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Abstract

For a genetically identical microbial population, multi-gene expression in various environ-

ments requires effective allocation of limited resources and precise control of heterogeneity

among individual cells. However, it is unclear how resource allocation and cell-to-cell varia-

tion jointly shape the overall performance. Here we demonstrate a Simpson’s paradox dur-

ing overexpression of multiple genes: two competing proteins in single cells correlated

positively for every induction condition, but the overall correlation was negative. Yet this phe-

nomenon was not observed between two competing mRNAs in single cells. Our analytical

framework shows that the phenomenon arises from competition for translational resource,

with the correlation modulated by both mRNA and ribosome variability. Thus, heterogeneity

plays a key role in single-cell multi-gene expression and provides the population with an

evolutionary advantage, as demonstrated in this study.

Author summary

Microbes perform multitasking for a wide range of purposes, including survival, adapta-

tion, colonization, and evolution. Both modelling and experimental results at the ensem-

ble level reveal trade-offs between different tasks due to resource competition, but it is

unclear how single cells allocate limited intracellular resources to perform multitasking,

and how does a population coordinate single cell performances during multitasking to

maximize population efficiencies. In this study, we address this question by using bacterial

multi-gene overexpression as the basic form of multitasking. We discovered and analyzed

a statistical phenomenon called Simpson’s paradox, where competing proteins in single

cells correlate positively at each constant condition, although the proteins correlate nega-

tively when all conditions are combined. We demonstrate that the phenomenon arises

from competition for translational resources, with the correlation modulated by heteroge-

neity of both mRNA and ribosomes. We further show that heterogeneity coordinates mul-

tiple functional modules, conferring an evolutionary advantage on the population. Our

work discloses that heterogeneity in the form of Simpson’s paradox is an important phe-

nomenon in coordinating multi-gene expression.
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Introduction

Bacteria often simultaneously turn on the expression of multiple pathways or cellular machin-

eries to perform multitasking in response to various conditions. Obtaining optimal outcomes

of multitasking is critical for population survival, bacteria-host interaction, cell-to-cell com-

munication, biofilm formation, and biosynthetic performance [1–5]. During multitasking,

modules for different tasks often compete with each other for limited intracellular resources,

which could affect the performance of the overall system [6–9]. At the most fundamental level,

it has been widely observed that overexpression of a heterologous gene decreases the expres-

sion level of other genes, leading to a negative correlation between competing proteins at the

ensemble level [10–12]. Meanwhile, the performance of a module also varies from cell to cell

due to biological stochasticity, leading to phenotypic heterogeneity. Distinctive phenotypes

within a genetically identical population are sometimes harnessed as a mechanism for division

of labor, where distinct subpopulations perform different tasks, thus reducing resource compe-

tition within each single cell. However, it remains elusive to what degree phenotypic heteroge-

neity affects simultaneous operation of multiple functional modules within every single cell.

Specifically, how do single cells deal with resource competition, and how does a population

coordinate single cell performances during multitasking to maximize population efficiencies

[2,13,14]?

Results

In bacteria, RNA polymerases (RNAPs) and ribosomes are believed to be the limiting factors

of transcription and translation, respectively [15]. To examine single cell multitasking in the

most fundamental form, we designed two competing gene overexpression modules with fluo-

rescent proteins as outputs (Fig 1A). One of them contains a constitutively expressed green

fluorescent protein (gfp) gene in the Escherichia coli chromosome mimicking a naturally-

occurring module [11]. The other competing module contains a Mycobacterium marinum car-

boxylic acid reductase (car) gene fused with an mCherry gene in a medium-copy plasmid. In

our test E. coli strain, the burdensome CAR-mCherry protein does not serve any additional

cellular or metabolic function [16], except for consuming global resources for both transcrip-

tion and translation during its expression. Isopropyl β-D-1-thiogalactopyranoside (IPTG)

mimics an environmental signal to increase the output of this module. Single cell GFP and

CAR-mCherry fluorescence in steady state conditions was measured using fluorescence

microscopy (Fig 1B) to evaluate heterogeneity in cellular performance. Under different IPTG

conditions, the population mean GFP fluorescence decreased as the population mean CAR-

mCherry fluorescence increased (Fig 1C), suggesting the presence of resource competition

between the two proteins, in good agreement with previous ensemble-level observations

[11,12]. At the single-cell level, the joint distribution of GFP and CAR-mCherry proteins

resembled a statistical phenomenon called Simpson’s paradox [17]: the correlations between

GFP and CAR-mCherry in single cells were positive at each constant induction condition,

whereas the overall correlation became negative when the data for all induction conditions

were merged (Fig 1D and S1A Fig). The negative trend is not affected by sample sizes when

merged data is evenly sampled across induction conditions, and the standard deviation of cor-

relation decreases with larger sample size (S1B Fig). The merged condition exemplifies the het-

erogenous and fluctuating environments where a microbial community lives, while each

induction condition exemplifies constant environments that a local microbial group adapts.

Thus, Simpson’s paradox phenomenon in bacterial gene expression may present in multiple

systems where local regions have relative consistent module inputs while these inputs vary
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Fig 1. Multi-gene expression in single-cells during translational competition. (A) Translational competition of CAR-mCherry and GFP over limited

shared ribosomes in single cells. The CAR-mCherry mRNAs are transcribed from an IPTG-inducible PlacUV5 promoter, while GFP mRNAs are

constitutively transcribed. (B) Representative fluorescence images of combined green (GFP) and red (CAR-mCherry) channels at various induction levels.

IPTG concentrations are labelled at the top of each image. Scale bars, 5 μm. (C) Population mean fluorescent intensity of GFP and CAR-mCherry at various

IPTG induction levels. Error bars represent standard deviations of three replicates from different days. (D) Correlation between CAR-mCherry and GFP

Bacterial multi-gene expression in single cells
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significantly among different regions in the system, such as biofilms [18] or large-scale fermen-

ters [14]. The opposite correlation patterns suggest that a microbial community has the poten-

tial to explore a large area of protein expression space within the resource-limiting region and

balance the outcome of multiple tasks (e.g., a certain ratio of correlated protein expression)

according to the local environment.

To understand the observed Simpson’s paradox and to quantify the combined effects of

both resource competition and cell-to-cell variation on multi-gene overexpression, we devel-

oped a generic analytic framework that can be applied to resource competition at different lev-

els (e.g., transcription, translation, and metabolism). Compared to previous resource

competition models [7,11,19–22], our model considers cell-to-cell variations in resource avail-

ability and focuses on heterologous expression systems that have strong competition with the

endogenous expression system, thus uniquely illuminating resource competition in engineered

cells at the single-cell level [23,24]. Our model has several important assumptions: i) to empha-

size the effect of resource competition, the two competing modules do not shared transcrip-

tional nor translational regulators, such as transcription factors and small RNAs; ii) the

amounts of resource available for gene expression, such as RNA polymerase or ribosome, vary

among single cells; and iii) all macroscopic reaction rate constants are evaluated at steady state

and do not vary among single cells.

The model was first applied to study translational competition (Note 1 in S1 Text), where

two module inputs, total heterologous mRNAs (M1
T) and total endogenous mRNAs (M2

T),

compete for the limited amount of total ribosomes (RibT), and produce heterologous proteins

(P1) and endogenous proteins (P2), respectively (Fig 2A). When RibT inside an individual cell

is fixed,

RibT ¼ RibF þ
n1 RibF

b1 þ RibF
MT

1
þ

n2 RibF

b2 þ RibF
MT

2
; ð1Þ

where RibF is the number of free ribosomes, ni is the average number of ribosomes bound to

the corresponding mRNA (i = 1, 2), and βi represents the dissociation constant. On the right

side, the second term
n1 RibF

b1þRibF MT
1

is proportional to P1, and the third term
n2 RibF

b2þRibF MT
2

is propor-

tional to P2. The repression on P2 caused by increasing M1
T (

@P2

@MT
1

) indicates the strength of

resource competition. In each cell, lower RibT and higher M1
T create stronger competition due

to fewer RibF (Fig 2B). The dissociation constants β1 and β2 largely determine @RibF

@MT
1

and
@P2

@RibF

respectively (Note1 in S1 Text). If β1 is much larger than RibF, the heterologous proteins P1 are

not burdensome enough to sequester a significant amount of free ribosomes (i.e. the absolute

value of @RibF

@MT
1

is small). If β2 is much smaller than RibF, the expression of endogenous proteins

P2 are not affected by reduced RibF (i.e. the value of
@P2

@RibF is small). In both cases, the strength of

resource competition is negligible (S2A and S2B Fig).

To introduce cell-to-cell variations, M1
T, M2

T, and RibT are considered as random variables

for individual cells, although they are assumed to be constants over time for each cell. At steady

expression levels of single cells at various IPTG induction levels. The last plot contains all data points merged from the other seven plots. The dashed lines

represent linear fittings to the data. a.u., arbitrary units.

https://doi.org/10.1371/journal.pcbi.1007643.g001
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state, cell-to-cell variations of protein expression levels can be described by a linearized model:

P1
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 !

¼
P1

P2

 !

þ

@P1
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1
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where X denotes the mean value of X at steady state. The covariance between P1 and P2 at

Fig 2. Coarse-grained model of translational resource competition. (A) The coarse-grained model considers ribosome allocation between heterologous (i = 1)

and endogenous (i = 2) mRNAs. The input, the output, and the resource are total mRNA Mi
T, protein Pi, and total ribosome RibT, respectively. RibT can either

be free ribosome RibF or mRNA-bound ribosome. (B) Ribosome competition in a single cell. Top, decrement of the free ribosome fraction (RibF/RibT) caused by

increasing M1
T. Bottom, negative correlation between endogenous protein (P2) and heterologous proteins (P1). Calculations of RibF, P1, and P2 are described in

Note 1.2 in S1 Text, with parameters listed in Table A in S1 Text. (C-F) Correlation between P1 and P2 of single cells, r(P1, P2). Calculation of r(P1, P2) is

described in Note 1.3 in S1 Text. M2
T variability is set as zero for simplicity. (C) Mean RibT (10,000) and RibT variability (0.1) are set as constants. (D) Mean M1

T

(300) and M1
T variability (0.1) are set as constants. (E) Mean M1

T (300) and mean RibT (10,000) are set as constants. (F) M1
T variability and RibT variability (both

0.1) are set as constants.

https://doi.org/10.1371/journal.pcbi.1007643.g002
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steady state is derived as

Cov P1; P2ð Þ ¼
@P1

@MT
1

@P2

@MT
1

Var MT
1

� �
þ
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2
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2

Var MT
2

� �
þ
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Var RibTð Þ

þ
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1
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2

þ
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1
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1
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2
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þ
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1

@P2
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2
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; ð3Þ

Considering the cell-to-cell variations in RibT and M1
T as the two main sources of cellular het-

erogeneity in this system, the covariance between P1 and P2 at steady state can be further

approximated as a linear combination of the variances in RibT and M1
T:

Cov P1; P2ð Þ ¼
@P1

@RibT

@P2

@RibT
Var RibTð Þ þ

@P1

@MT
1

@P2

@MT
1

Var MT
1

� �
; ð4Þ

where the first term is positive, and the second term is negative due to the competition effect

(
@P2

@MT
1

< 0). Critically, the opposite contributions from variances in RibT and M1
T reveal that

variation in the shared resource strengthens the correlation of module outputs, whereas varia-

tion in the competing module inputs weakens and even reverses the correlation. To character-

ize these variables at different magnitudes, we calculated the Pearson correlation coefficient (r)
and the squared coefficient of variance (CV2) as measures of correlation and variability. We

assumed that the RibT variability is a constant (approximately 0.1, the variability lower bound

of the typical abundant proteins in E. coli [25]). Here lies the explanation for the observed

Simpson’s paradox in multi-gene expression: the protein correlation is positive when M1
T vari-

ability is low (e.g., at each P1 induction condition as a constant environment), which is domi-

nated by the resource variation effect, but the correlation can be reversed by the competition

effect at high M1
T variability (e.g., combining different P1 induction conditions as a fluctuating

environment) (Fig 2C and 2E). The contributions from the two variation sources to the pro-

tein correlation (
@P1

@RibT
@P2

@RibT and
@P1

@MT
1

@P2

@MT
1

) depend on the mean values of both M1
Tand RibT of the

population (Note 1 in S1 Text). Intuitively, enhanced overexpression of heterologous genes

(higher mean M1
T) or limited total ribosome (lower RibT) would cause fewer resources to be

devoted to expressing native genes in single cells, causing reduced correlation between com-

peting proteins. In reality, our model shows that, within certain ranges (e.g., M1
T> 100 and

RibT< 10,000), a higher mean M1
T or a lower mean RibT increases the relative contribution

from RibT variance compared with M1
T variance in Eq (1), leading to increased correlation

between competing proteins (Fig 2C, 2D and 2F). These analyses are robust even when the full

Eq (3) was used (S2C–S2J Fig).

Next, we investigated whether the Simpson’s paradox also exists at the transcriptional level.

We applied our model to transcriptional competition and solved for correlations between

competing mRNAs in single cells (Note 2 in S1 Text and S3A Fig). The major difference

between transcriptional and translational competition is that mRNA production was believed

to be mainly determined by promoter strength (treated equivalently as promoter copy number

in our model), and to a lesser extent, by the amount of RNAPs [26–28], so the effects of both

RNAP competition and cell-to-cell variation in RNAPs are attenuated. Our model, with feasi-

ble parameters in transcription (i.e. the number total RNAP ranges from 4000 to 12000; disso-

ciation constants for RNAP binding range from 0.1 to 10), predicts three phenomena: i)

Bacterial multi-gene expression in single cells
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within a large parameter range (1 to 100 copies of strong promoters per cell), introducing het-

erologous genes causes little repression on endogenous mRNA production (S3B Fig), ii) the

correlations between competing mRNAs are determined by correlations between promoter

strengths, and the promoter strength correlations can be weak or even negative in constant

environments (S3C Fig), and iii) the correlations rarely change with promoter strength and its

variability (S3D Fig). These features largely prevent the Simpson’s paradox from occurring at

the transcriptional level (mathematically explanation in Note 2 in S1 Text).

To validate model predictions, we experimentally quantified mRNA outputs of our testing

modules in single cells, using two-color mRNA fluorescent in situ hybridization (FISH) (Fig

3A and 3B). The average GFP mRNA abundance was estimated to be approximately

2.02 ± 0.25 (mean ± s.d. across all conditions) copies per cell, ranking in the top 1% of all

endogenous genes [25] and in agreement with RNA-seq measurements from the studied E.

coli strain [29]. The GFP mRNAs at all induction levels followed similar Poisson distributions

(S4 Fig), suggesting that endogenous mRNAs are not repressed by increasing heterologous

mRNA levels (Fig 3C). Thus, both our model predictions and experimental results showed

that resource competition mostly occurs at the translational level rather than at the transcrip-

tional level, shining light on a previously debated issue about the cause of mRNA burden

[7,29,30]. We further observed that the mRNA correlations in each induction condition were

weak and positive, which also resulted in a weak and positive correlation when combining all

conditions (Fig 3D). The result reveals that the strengths (or copy numbers) of these two pro-

moter are weakly correlated likely due to cell division [31], and promoter strength variability

with the RNAP competition effect alone is not sufficient to reverse the weak mRNA correla-

tion in fluctuating environments.

Our data in Fig 1D showed that when expressing multiple genes under limited resources,

the ratio of competing proteins in single cells varies even when they are growing in the same

environments (e.g., induction levels). In some circumstances, such as expressing metabolic

pathways or multi-protein complexes with precise stoichiometry, it is desirable to keep multiple

genes expressed at a fixed ratio within single cells to achieve optimal overall performance and

maximize the efficiency of resource utilization. Using polycistronic operons in combination

with translational regulation is a common strategy for controlling the ratio of multiple proteins

at the ensemble level [32,33]. However, the protein ratio in single cells may be affected by trans-

lational competition, resulting in disrupted stoichiometry. To examine the degree of competi-

tion effects on multi-gene expression from polycistronic operons in single cells, we constructed

a library of polycistronic operons containing both mCherry and gfp genes driven by different

promoters (Fig 4A). We found that the ratios of mCherry protein to GFP were consistent

among single cells for each type of promoter, regardless of their promoter strength (Fig 4B and

4C). The ratios were observed to be different between the inducible PLacUV5 promoter and con-

stitutive promoters, which could be explained by different mRNA secondary structures near the

ribosome binding site of the mCherry gene. In addition, the correlation between mCherry and

GFP in single cells remained high, regardless of their expression strength and variability (Fig 4D

and 4E). Collectively, these results suggest that resource competition and cellular heterogeneity

hardly affect proportional protein production from the polycistronic operon.

Finally, we sought to explore the evolutionary benefits of correlated protein outputs in sin-

gle cells in the presence of resource competition. We considered a generic horizontal gene

transfer process, where the acquired genes bring beneficial functions, while they also negatively

affect the expression of native genes by competing for limited resources. An antibiotic resis-

tance model was built, where a species can independently deactivate two antibiotics by produc-

ing two resistance proteins, respectively (Note 3 in S1 Text). Positively correlated resistance

proteins allow a small subpopulation of cells to survive high concentrations of both antibiotics

Bacterial multi-gene expression in single cells
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Fig 3. Multi-gene expression in single-cells during transcriptional competition. (A) Transcriptional competition between car-mCherry and gfp genes for

limited shared RNAPs in single cells. CAR-mCherry mRNA and GFP mRNA were hybridized by Quasar 670- (blue) and Quasar 570-labeled (red) probes,

respectively. The fluorescence of the mCherry protein was deactivated via the M71G mutation to prevent spectral overlap. (B) Representative FISH images of

single cells induced at 500 μM IPTG. (C) Population mean mRNA copy numbers of GFP and CAR-mCherry at various IPTG concentrations. mRNA copy

numbers of CAR-mCherry and GFP were estimated from fluorescence intensity. Error bars represent the 95% confidence interval, determined by bootstrapping.

(D) GFP and CAR-mCherry mRNA copy numbers of single cells at various IPTG induction levels.

https://doi.org/10.1371/journal.pcbi.1007643.g003
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Fig 4. Polycistronic operon enables highly correlated protein expression. (A) Various promoters are used to control

the co-expression of mCherry and GFP from a polycistronic operon. (B) mCherry and GFP in individual cells under the

control of the inducible promoter PlacUV5 at different IPTG induction levels. a.u., arbitrary units. (C) mCherry and GFP

in individual cells under the control of constitutive promoters with different strengths. (D) Relationships among

variability, mean, and correlation between mCherry and GFP in the inducible promoter construct. (E) Relationships

among variability, mean, and correlation between mCherry and GFP in promoter library constructs. Variability and

mean are quantified using GFP.

https://doi.org/10.1371/journal.pcbi.1007643.g004
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(Fig 5), presenting a strategy for a population to cope with extremely harsh environments.

Because the resource competition effect is always accompanied by resource variation, our

results suggest an evolutionary mechanism that bacteria can use to compensate for the negative

resource competition effect during horizontal gene transfer.

Discussion

Overall, our results reveal that heterogeneity in shared resources and in competing modules

are two seemingly opposite driving forces that work together to coordinate protein outputs for

Fig 5. Correlated expression of resistance proteins in single cells facilitates population survival under multiple antibiotics. (A) An

antibiotic resistance model. Two hypothetical antibiotics, A1 and A2, are independently deactivated by two resistance proteins, R1 and R2,

respectively. Population survival rates are simulated in the presence of both A1 and A2. (B) Simulated joint distribution of R1 and R2 at three

different scenarios: negative correlation with r(R1,R2) = -0.8, uncorrelated with r(R1,R2) = 0, and positive correlation with r(R1,R2) = 0.8. (C)

The dependence of population survival rate on the correlation between R1 and R2. Error bars represent standard deviations of 100 simulations.

(D) Survival rate profiles at three simulated correlations as in B.

https://doi.org/10.1371/journal.pcbi.1007643.g005
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all genes in single cells. In harsh environments, positively correlated protein outputs allow a

small subpopulation of cells with abundant resources to support multitasking, facilitating indi-

vidual survival and evolution of the population, which could present a previously unknown

challenge in treating multi-drug resistant bacteria [34]. As a resource becomes abundant for all

cells, the corresponding module outputs no longer depend on the amount of the resource. In

this case, the effects of both resource competition and resource variation are weak, and the

module outputs rely solely on the corresponding module inputs and thus function indepen-

dently. This understanding of generic resource allocation in single cells provides a basis for

analyzing and designing more sophisticated gene regulatory networks with high precision and

ensemble efficiency.

Theoretically, our analytic framework can also be extended to describe competition and

heterogeneity in other competing cellular processes. For example, two enzyme pathways often

compete for a shared metabolite substrate. In this case, competition between two metabolic

pathways, together with heterogeneity in cellular metabolite concentration, could affect single-

cell metabolic flux in a similar way to that analyzed in this work, illuminating metabolic behav-

ior previously unknown from existing analyses that do not consider their joint effects [14,35–

37]. This improved understanding would bring us closer to more precise design of engineered

microbial systems for various applications in biotechnology.

Materials and methods

Strains and DNA construction

The DH10GFP E. coli strain originally created by the Ellis lab [29] was ordered from Addgene

(# 109392). The carboxylic acid reductase (car) gene was PCR amplified from the pB5k-sfp-car

plasmid as described in previous work [16]. A mCherry gene was fused to the C-terminus of

the car gene via a linker that encodes a helix-forming peptide A(EAAAK)3A, as used in previ-

ous paper [29]. The car-mCherry fusion gene was cloned into a BglBrick vector pBbA5c (p15A

origin, lacUV5 promoter, chloramphenicol selection marker) via Golden Gate DNA Assembly,

resulting in plasmid pBbA5c-CAR-mCherry. Meanwhile plasmid pBbA5c-CAR-mCherry

(M71G) carrying a non-fluorescent mCherry mutant (M71G) was created via site-directed

mutagenesis and was used in FISH experiments. Plasmids pBbA5c-CAR-mCherry and

pBbA5c-CAR-mCherry(M71G) were individually transformed to strain DH10GFP, yielding

strains sYH006 and sYH013, respectively (S2 Table). E. coli DH10B strain was purchased from

New England Biolabs Ltd. (Ipswich, MA, USA) and used as a negative control in the FISH

experiment.

To investigate correlated protein expression from the same operon, an IPTG-inducible Pla-

cUV5 promoter and a library of constitutive promoters were used to control the transcription of

mCherry and GFP from the same mRNA. Strong and identical RBS sequences (tttaagaaggaga-

tatacat) were used for both mCherry and GFP. A small library of constitutive promoters (S1

Table) was designed based on the sequence of BioBrick promoter J23119, and was constructed

into a plasmid with SC101 origin and chloramphenicol selection marker using a one-step

Golden-Gate DNA Assembly. All plasmids were confirmed by Sanger sequencing.

Growth conditions

Cell cultures were grown overnight in 3 mL of LB medium with 20 μg/mL chloramphenicol at

37˚C. The overnight cultures were diluted, in ratios between 1:400 and 1:1000, into 30 mL (for

FISH samples) or 3 mL (for fluorescent protein assay samples) of M9 minimal medium, sup-

plemented with 0.4% glucose, 1 mM thiamine, 0.4 mM leucine, and varying amounts of IPTG

in either baffled shake flasks (for FISH samples) or test tubes (for fluorescent protein assay
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samples). Cells were cultivated for approximately 10 hours (~5 cell cycles) and harvested in

exponential phase when an OD600 of 0.2–0.4 was reached. Cells cultivated for 9 hours to 12

hours were randomly harvested as controls to confirm that 10 hours incubation is enough for

the cells to reach a steady state.

Maturation of fluorescent proteins

To allow maturation of fluorescent protein for more accurate quantification, cells were incu-

bated for an additional period before taking fluorescence measurements [38–40]. Specifically,

1 mL of cell cultures were transferred into pre-chilled test tubes and placed in ice-water bath

for 10 min to halt cell growth and gene expression. The cell cultures were centrifuged at 13,000

rpm for 30 s at 4˚C. The supernatant was removed, and the pellet was resuspended in 1 mL of

phosphate buffered saline (PBS) solution containing 500 μg/mL of rifampicin. The resus-

pended cells were incubated at 37˚C for 90 min and subjected to imaging.

mRNA fluorescence in situ hybridization (FISH)

Probe design. Two sets of custom probes for GFP and CAR-mCherry were designed

using the online Stellaris Probe Designer (S4 Table) and synthesized by Biosearch Technolo-

gies Inc (Novato, CA, USA). Probes for GFP and CAR-mCherry were labelled with Quasar

570 and Quasar 670 fluorescent dyes, respectively.

Fixation and labelling. Cell fixation and mRNA labelling were performed following

established protocols[41]. In detail, 15 mL of each cell culture at OD600 = 0.4 were collected

and transferred to an ice-chilled 50-mL centrifuge tube, followed by immediate centrifugation

at 4,500 g for 5 min at 4˚C. The supernatant was carefully removed, and the pellet was resus-

pended in 1 mL of 3.7% formaldehyde in 1x PBS. The resuspended cells were then mixed

gently at room temperature for 30 min using a nutator. Next, the cells were centrifuged at 400

g for 8 min at room temperature, then washed twice with 1 mL of 1x PBS. Then the cells were

resuspended in 300 μL of DEPC-treated water, permeabilized by adding 700 μL of 100% etha-

nol, and mixed for 1 hour at room temperature using a nutator. After mixing, the cells were

centrifuged at 600 g for 7 min at room temperature, and then resuspended in 1 mL of 40%

wash solution (353 μL formamide, 100 μL 20x saline-sodium citrate (SSC), 547 μL water). The

resuspended solution was then gently mixed for 5 min at room temperature using a nutator

and centrifuged at 600 g for 7 min at room temperature. For each sample, the cell pellets were

resuspended in 50 μL of 40% hybridization solution (1 g of dextran sulfate, 3530 μL of form-

amide, 10 mg of E. coli tRNA, 1 mL of 20x SSC, 40 μL of 50 mg/mL BSA, and 100 μL of 200

mM ribonucleoside vanadyl complex for 10 mL solution) with probes at a final concentration

of 1 μM per probe set. The mixture was incubated at 30˚C overnight. Samples after hybridiza-

tion were then washed four times in 40% wash solution before imaging in 2x SSC.

Microscopy and image analysis

Microscopy was performed using a Nikon Eclipse Ti microscope (Tokyo, Japan) equipped

with an EMCCD camera (Photometrics Inc. Huntington Beach, CA, USA) and a 100 x, NA

1.40, oil-immersion phase-contrast objective lens. An X-Cite 120 LED was the light source.

Three band-pass filter cubes (FITC, DsRed, and C-FL CY5, all from Nikon Inc.) were used for

spectral separation. In both FISH and protein fluorescence experiments, an exposure time of

20 ms was used for phase-contrast images. In FISH experiments, the DsRed filter and the C-FL

CY5 filter were used to detect Quasar 570 (exposure time of 500 ms, with an electro-multiplier

gain of 200 x) and Quasar 670 (exposure time of 300 ms, with an electro-multiplier gain of 100

x), respectively. In protein fluorescence experiments, the FITC and the DsRed filter cubes were
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used to detect GFP (exposure time of 500 ms, no electro-multiplication) and mCherry (expo-

sure time of 300 ms, no electro-multiplication), respectively. The power of the LED light was

carefully controlled so that no significant photobleaching was detected. Images were collected

by an automated scanning function of the microscope with a built-in Perfect Focus System

(PFS) and analyzed using the Nikon NIS-elements software package. On average, 3000 single

cells per protein sample and 1000 single cells per FISH sample were collected and analyzed.

Cell segmentation. The phase-contrast images were used for cell identification and seg-

mentation. Overlapped cells, dividing cells, and long unhealthy cells (totaling less than 1%)

were excluded by a length filter, an area filter, and visual inspection.

mRNA fluorescence quantification. Single cell mRNA fluorescence was quantified fol-

lowing the previous method[41]. Specifically, background fluorescence was first subtracted to

eliminate the effects of autofluorescence on different images. The total fluorescence intensity

within a cell was normalized by the cell area to reduce the influence from variations in cell

cycles and growth rates. False-positive thresholds for Quasar 570 and Quasar 670 were deter-

mined by the fluorescence distribution in a negative control sample (E. coli DH10B strain).

The fluorescence intensity of a single mRNA was identified by the peak position of the fluores-

cence distribution in low-expression cells. To convert the total fluorescence in a cell to the

mRNA copy number, we divided the total by the average fluorescence intensity of a single

mRNA and rounded the value to the closest integer.

Protein fluorescence quantification. The background fluorescence of each image was

subtracted, and the total fluorescence intensity of each cell was normalized by cell area. The

cell-area-normalized total pixel intensity was used as the single-cell protein expression level.

Statistics

Gene expression variability was quantified in terms of the variance over the squared mean.

The Pearson correlation coefficient r X1;X2ð Þ ¼
CovðX1 ;X2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðX1ÞVarðX2Þ
p was utilized to quantify the corre-

lation between the expression levels of two genes in single cells. The 95% confidence intervals

of all estimated parameters were constructed by bootstrap method.

Data and code availability

The data and the MATLAB codes for modelling results that support the findings are available

from https://github.com/yhan0410/Data-and-model-in-Heterogeneity-coordinates-bacterial-

multi-gene-expression-in-single-cells.
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S1 Fig. Data reproducibility for the Simpson’s paradox phenomenon in multi-gene expres-

sion. (A) Dashed lines are linear fitting of the merged data. The three replicates were per-

formed at different days. (B) Correlation from random and evenly sampling across all

induction conditions. Error bars represent standard deviations of 100 replicates.

(TIF)

S2 Fig. Translational resource competition under various parameters. (A) The relationship

between endogenous protein (P2) and heterologous proteins (P1) at various β1 values. (B) The

relationship between endogenous protein (P2) and heterologous proteins (P1) at various β2 val-

ues. β1 and β2 are varied by tuning β1
+ and β2

+ (from 1�10−2 to 1�10−6) respectively. (C-J) The

same relationship as Fig 2C–2F with M2
T variability set as 0.1. (C-F) correlation between M1

T

and M2
T is set as 0. (G-J) correlation between M1

T and M2
T is set as 0.2.

(TIF)

S3 Fig. Coarse-grained model of transcriptional resource competition. (A) Schematic of

RNAP allocation among heterologous genes (i = 1), endogenous protein-coding genes (i = 2),

and rRNA/tRNA genes (i = 3). RNAPF, free RNAPs; RNAPT, total RNAPs; Di
F, genes free from

RNAPs; Di
C, gene-RNAP complexes; Di

T, total genes; Mi, total mRNAs. (B) RNAP competi-

tion in a single cell. Left, relationship between D1
T and the fraction of free RNAP (RNAPF/

RNAPT). Right, relationship between heterologous mRNA (M1) and endogenous mRNA (M2)

caused. Calculations of RNAPF, M1, and M2 are described in Note 2.2 in S1 Text with parame-

ters listed in Table A in S1 Text. (C) Correlations between competing mRNAs in single cells r

(M1, M2) changes with correlations between promoter strengths r(D1
T, D2

T) (left), D1
T (cen-

ter), and RNAPT (right). D1
T> 200 is considered as unrealistic region. RNAPT affects r(M1,

M2) only in RNAP limiting region.

(TIF)

S4 Fig. Distributions of mRNA copy number under different conditions. Single-cell GFP

mRNA copy numbers measured from FISH were fitted to Poisson distributions due to its tran-

scription from a constitutive promoter. CAR-mCherry mRNA copy numbers were fitted with

negative binomial distributions because they were transcribed from an inducible promoter.

(TIF)
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