 2A).

In his late childhood, he developed recurrent lymphedema, protein-losing enteropathy,
and pleural effusions (Fig. 2K). At age 19 yr, he was admitted to the pediatric intensive care
unit (PICU) because of capillary leak syndrome with systemic inflammation. He was later
found to have atypical lymphocytes in pleural and peritoneal fluid and increased fluorode-
oxyglucose (FDG) uptake in bilateral cervical, mediastinal, abdominal, and pelvic lymph
nodes on entire body positron emission tomography (PET) scan. Excisional biopsy of cervical
lymph nodes showed sheets of atypical cells with large, vesicular nuclei with prominent nu-
cleoli and scanty cytoplasm. Immunocytochemically, cells stained positive for CD20 and
CD45. Flow cytometry immunotyping confirmed the diagnosis of diffuse large B-cell lym-
phoma (DLBCL). Involved sites included cervical, mediastinal, pelvic lymph nodes, and
spleen with bowel wall thickening and pleural effusion (stage IIIb). He underwent lumbar
puncture (LP) four times for staging and during chemotherapy with additional CSF collected
for molecular diagnostics as well. There were no atypical lymphocytes found in any of the
four CSF samples. He completed chemotherapy (R-CHOP [rituximab, cyclophosphamide,
hydroxydaunomycin, vincristine, and prednisone]) without further remission. Cranial MRI ob-
tained during this period showed asymmetric megalencephaly with mildly abnormal cortical
gyral pattern, asymmetric dysplastic ventricles, and cerebellar tonsillar ectopia (Fig. 2F,G,J).
He only had three seizures for a short period of time during chemotherapy. The semiology of
his seizures included tonic seizure of left upper extremity with eye deviation to left, followed
by bilateral tonic seizure, apnea, and desaturation. Seizures lasted ∼1–2 min with postictal
confusion for several minutes. Seizures responded well to levetiracetam, and he therefore
did not require epilepsy surgery. We previously published his clinical features as part of a
large clinical-molecular series prior to his molecular diagnostic workup using cfDNA (case
LR14-300) (Mirzaa et al. 2016).

Molecular Analysis
The proband underwent molecular diagnostic testing around the time when his lymphoma
was diagnosed. Sequencing was performed using a clinically validated targeted multigene
panel (the megaplex) performed in a College of American Pathologists (CAP)-accredited,
Clinical Laboratory Improvement Amendments pf 1988 (CLIA)-certified laboratory as previ-
ously reported (Mirzaa et al. 2015). A mosaic variant in PIK3CA (NM_006218.2: c.3139C>T,
p.His1047Tyr) was detected at a variant allele fraction (VAF) of 2% (variant [var]/reference [ref]
reads: 8/394) in peripheral blood and 37.31% (var/ref reads: 673/1131) in cultured skin fibro-
blasts. The variant was identified in CSF-derived cfDNA at a VAF of 3.08% (var/ref reads:
14/440) (Fig. 3). A summary of the child’s molecular findings in all samples is shown in
Table 1. This variant has been previously published in association with MCAP syndrome
(Mirzaa et al. 2016) and is listed as pathogenic in ClinVar (https://www.ncbi.nlm.nih.gov/
clinvar/variation/39705/).

DISCUSSION

Sequencing and detection of genetic variants underlying mosaic and tissue-restricted disor-
ders typically rely on the availability of affected (or lesional) tissues. Here, we demonstrate
the utility of CSF-derived cfDNA-based molecular diagnosis in PIK3CA-related MCAP syn-
drome. This case report has several helpful clinical implications. First, it demonstrates the
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utility of sequencing cfDNA from CSF to achieve a molecular diagnosis in the absence of af-
fected or lesional brain tissues, which is particularly useful for individuals who have isolated
or tissue-restricted mosaicism. Second, establishing a molecular diagnosis prior to undergo-
ing invasive epilepsy surgery could potentially shift the paradigm of current testing and

Figure 3. PIK3CA c.3139C>T (p.His1047Tyr) in Integrative Genomic Viewer (IGV). IGV showed distinct var-
iant allele fractions (VAFs) among various tissues in the proband including cerebrospinal fluid (CSF) cell-free
DNA (cfDNA), skin fibroblasts, and peripheral blood.

Table 1. Molecular findings

HGVS DNA change
(hg19/GRCh37)

HGVS
protein
change Variant type

Predicted
effect dbSNP ID Sample DNA yield

VAF% (VAR/
REF)

NM_006218.2:
c.3139C>T

(Chr 3:178952084)

p.H1047Y Missense
substitution

Gain of
function

rs121913281 CSF (cfDNA) 29 ng (total after
Ampure
cleanup)

3.08%
(14/440)

Skin fibroblasts
(cultured)

122 ng/µL 37.31%
(673/1131)

Peripheral
blood

172 ng/µL 2.04%
(8/384)

Sample types, variant allele fractions of the gain of function mosaic PIK3CA variant in the proband.
(CSF) Cerebrospinal fluid, (cfDNA) cell-free DNA, (VAF) variant allele fraction, (VAR) number of variant read, (REF) number of reference reads.
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treatment strategies, especially as MTOR inhibitors are becoming more widely used (Forde
et al. 2021; Garneau et al. 2021).

The PIK3CA p.His1407Tyr variant identified in this proband lies within the most com-
monly mutated codon within the kinase domain of the gene and has been reported multiple
times as a disease-causing variant (Mirzaa et al. 2016; Kuentz et al. 2017). It has been previ-
ously identified in individuals with CLOVES (congenital lipomatous asymmetric overgrowth
of the trunk, lymphatic, capillary, venous, and combined-type vascular malformations, epi-
dermal nevi, skeletal and spinal anomalies) (MIM #612918) and MCAP syndromes (Mirzaa
et al. 2015; Kuentz et al. 2017). Missense variants in this codon have been shown to cause
PI3K-AKT-MTOR pathway hyperactivation (Jansen et al. 2015; Baldassari et al. 2019) and
were also reported in various types of cancer tissues (Arafeh and Samuels 2019). It is uncer-
tain whether individuals with PIK3CA-related overgrowth syndrome (PROS) are at risk for
specific types of cancer. An association with Wilms’ tumor has been anecdotally suggested
but not proven (Lapunzina et al. 2004;Wright et al. 2009; Gripp et al. 2016). The cancer risk in
PROS in general and in MCAP in particular, however, continues to be unknown and there are
no data suggesting an association between DLBCL and MCAP, with only one other individ-
ual with MCAP and leukemia diagnosed in adolescence previously reported (Moore et al.
1997). In the individual reported here, DNA extracted from lymphomatous tissue showed
a 1.3% VAF (var/ref= 8/597) for the PIK3CA variant, which was similar to the level detected
in the peripheral blood before the occurrence of DLBCL, and several additional somatic var-
iants were detected in the lymphoma at a much higher VAF. Therefore, we conclude that this
PIK3CA variant is unlikely the cause of his DLBCL. Moreover, earlier studies have shown acti-
vation of PI3K-AKT3-MTOR in cases with DLBCL but only a small subset harbored variants in
PIK3CA (Abubaker et al. 2007; Baohua et al. 2008). Further, data from large cancer genomic
databases suggest that somatic PIK3CA variants are found in hematopoietic and lymphoid
cancer, including DLBCL (cBioPortal for Cancer Genomics [https://www.cbioportal.org] and
COSMIC genomic mutation [https://cancer.sanger.ac.uk/cosmic]). Notably, a high burden of
somatic variants was seen in the lymphomatous tissue but not in the CSF cfDNA sample.
For example, copy number gain of Chromosome 1q including DNMT3A, and copy-number
loss of Chromosome 9 including GNAQ and Chromosome 1p including MTOR and EPHB2
were seen in the lymphoma tissue but were absent in the CSF cfDNA sample. The lack of over-
lapping genomic findings provides further support of the nonlymphomatous origin of the
PIK3CA variant in the CSF cfDNA sample in this individual.

Cell-free DNA is nowwidely used for genomic profiling in cancer (Wang et al. 2015). Cell-
free DNA refers to DNA present in body fluids after cell death (Volik et al. 2016). Plasma
cfDNA in healthy individuals is mostly derived from blood cells. In individuals with cancer,
the amount of plasma cfDNA increases because of high rates of apoptosis and necrosis of
cancer cells (Leon et al. 1977). Therefore, plasma cfDNA has gained prominence in cancer
diagnosis, treatment, and monitoring (a.k.a liquid biopsy) (Wan et al. 2017). Body fluids
can also contain cfDNA from noncancerous tissues as well. For example, cfDNA from cyst
fluids of lymphatic malformations has been identified as a more reliable source than plasma
to diagnose PIK3CA-associated lymphatic malformations (Zenner et al. 2021). Altogether
these lines of evidence suggest that cfDNA from various body fluids, such as CSF, in direct
contact with pathological tissues can be utilized as a “proxy” for molecular diagnostics.
Indeed, two recent studies have shown some early yet promising evidence (Kim et al.
2021; Ye et al. 2021). In one study, CSF from the epilepsy cohort (FCD, ganglioglioma,
SBH, and other tumors) contained significantly more cfDNA, which demonstrated brain-spe-
cific methylation patterns, than those without epilepsy (502 copies/mL vs. 61 copies/mL).
Variants in several genes (LIS1, TSC1, and BRAF) were detectable in CSF-derived cfDNA
with VAFs ranging from 3.20% to 9.40% (Ye et al. 2021). The second study included individ-
uals with HMEG, ganglioglioma, malformation of cortical development with oligodendrog-
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lial hyperplasia in epilepsy (MOGHE) and FCD, mosaic variants in PIK3CA, BRAF,
and SLC35A2 were identified in CSF-derived cfDNA with VAFs ranging from 0.136% to
1.45%. Compared with VAFs in paired brain tissues (ranging from 1.00% to 24.00%),
levels of detectable mosaicism CSF-derived cfDNA were lower (Kim et al. 2021).
However, there seemed to be no correlation between VAFs from cfDNA to the affected brain
tissues from studies on both brain tumors (Wang et al. 2015) and malformations (Kim et al.
2021).

To have a meaningful clinical impact for the diagnosis and treatment of individuals with
mosaic brain disorders (i.e., pharmaceutical vs. surgical approaches), a molecular diagnosis
needs to ideally precede invasive brain surgery. Mosaic variants usually cannot be reliably
detected from peripheral blood given not only the low mosaicism level but also clonality
of blood cells (Kuentz et al. 2017). Therefore, CSF-derived cfDNA could potentially provide
a more reliable surrogate for brain-limited mosaicism. Hence, CSF-derived cfDNA-based
molecular diagnostics via lumbar puncturemay provide a practical and novel method for var-
iant identification. Notably, this individual also had cutaneous capillary malformations and
body overgrowth which constitute additional lesional tissues for sequencing and variant
detection (Fig. 1). However, these features are highly variable among affected individuals
(Mirzaa et al. 2016).

All in all, novel molecular diagnostic approaches usingminimally invasive procedures can
have therapeutic implications for affected individuals. Syndromes caused by genetic variants
of the PI3K-AKT-MTOR pathway share many similar features associated with dysregulated
overgrowth. One notable example is the tuberous sclerosis complex (TSC) characterized
by cortical tubers (which shows histopathological features similar to FCD), seizures, cutane-
ous findings, and other systemic features (Salussolia et al. 2019). Loss of inhibition of the
PI3K-AKT-MTOR pathway secondary to TSC1 or TSC2 variants results in neuronal over-
growth (Tee et al. 2016), and the FDA-approved MTOR inhibitor everolimus has shown
promising results in treating TSC-related refractory epilepsy (Krueger et al. 2013; French
et al. 2016; Saffari et al. 2019), which occurs in ∼30% of patients even after surgical resection
(Fallah et al. 2013). Similarly, other pathway-specific drugs can be repurposed to treat PROS.
For example, alpelisib, a PI3K inhibitor recently approved for the treatment of PIK3CA mu-
tation–positive hormone receptor–positive advanced breast cancer, has been used to treat
CLOVES with significant clinical improvement of body overgrowth (Venot et al. 2018; López
Gutiérrez et al. 2019; Delestre et al. 2021). Whether this and other inhibitors can be used to
treat epilepsy associated with PIK3CA-associated MCAP, HMEG or focal cortical dysplasia is
still under preclinical investigation. Nevertheless, mousemodels expressing hotspot PIK3CA
variants and corresponding histopathological neuronal findings have shown dramatic anti-
epileptic response to other PI3K inhibitors (e.g., BKM120) (Roy et al. 2015). Although further
clinical studies are needed, PI3K inhibitors or other pathway-specific drugs (such as mTOR
and AKT inhibitors) might have a role in treating PI3K-AKT-MTOR pathway–related intracta-
ble or recurrent epilepsy after surgical resection.

In conclusion, CSF-derived cfDNA-based molecular diagnostics provides a new method
for the detection of mosaicism in individuals with developmental brain disorders. This novel
method will not only facilitate an early and minimally invasive molecular diagnosis but might
also have therapeutic implications in refractory epilepsy as repurposed PI3K-AKT-MTOR
pathway–specific drugs are becoming more widely used.

METHODS

CSF was collected in a centrifuge tube and processed immediately after collection. CSF was
centrifuged for 10 min at 400g and 4°C and then the supernatant was transferred to 2 mL
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cryovial for further centrifuge (10min at 16,000g and 4°C). The cell pellet was discarded, and
the supernatant was frozen. Quality-control (QC) data showed DNA fragment sizes ranging
from 147 to 167 bp, consistent with cfDNA (Volik et al. 2016). Sequencing libraries were pre-
pared fromDNA samples and hybridized to a custom set of complementary RNA (cRNA) bio-
tinylated oligonucleotides targeting the exons of 63 genes in a panel including PTEN,
PIK3CA, AKT1, AKT3, and PIK3R2, among others, and select intronic regions for targeted
DNA sequencing (Megaplex, Agilent SureSelect, Agilent Technologies, Inc). The panel is
a targeted, massively parallel gene sequencing assay (https://testguide.labmed.uw.edu/
public/view/MEGPX). The test uses next-generation “deep” sequencing to detectmutations
including single-nucleotide variants (SNVs), indels, and copy-number changes including
gene amplifications. DNAwas extracted from CSF cfDNA, peripheral blood, and fresh tissue
samples using a purification kit (QIAsymphony Circulating DNA Kit; QIAsymphony 93756),
Gentra Puregene DNA Isolation Kit (Gentra 158489), QIASymphony DSP DNA Midi
QIAGEN Kit (QIAGEN 937255) (Kolarova et al. 2021). Sequencing libraries were constructed
from DNA using KAPA Hyper Prep kits (Kapa Biosystems Inc.) and hybridization was per-
formed with custom oligonucleotide probes (Agilent SureSelect, Agilent Technologies).
DNA sequencing was performed on a massively parallel instrument (HiSeq2500 sequencing
system, Illumina) with 2× 101-bp, paired-end reads according to the manufacturer’s
instructions.

Initial read mapping against the human reference genome (hg19/GRCh37) and align-
ment processing was performed using BWA version 0.6.1 (http://sourceforge.net/projects/
bio-bwa/files) and SAMtools version 1.3.1 (http://sourceforge.net/projects/samtools/files),
respectively. Sample-level, fully local indel realignment was then performed usingGATK ver-
sion 2.4.9 (Broad Institute). Duplicate reads were removed using PICARD version 1.72 (http://
broadinstitute.github.io/picard). Quality score recalibration was then performed using
GATK. This realigned and recalibrated alignment was used for all subsequent analyses.
SNV and indel calling were performed through the GATK Universal Genotyper using default
parameters and VarScan version 2.3.6 (http://dkoboldt.github.io/varscan). For indel calling
through VarScan, the minimum variant frequency was set to 0.01 reads, and the minimum
number of variant reads was set to 4, whereas for SNV calling, theminimum variant frequency
was set to 0.03, and the minimum number of variant reads was set to 5, with default param-
eters for all other settings. Variants identified by VarScan alone were manually reviewed us-
ing the Integrated Genomics Viewer version 2.3 (Broad Institute) to assess the quality of base
calls, the mapping quality for the reads, and the overall read depth at the site.

PINDEL version 0.2.570 was used to identify tandem duplications and indels >10 bp in
length. Structural variants were identified using CREST version 1.0 and BreakDancer version
1.1.1.71 For CNV analysis, copy number states for individual probes were initially called us-
ing CONTRA version 2.0.5 (http://sourceforge.net/projects/contra-cnv/files) with reference
to a CNV control comprising reads from two independent rounds of library preparation
and sequencing of the HapMap individual NA12878. CNV calls were made at the resolution
of individual exons using custom Perl scripts.

ADDITIONAL INFORMATION

Data Deposition
The PIK3CA variant identified in this patient (NM_006218.2: c.3139C>T, p.His1047Tyr) has
been deposited in ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) under accession number
SCV002104174.1 and submitted to the Leiden Open Variation Database (LOVD; https://
www.lovd.nl/) under submission number 0000406049.
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