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Abstract

Background: Cerebral small vessel disease (CSVD) is a common neurological disease present in the ageing
population that is associated with an increased risk of dementia and stroke. Damage to white matter tracts
compromises the substrate for interneuronal connectivity. Analysing resting-state functional magnetic resonance
imaging (fMRI) can reveal dysfunctional patterns of brain connectivity and contribute to explaining the
pathophysiology of clinical phenotypes in CSVD.

Materials and methods: This systematic review provides an overview of methods and results of recent resting-
state functional MRI studies in patients with CSVD. Following the Preferred Reporting Items for Systematic Reviews
and Meta-Analysis (PRISMA) protocol, a systematic search of the literature was performed.

Results: Of 493 studies that were screened, 44 reports were identified that investigated resting-state fMRI
connectivity in the context of cerebral small vessel disease. The risk of bias and heterogeneity of results were
moderate to high. Patterns associated with CSVD included disturbed connectivity within and between intrinsic
brain networks, in particular the default mode, dorsal attention, frontoparietal control, and salience networks;
decoupling of neuronal activity along an anterior–posterior axis; and increases in functional connectivity in the early
stage of the disease.

Conclusion: The recent literature provides further evidence for a functional disconnection model of cognitive
impairment in CSVD. We suggest that the salience network might play a hitherto underappreciated role in this
model. Low quality of evidence and the lack of preregistered multi-centre studies remain challenges to be
overcome in the future.

Keywords: Brain network, Cerebral small vessel disease, Cognition, Functional connectivity, Magnetic resonance
imaging, Resting state, Risk of bias, Patho-connectomics, Systematic review
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Background
Cerebral small vessel disease (CSVD) is a term that de-
scribes clinical, neuroimaging, and pathological features
assumed to arise from compromised blood flow in the
intrinsic cerebral arteriolar system [1]. In its later stages,
CSVD is associated with neurological symptoms, in par-
ticular lacunar ischaemic stroke, and cognitive impair-
ment ranging from mild deficits to vascular dementia [2,
3]. Small vessel disease is estimated to be the main etio-
logical factor in up to 23% of all ischaemic strokes [4]
and to be the second most common contributing factor
to dementia after Alzheimer’s pathology [5] and is thus
responsible for a growing disease burden in ageing
societies.
Even in its pre-symptomatic stage, CSVD is associated

with structural brain changes on neuroimaging, in
particular white matter hyperintensities (WMH) of
presumed vascular origin, lacunes, cerebral microbleeds,
enlarged perivascular spaces, and brain atrophy [6].
Cardiovascular risk factors, such as hypertension, dia-
betes, smoking, or dyslipidaemia, are associated with
both WMH and the clinical sequelae associated with
CSVD [7, 8].
In recent years, the network perspective on the human

brain has revolutionised neuroscience and advanced our
understanding of neurological and psychiatric disorders
[9–12]. The network paradigm posits that different brain
regions, while spatially remote, are structurally and func-
tionally linked and interact to facilitate brain functions.
Analysis of structural brain networks by magnetic
resonance diffusion tensor imaging revealed that WMH
disrupts the topological organisation of the brain con-
nectome and that the associated loss of network
efficiency links vascular risk burden and cognitive im-
pairment [13–16]. Nevertheless, there remains consider-
able variability in clinical phenotypes, such as cognitive
impairment or affective functions, that is not explained
by structural markers alone [17–19].
Functional connectivity (FC), on the other hand, is de-

fined as the pattern of synchronous neuronal activation
[20], which, in turn, can be probed in vivo using the
blood-oxygen level-dependent (BOLD) signal in mag-
netic resonance imaging (MRI) [21]. Functional connect-
ivity can be analysed either in response to tasks and
external stimuli or in the resting-state which minimises
the cognitive and behavioural demand on subjects [21].
The latter provides a description of the spatiotemporal
organisation of brain activity, from which discrete modes
can be extracted as intrinsic resting-state networks that
correspond to specific cognitive domains [22].
Recently, the benefits of such a shift of perspective

toward a more global understanding of brain function
have also been recognised for cerebral small vessel
disease [23]. While the clinical benefits of

understanding patterns of disrupted FC associated
with CSVD might seem, at the moment, very limited,
our vision is that, ultimately, it might contribute to
designing and implementing patient-specific interven-
tions in the form of neuropsychological training or
electromagnetic stimulation to help ameliorate cogni-
tive impairment. Evidence for the relevance of dis-
turbed connectivity especially in the default mode,
dorsal attention, and frontoparietal control networks
to cognitive impairment in CSVD has been reviewed
previously, covering the literature up to 2014 [24]. In
the present article, we provide an overview over the
rapidly expanding recent literature on altered resting-
state connectivity patterns associated with CSVD. In
contrast to previous work, we include studies of both
clinically healthy individuals and patients with mani-
fest CSVD and consider both distributed networks
and point-to-point connectivity. In order to keep the
review focused, we restrict attention to resting-state
functional MRI studies and do not review studies
using a task-based design or different imaging modal-
ities, such as electro- or magnetoencephalography.
The goal is to take stock of the current literature,
review methodological advances in recent years, and
update our understanding of the neural mechanisms
underlying the cognitive deficits that patients with
CSVD face.

Methods
A systematic review of the literature was performed ac-
cording to the Preferred Reporting Items for Systematic
Reviews and Meta-Analysis (PRISMA) statement [25];
the protocol for the review was not preregistered.

Literature search and study selection
Inclusion criteria for articles considered in this review
were as follows: (1) written in English, (2) analysing ex-
clusively human study participants, (3) published after
January 2010, (4) radiological evidence of sporadic cere-
bral small vessel disease with structural brain imaging
showing manifestations of CSVD in the form of white
matter hyperintensities in at least a subset of the study
population, and (5) analysis of resting-state functional
connectivity using functional MRI. We excluded review
articles; descriptions of ongoing studies; functional im-
aging studies using only electroencephalography, magne-
toencephalography, or positron emission tomography;
and reports concentrating exclusively on patients with
non-sporadic CSVD, e.g. of genetic origin, or non-
vascular dementias, e.g. Alzheimer’s disease.
Following a prespecified search strategy, the PubMed

online database was queried for studies published
between January 2010 and November 2020 using the
conjunction of keywords specific for pathology (‘small
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vessel disease’, ‘white matter lesion’, ‘leukoaraiosis’,
‘microangiopathy’), network science (‘connectivity’, ‘net-
work’, ‘graph’, ‘module’), and imaging modality (‘MRI’,
‘BOLD’, ‘resting state’) as search criteria (see Additional
file 1 for the exact search strategy). In addition, refer-
ences of search results were screened for further eligible
articles. Studies were discarded if the title or abstract in-
dicated failure to meet all the specified inclusion or sat-
isfaction of at least one exclusion criterion. The
remaining articles were read in full and evaluated ac-
cording to the stated criteria.
The risk of methodological bias in individual studies

(PRISMA items 12 and 19) was assessed using the
Appraisal tool for Cross-Sectional Studies (AXIS tool)
[26], modified to not contain items related to presen-
tation of the Results, the Discussion of findings, or
the Funding of the study [27]. Detailed descriptions
of individual items are presented in Additional file 1:
Table S1. Based on the number of quality criteria sat-
isfied, each study was assigned an integer score from
0 (no criteria satisfied) to 11 (all criteria satisfied).
Trichotomising this ordinal scale, we classified the
risk of bias as high (score 0–3), moderate (4–7), or
low (8–11). We strived to cover the literature com-
prehensively, and even a high risk of basis was there-
fore not defined as an exclusion criterion for this
review.

Data extraction and analysis
After screening, the following data were extracted from
the articles: year of publication; sample size; average age
and clinical characteristics of study populations includ-
ing measures undertaken to minimise confounding by
comorbidities; the employed operationalisation of cere-
bral small vessel disease and severity grading of WMH;
details of the scanning parameters and pre-processing
steps including the controversial topics of motion scrub-
bing and global signal regression; the analytical approach
to functional connectivity; and key results regarding pat-
terns of altered connectivity in patients with CSVD and,
if reported, their relation to cognitive performance.
For ease of presentation, studies were classified ac-

cording to clinical characteristics of the study popula-
tion—manifest CSVD, healthy participants, or others,
not primarily vascular clinical conditions—and their
main approach to quantifying and analysing connect-
ivity. These predefined analytical categories included
short-range connectivity within a part of the brain,
long-range connectivity between pairs of remote brain
areas defined either a priori or using a data-driven
approach, and global analyses of topological proper-
ties of the functional connectome. We also reviewed
the cognitive tests applied in these studies and

associations of cognitive ability with functional con-
nectivity measurements.

Results
Study characteristics
The results of the search and selection process are sum-
marised in Fig. 1. We identified a total of 493 potentially
relevant papers, 471 of which were obtained by search-
ing PubMed and 22 through personal communication or
as references cited in other works. Four hundred seven-
teen papers were excluded based on their title or ab-
stract. Of the remaining 76 studies, which were read in
full by both MS and ES, 44 were included in this review.
Details of individual studies are summarised in Table 1.
The number of subjects, including both patients with

small vessel disease and controls depending on study de-
sign, varied between 11 and 1584 with a median sample
size of 72.5 (interquartile range [IQR] 50.8–106.8). Mean
age across studies ranged from 50.0 to 76.4 years, with a
median of 66.0 years (IQR 62.4–69.8 years).
Regarding the underlying research questions, roughly

half of the included studies (24/44) reported the investi-
gation of altered functional connectivity patterns in the
presence of cerebral small vessel disease and its relation
to cognitive ability as their primary research objective.
Of these, six reports focused on patients with CSVD ex-
clusively, whereas the study designs of the remaining re-
ports involved comparing groups of healthy controls,
patients with non-vascular cognitive impairment, or
both. Twelve studies reported measures of cerebral small
vessel disease, often as part of a more comprehensive as-
sessment of structural brain parameters, and functional
connectivity in populations of healthy participants with-
out clinically manifest vascular pathology or cognitive
impairment. Eight articles addressed functional connect-
ivity in the context of other clinical conditions not dir-
ectly related to vascular pathology, such as tau
pathology-associated cognitive impairment or depres-
sion, but included markers of small vessel disease as
covariates.

Operationalisation of CSVD and associated cognitive
impairment
All of the 24 MRI studies reporting on resting-state
functional connectivity in the context of clinically overt
CSVD defined the presence of white matter hyperinten-
sities on T2-weighted cerebral MR imaging as one of
their inclusion criteria. In more than half of the studies
(14/24), these were evaluated according to the ordinal
Fazekas scale [55, 56]; in three studies, authors chose the
Wahlund scale to assess age-related white matter
changes [32]; white matter lesion load was also quanti-
fied volumetrically in eight studies; no precise definition
of imaging criteria was reported in five articles.
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When white matter disease was reported as a struc-
tural covariate in the investigation of functional connect-
ivity, the extent of structural changes was quantified
using either absolute or relative white matter hyperin-
tensity volumes. Techniques for segmenting WMH on
either T2 or FLAIR sequences included manual, semi-
manual, and fully automated approaches; in one case,
the algorithm was not described [57].
Beyond the presence of white matter lesions, evidence

of lacunes or recent lacunar infarcts was considered in
13/24 studies; the distinction between the two entities
was often imprecise, with only three articles referring to
the STandards for ReportIng Vascular changes on nEu-
roimaging (STRIVE, [6]) consensus statement in this
context [31, 50, 51]. Reflecting their conceptualisation as
fluid-filled cavities, lacunes were defined as hypointense
ovoid regions on T2- or FLAIR-weighted imaging with a
diameter ranging from [2–3] to [15–20] mm. Three
studies required patients with CSVD to have evidence of
at least one lacuna or recent lacunar infarct [28, 42, 52],
while one report excluded such patients [36]. Informa-
tion on the number of lacunes contributed to the defin-
ition of a compositive CSVD score in one study [49]; in
the remaining cases, it was either reported descriptively
or used as a covariate in statistical analyses [50]. While
most studies specified cortical or large subcortical

infarcts as an exclusion criterion, one article included
such patients specifically [43].
In addition to imaging findings, clinical characteristics

were used to define patient cohorts. This was done to ei-
ther separate patients and participants with and without
cognitive impairment; to differentiate patients with
CSVD from patients with non-vascular cognitive impair-
ment, especially Alzheimer’s disease; or to grade the
severity of vascular cognitive impairment, ranging from
cognitively normal (CN) over mildly affected (variably
called subcortical vascular mild cognitive impairment
[svMCI], or vascular cognitive impairment no dementia
[VICND]) to subcortical vascular dementia (SVaD). In
addition to dedicated diagnostic criteria for different de-
mentias [58, 59], cognitive assessment was based pre-
dominantly on scales such as the Mini Mental State
Examination (MMSE), Montreal Cognitive Assessment
battery (MoCA), or Clinical Dementia Rating scale
(CDR). A minority of studies used the Petersen criteria
and included functional activities and temporal evolution
of cognitive abilities in their definition of mild cognitive
impairment [60, 61]. Only three studies employed posi-
tron emission tomography (PET) to distinguish tau and/
or amyloid pathology from purely vascular disease [49,
62, 63], and the risk of confounding by mixed disease
seems therefore high in the majority of reported studies.

Fig. 1 Systematic literature search and article screening results. The PubMed electronic database was searched on 1 December 2019, on 28 June
2020, and again on 22 November 2020. Together with articles obtained through other sources (personal communication, cited articles), 493
papers were identified, screened by M. S., and assessed based on inclusion and exclusion criteria. Full texts were obtained for 76 articles; these
were assessed against the stated criteria by M. S. and E. S. The included 44 articles were classified on the basis of characteristics of the
study population
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Functional MRI acquisition and pre-processing
Magnetic resonance imaging was performed on scanners
from a variety of vendors (Siemens, Philips, GE), usually
at 3 Tesla. The use of specialised receiver head coils,
multi-band, or multi-echo techniques was rarely re-
ported. Repetition time (TR) and echo time (TE) were
predominantly set at 2000 ms and 30 ms, respectively,
with exceptional values ranging from 700 to 4500 ms
and 13 to 84 ms, respectively. Reconstructed voxel sizes
in the BOLD scans varied in the range [1.7–4] × [1.7–
4] × [2–6] mm3, arranged in a three-dimensional matrix
of dimensions varying in the range [64–128] × [64–
128] × [20–64]. The number of acquired BOLD volumes
varied between 100 and 700 (median 230, IQR 180–
240). Participants were asked to keep their eyes open in
12 and closed in 20 of the reviewed studies; 12 articles
provided no information. Description of functional MRI
acquisition parameters was incomplete in 26 of the 44
analysed studies (61%); methods were judged as not-
repeatable in these cases (AXIS item 11). Hemodynamic
lags were not considered.
Pre-processing steps common to most studies in-

cluded slice-time correction; realignment to a reference
volume to correct for head motion; normalisation to a
template space (usually MNI EPI [64]) including resam-
pling; temporal band-pass filtering (lower end 0.005–
0.01 Hz; upper end 0.08–0.15 Hz); and smoothing with a
Gaussian filter of full-width at half maximum (FWHM)
between 4 and 8mm.
Confound regression and motion scrubbing were per-

formed and reported less uniformly, as detailed in Ta-
bles 1 and 2. Specifically, global signal regression (GSR),
that is orthogonalisation of voxel-wise timeseries with
respect to the average BOLD signals from the white and
grey matter, or the whole brain, was undertaken in 27/
44 studies. Twenty-five studies employed subject-wise
censoring in which participants were excluded from fur-
ther analysis if the maximum or average head translation
or rotation during the scan exceeded a certain threshold
ranging from 0.5 to 3 mm translation and 0.5 to 3° rota-
tion. Ten studies performed volume censoring according
to a framewise displacement (FD) or framewise transla-
tion/rotation cut-off, excluding participants with too few
remaining uncontaminated volumes [31, 49]. Two stud-
ies used spike regression [39, 65].

Connectivity analysis
The majority of studies investigated large-scale func-
tional connectivity between remote brain areas, choosing
full or partial temporal correlations between the BOLD
time courses as a measure of connectivity. Regions of
interest were defined a priori using external brain
parcellations in 16 cases. Twenty-seven studies used a
data-driven approach such as independent component

analysis (ICA), seed-based connectivity analysis (SCA),
or local BOLD activity (amplitudes of low-frequency
fluctuations [ALFF]) to define regions of interest for fur-
ther analysis. Many authors interpreted alterations in
functional connectivity in the context of a small number
of large-scale resting-state brain networks (RSNs), in
particular the default mode (DMN) and frontoparietal
control (FPCN) networks, but also the dorsal attention
(DAN) and salience (SN) networks [22]. Eight reports
used graph theoretical approaches, including global net-
work parameters such as efficiency and clustering coeffi-
cient [31, 42, 43, 52, 53]; analysis of modularity
structures [45, 50]; and self-referential quantification of
region-specific centrality [35] to summarise the patterns
of connectivity between multiple regions and to thus re-
flect global organisational principles of the brain
networks.
Three studies investigated short-range connectivity

[38, 66, 67], using regional homogeneity (ReHo) to
quantify the similarity between BOLD signals as a
marker of local connectivity [68].
The main findings of individual studies with respect to

alterations in resting-state functional connectivity in the
context of cerebral small vessel disease are summarised
in Table 1. Patterns of altered connectivity were
expressed either in comparison to healthy controls or
along a gradient of increasing severity of CSVD imaging
markers. For clinically or radiologically manifest CSVD,
reduced functional connectivity dominated the findings
on a global scale [43, 45, 53]. Within resting-state net-
works, lower functional coupling was repeatedly re-
ported between components of the default mode
network [28, 35, 44, 46, 47, 51], which is further sup-
ported by the co-occurrence of reduced DMN connect-
ivity and increased WMH burden in patients with non-
vascular cognitive impairment [62]. Within the FPCN,
reduced connectivity was found in the left insula [46],
whereas the right inferior parietal cortex appeared to be
more strongly coupled to the rest of this network [51].
The average coupling between the DMN and FPCN was
found to be reduced in patients with CSVD [51], even
though a small number of inter-network edges showed
increased connectivity [39]. The connectivity of the
DAN was altered in relation to other networks with in-
creased coupling to the FPCN and reduced coupling to
the posterior DMN [39, 51]. The same pattern of altered
inter-network connectivity was reported for the salience
network [48]; intrinsic connectivity in the SN was in-
creased in patients with CSVD and in association with
the extent of white matter disease [83]. In healthy indi-
viduals or patients without symptomatic CSVD (Table
2), most studies did not report significant associations
between FC and WMH burden [66, 79, 82, 86, 92]. Two
studies found an association between higher FC,
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especially in occipital and frontal areas, and WMH bur-
den [87, 93], whereas in patients with late-life depression
the pattern was more similar to the one seen in patients
with CSVD [69, 71].

Assessment of cognitive impairment
In the majority of studies, cognitive testing on partici-
pants was performed and investigated in association with
the extent of white matter disease and functional con-
nectivity. In addition to scales covering the global level
of cognitive functions and deficits (MMSE, MoCA, and
CDR), impairments in specific cognitive domains were
quantified by sub-scores of these global scales or specia-
lised neuropsychological test batteries, operationalising,
in particular, executive function, processing speed, and
memory. Table 3 summarises key findings of individual
studies in these different domains. Most studies were
able to confirm known associations between CSVD and
cognitive impairment on the one hand, and, albeit less
robustly, between functional connectivity and cognitive
impairment on the other hand. Only few articles, how-
ever, addressed the question of how structural white
matter damage and functional connectivity interact to
affect cognition. In one analysis of 127 clinically healthy
participants of the Harvard Ageing Brain Study, it was
shown that the extent of WMH-associated decoupling of
structural and functional connectivity in the default
mode network correlated with both executive function
and memory [81]. Moreover, in a combined analysis of
140 healthy participants and 90 patients with both vas-
cular and non-vascular cognitive impairment, the au-
thors demonstrated that the association of higher WMH
load with poorer executive function and memory scores
was moderated by global functional connectivity in the
FPCN and by local FC in the salience network [65].

Risk of bias and confounding
Risk of bias was assessed using the AXIS tool for all 24
studies recruiting patients with clinical CSVD. We did
not formally assess the risk of bias in studies reporting
results on FC and WMH in the context of conditions
different from vascular cognitive impairment or in longi-
tudinal studies. According to the AXIS tool, all studies
thus assessed had an at least moderate risk of bias (10/
24 moderate, 14/24 high). The distribution of assess-
ments of individual quality items of the tool is depicted
in Fig. 2 a. The overall aim or objective of the study
(Item 1) was deemed unclear in 14 studies, often because
of a lack of distinctions between exploratory and con-
firmatory, and causal and correlational approaches. In 9
cases, where aims included the inference of causal effects
or were too broad to be assessed, a cross-sectional de-
sign was judged as inappropriate (Item 2). The sample
size was not satisfactorily justified in any study. The

reference population (Item 4) was mostly adequately
specified as patients with CSVD, qualified by lists of in-
clusion and exclusion criteria. In five studies, the defin-
ition of the target population was unclear or
contradictory. All but one article reported results from
single-centre studies that recruited a convenience sam-
ple from a clinical setting; in these cases, the sample
frame (Item 5) was judged as inappropriate and the se-
lection process (Item 6) as non-representative. The ex-
ceptions were an analysis of a formal clinical register
[84, 99]. No article addressed non-responders. Risk fac-
tors and outcomes (Item 7) were mostly valid (see
above); exceptions included one unvalidated method to
quantify WMH load [87] and the use of global graph pa-
rameters such as efficiency and path length. Reliability of
outcome measures (Item 9) was generally judged to be
low given the poor reproducibility of FC estimates in the
context of CSVD, except for studies who explicitly esti-
mated reliability as part of the study design [31, 42].
There were two main problems with the statistical
methods used: firstly, confusion of exploratory and con-
firmatory approaches (cf. Item 1) led to a lack of clearly
specified hypotheses and thus to inappropriately con-
trolled type-I error rates in the case of multiple testing;
secondly, many papers employed multi-scale approaches,
in which results from the first, often global, analyses in-
formed hypotheses tested in later, often more local, ana-
lyses. It is known that this method can inflate the rate of
false-positive findings if the entire analysis pipeline is
not accounted for properly, for example in a bootstrap
loop [100]. The quality of the description of methods
varied considerably. No article provided links to the pro-
gram code used in the analysis, but this was not required
to satisfy Item 12. Specific shortcoming included incom-
plete reporting of MRI acquisition parameters, lack of
description of structural image pre-processing, and lack
of detail in the description of statistical methods, such as
choice of covariates, method to determine of p-values,
or correction for multiple testing. The distribution of ag-
gregate AXIS scores is shown in Fig. 2b. Given that none
of the included studies had a low risk of bias or was pre-
registered, the overall risk of bias in the reviewed litera-
ture seems high.
Cardiovascular risk factors such as age, hypertension,

diabetes mellitus, and dyslipidaemia are known to be as-
sociated with imaging markers of CSVD [101]. They also
affect cerebrovascular reactivity and the circulatory auto-
regulation in response to neuronal activity (neurovascu-
lar coupling) [29] and are thus potential confounders of
the relation between WMH and BOLD-derived func-
tional connectivity. Similarly, vasoactive medications, in
particular antihypertensives, which are commonly pre-
scribed to patients with CSVD as well as substances like
nicotine or caffeine may alter neurovascular coupling
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Table 3 Summary of reported associations between altered FC patterns in CSVD and cognitive ability. Arrows indicate positive (↗)
and negative (↘) associations

Cognitive
domain

Reference Instruments

General [47] – MMSE ↗ FC between the left thalamus–left orbitofrontal
lobe

[38] – MMSE ↗ ReHo in the right angular gyrus and precuneus
MoCA ↗ ReHo in the bilateral angular gyrus, the right
precuneus, medial/dorsolateral PFC, and supplementary
motor area

[39] – MMSE ↗ FC right precentral–right calcarine fissure, left
posterior inferior parietal lobe–left Heschl, right posterior
inferior parietal lobe–right dorsolateral PFC
MMSE ↘ FC right posterior inferior parietal lobe–left Heschl,
left intraparietal sulcus–right superior temporal gyrus
MoCA ↗ FC right posterior inferior parietal lobe–right
anterior PFC, right posterior inferior parietal lobe–right
dorsolateral PFC
MoCA ↘ FC right posterior inferior parietal lobe–left Heschl,
left intraparietal sulcus–right superior temporal gyrus

[53] – MoCA ↗ small-worldness

[33] – MMSE ↘ parieto-occipital FC in patients with confluent WMH

Executive
function

[35] CERAD battery [96] Phonemic fluency ↗ FC in bilateral sup. parietal lobe, SMA,
premotor cortex, MCC, and posterior superior frontal sulcus
RTStroop, neutral ↘ FC in the bilateral premotor cortex, superior
frontal sulcus, left inferior frontal sulcus, left SMA, left middle
temporal sulcus, and right MCC
RTStroop, neutral ↗ FC in the inferior parietal lobe and
cerebellar lobules Crus II, VIIb, and VIII
RTTMT-A ↘ FC in the bilateral premotor cortex, left posterior
middle frontal gyrus, left inferior frontal sulcus, right superior
parietal lobe, and left SMA
RTStroop, incongruent ↘ FC in the left premotor cortex/posterior
middle frontal gyrus
RTStroop, incongruent ↗ FC in the cerebellar regions VI, Crus I,
and Crus II

[81] Letter/category fluency, letter-number sequencing of the
WAIS-III, Digit Span Backward of the WAIS revised (WAIS-R),
Self-Ordered Pointing task, mod. Flanker task, and TMT A/B
Confirmatory factor analysis [97]

Executive function ↗ FC-SC decoupling in DMN

[36] Visuospatial/executive sub-score of MoCA Executive function ↗ FC in the right cingulate motor area

[83] Stroop test Time interference index ↗ FC in anterior DMN and SN

[65] TMT A/B, Stroop test
Latent variables

Association (executive function ↘ WMH) attenuated in
patients with high global FC in FPCN
Associations (executive function ↘ WMH) and (memory ↘
WMH attenuated) in patients with high local FC in SN

[51] TMT-A/B, Stroop test RTTMT-A ↘ FC in FPCN in the right inferior parietal lobule
RTTMT-A ↘ FC between the dorsolateral PFC and DMN
between bilateral PCC and right precuneus

[43] Semantic similarity test
Stroop test

Mean FC ↗ similarity index
Stroop C score ↗ path length, ↘ global efficiency

Memory [45] Auditory Verbal Learning Test [AVLT] [98] Delayed recall ↘ participation coefficient left superior parietal
lobule
Recognition ↘ characteristic path length

[65] AVLT, structural equation modelling Memory ↗ WML*global FC

[52] AVLT FC ↘ long recall between right olfactory–right rectus; ↘
short recall between right olfactory–left pallidum
FC ↗ RTTMT-A between right olfactory–left pallidum
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[102]. Despite this, reporting of and adjustment for co-
morbidities and medication was poor in the reviewed
studies. While information on the demographic variables
age and sex was provided in all reviewed articles, only
about half reported results of analyses adjusted for these
factors. Nine articles gave details on cardiovascular risk
factors, yet none attempted to control for their potential
confounding effect. Effects of prescribed medication or
caffeine intake were not considered.

Discussion
For this systematic review, we identified 44 articles pub-
lished in the previous 10 years reporting on MRI-derived
resting-state functional brain connectivity in patients
with white matter hyperintensities of presumed vascular
origin as a marker of cerebral small vessel disease. Based
on patient characteristics and research objective, studies
could be divided into three groups: (1) group compari-
sons of patients with clinically and/or radiologically
manifest CSVD, often involving a control group of
healthy participants or patients with CSVD at different
levels of cognitive impairment; (2) cohort studies of clin-
ically healthy individuals in which white matter hyperin-
tensities are reported as one of several parameters, often
with the aim of characterising structure–function rela-
tionships or patterns of brain ageing; (3) investigations
of resting-state connectivity in clinical conditions not
primarily related to vascular pathology, in which

measures of white matter disease were reported as
covariates.
The overall median sample size of included studies

was 68. There was a stark contrast in sample size be-
tween studies of patients with symptomatic CSVD (me-
dian 58, IQR 46–84, n = 24) and studies of clinically
healthy participants (median 145, IQR 73–293, n = 12).
Samples in studies focusing on non-vascular clinical
conditions were of intermediate size (median 73, IQR
55–95, n = 8). These differences might be due to in-
creased complexities associated with recruiting patients
in a clinical context or the fact that some of the larger
studies used data from comprehensive population-based
research efforts, such as the Rotterdam Study [84, 103],
the Harvard Brain Ageing Study [81, 82, 104], or the UK
Biobank [93, 105].

Operationalisation of CSVD is study-context dependent
In addition to sample size, groups of studies also differed
in their approaches to quantifying the severity of white
matter disease. Clinically focused studies tended to rely
on validated rating scales, such as the Fazekas or Wah-
lund scale, which assign an ordinal score based on the
extent and distribution of white matter hyperintensities
on T2-weighted MR imaging. A minority of studies con-
sidered the presence of lacunar infarcts as an additional
marker for CSVD. The population-based studies of
healthy participants, on the other hand, employed the

Fig. 2 Assessment of risk of bias of 24 reviewed articles using the Appraisal tool for Cross-Sectional Studies (AXIS). a Distribution of per-item
scores, indicating, for each item, the number of articles satisfying its definition. A detailed description of AXIS items and shortcomings of
individual articles is presented in Additional file 1: Tables S1 and S2. b Distribution of aggregate AXIS scores computed as the number of items
satisfied by any given reviewed article. Trichotomisation of the theoretical range 0–11 leads to the risk of bias being judged as high (0–3),
moderate (4–7), or low (8–11)
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cumulative volume of WMH as a continuous measure of
disease burden. Numerical lesion load has the advantage
of providing better resolution of inter-individual differ-
ences in groups of mildly affected participants; in
addition, it can be determined reasonably reliably using
automatic or semi-automatic image processing methods,
although some degree of manual post-processing was
usually done in the studies reviewed here [106]. Brain at-
rophy as a structural marker of both CSVD and neuro-
degenerative disease is known to be associated with
changes in intrinsic brain connectivity [107]; it was in-
cluded in many of the population-based studies using ei-
ther the total intracranial volume to normalise observed
WMH loads or region-specific grey matter volume, such
as can be obtained from voxel-based morphometry
(VBM) or cortical thickness measurements. Although
methods have been developed to segment perivascular
spaces (PVS) and cerebral microbleeds in an automated
fashion [108–114], none of the reviewed articles utilised
enlarged PVS, and only one used microbleeds [49] as a
marker of CSVD.
The variety of qualitative and quantitative analysis

methods reflects the clinical heterogeneity of study pop-
ulations comprising patients with CSVD at different
stages of the disease. An attempt at standardising the as-
sessment and reporting of imaging markers of CSVD
was made in the STandards for ReportIng Vascular
changes on nEuroimaging (STRIVE) position paper [6].
However, despite being published in 2013, the defini-
tions and recommendations outlined in the STRIVE
were referenced in only six of the 33 reviewed papers
published after 2013 [31, 50–52, 62, 108].

Functional connectivity methods reflect clinical
heterogeneity
The analysis of recorded BOLD signals has not been
standardised, with a broad variety of coupling measures
and dimensionality reduction techniques being at the
disposal of the researcher [20]. All reviewed studies used
Pearson’s correlation coefficient to quantify the syn-
chrony between BOLD time series in different parts of
the brain. No clear distinction between full and partial
correlations was often made, thus making the interpret-
ation of direct or indirect connectivities difficult [115].
Similarly, the handling and interpretation of negative
correlations was rarely reported or discussed [116–118].
None of the included articles attempted to estimate di-
rected [119–121] or time-varying functional connectivi-
ties [122–124], or to quantify patterns of synchronous
activity involving more than two regions [125, 126].
Analytical approaches included whole-brain analyses
(eigenvector centrality, connectivity density); the investi-
gation of functional connectivities between region of in-
terests, often components of well-defined intrinsic

resting-state networks, which were either derived from
the data themselves (independent component analysis)
or specified a priori by an external brain parcellation;
and combinations of the two (seed-based correlation
analysis).
Brain parcellations for the region-of-interest-based

analyses were mostly based on anatomically defined at-
lases, such as the automatic anatomical labelling (AAL)
atlas [127], the Desikan–Killiany parcellation [128], or
the H-1024 random parcellation [129], which do not
take into account the functional architecture of the
brain. Only three very recent articles [31, 49, 66] used
the multimodal brain parcellations of Power [130] or
Schaefer [131], or the Brainnetome atlas [132], which
have been shown to better respect the functional organ-
isation of the brain [22]. In addition to interpreting
changes in functional connectivity directly, a few studies
attempted to summarise patterns of FC by measures of
global network organisation using graph theory. These
approaches have been instrumental in the study of com-
plex brain networks and include parameters to reflect
the notions of integration, such as efficiency or charac-
teristic path length; segregation, such as clustering coef-
ficients; or community structure, quantified by
modularity scores and participation coefficients [9, 133,
134]. With the exception of community detection, how-
ever, these network parameters have been defined only
for structural brain networks and lack validation for net-
works derived from functional connectivity [135].

Structure–function coupling shapes the impact of CSVD
The large-scale temporospatial organisation of neuronal
activity in the brain is known to be supported and con-
strained by the anatomy of axonal projections that form
structural connections between both adjacent and re-
mote brain areas [136, 137]. This coupling between
structure and function is particularly pronounced in the
default mode network [138], possibly reflecting the long
periods of time that the brain is engaged in inward-
directed thought, memory formation and retrieval, or so-
cial estimation [139]. While the structural connectome
thus contributes to maintaining stable neural activity
patterns, it also means that normal functional connectiv-
ity is vulnerable to damage to white matter pathways as
occurring in CSVD [140]. Most articles included in this
review quantified the extent of white matter damage by
using either neuroradiological rating scales or total le-
sion volume, as detailed above. Such global approaches
are, however, not able to differentiate between lesions in
functionally silent brain areas that can more easily be
compensated by rerouting information through alterna-
tive redundant pathways, and lesions in functionally crit-
ical, strategic locations, where even spatially limited
damage can be associated with substantial behavioural
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sequelae. In the context of cognition, damage to subcor-
tical nuclei and tracts with a high density of neuromodu-
latory projections such as the dorsomedial and anterior
thalamic nuclei or the anterior limb of the internal cap-
sule appears to be particularly consequential [24, 52, 87,
141]. Advanced diffusion-weighted structural imaging
modalities allow the spatial mapping of fibre tracts and
the quantification of tract-specific white matter lesion
loads [142, 143]. In combination with resting-state
BOLD imaging, this approach has been used to show
that leukoaraiosis disrupts functional connectivity in a
spatio-topological non-uniform way that is shaped by
the anatomy of the brain’s white matter scaffold [84].
The strongest association between tract-specific is-
chaemic damage and reduced FC was observed in the
fronto-occipital fasciculus, which supports connectiv-
ity between the salience and frontoparietal control
networks [144]. In addition to affecting functional
connectivity directly, ischaemic white matter disease
also seems to exert an indirect effect by modulating
the coupling between structural and functional con-
nectivity. Specifically, the association between mean
diffusivity in the cingulum bundle and functional con-
nectivity between the medial prefrontal and posterior
cingulate cortices was significantly attenuated in pa-
tients with higher WMH burden, thus contributing to
decoupling the anterior and posterior parts of the de-
fault mode network [81].
Both structural and functional connectomes share

properties of complex networks, such as the presence of
network communities, high-clustering with short path
length (small-worldness), and hierarchical organisation
[11, 145]. With cognition considered an emergent prop-
erty of distributed neuronal activity in the brain [146,
147], understanding the behavioural sequelae of CSVD
requires an understanding of how ischaemic lesions dis-
turb not only specific fibre tracts and functional connec-
tions but also the global organisation of synchronous
activity. Graph theoretical analyses have suggested that
the global topology of functional brain networks in the
presence of CSVD exhibits increased path length and
modularity and reduced small-worldness that correlated
with cognition [45, 53]. A similar effect was also ob-
served in the structural networks of patients with CSVD
and ischaemic stroke [13, 15, 148–150].
An intriguing open question is the differentiation be-

tween altered functional connectivity as a direct conse-
quence of damage to the supporting fibre tracts, and
compensatory changes. The latter are thought to con-
tribute to maintaining normal cognitive function in the
early stages of the disease [83]. Indeed, increased coup-
ling between brain areas has repeatedly been reported in
cognitively normal individual with white matter hyperin-
tensities [78, 87, 93].

Resting-state FC informs an updated disconnection
hypothesis
The association of white matter hyperintensities of pre-
sumed vascular origin with cognition has been exten-
sively described [151–153], and indeed, cognitive
impairment is one of the clinical hallmarks of manifest
cerebral small vessel disease [154]. On the other hand,
resting-state fMRI connectivity has been found useful in
extracting neural correlates of cognitive function and
mood disorders [155, 156]. Under normal physiological
circumstances, patterns of coordinated activity within
and between a small number of large-scale intrinsic
brain networks have emerged as particularly relevant
[146], including activation of the default mode network
in brain states characterised by self-referential thought
or rest that is anti-correlated with activation of the dor-
sal attention network; deactivation of the default mode
network during focused attention on external stimuli
[157]; and a modulating role of a frontoparietal control
network with increased connectivity to the DMN as a
correlate of working memory performance [158, 159].
Building upon these ‘cornerstones’ of functional con-
nectivity under normal physiological circumstances, a
disconnection hypothesis has been developed that postu-
lates reduced DMN and FPCN connectivity, decoupling
of neuronal activity along the anterior–posterior axis,
and functional disconnection of the prefrontal cortex as
neuronal correlates of cognitive impairment in CSVD
[24]. This model is supported by several recent studies
that reported decreased functional connectivity between
the medial PFC and posterior components of the DMN
in patients with CSVD [28, 44, 47], and observed an as-
sociation with reaction times in the Stroop test [35]. A
behaviorally relevant dissociation in functional resting-
state fMRI activity and local connectivity was found be-
tween the anterior and posterior parts of the DMN with
lower ReHo and ALFF values in the medial PFC and
higher values in the precuneus and posterior cingulate
cortex in patients with CSVD compared to healthy con-
trols [38, 44]. Both increases and decreases of FC within
the FPCN and DAN as well as their coupling with the
DMN have been reported to be associated with CSVD
[39, 46, 51], but the heterogeneity of these results and
limited correlation with cognitive test scores makes it
difficult to distinguish primary effects of disconnection
from compensatory changes or sampling variability with-
out physiological relevance.
In addition to these established networks, connectivity

patterns of the salience network (SN) have recently been
investigated, with increased SN-FPCN and SN-DMN
couplings associated with small vessel disease [51]; add-
itionally, increased connectivity within the SN in patients
with CSVD was associated with worse performance in
the Stroop interference test [83]. In patients with mild
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cognitive impairment, the association between white
matter disease and executive function was attenuated in
the presence of increased local connectivity of the sali-
ence network [65]. The salience network includes the
anterior insula, the dorsal anterior cingulate cortex, and
subcortical components. Similar to the FPCN, it has a
critical role in switching activity between different brain
networks and has been implicated as a key component
in network models of neuropsychiatric disorders [160–
162]. Specifically, increased connectivity within the SN
and altered SN-DMN and SN-FPCN coupling have been
described in patients with Alzheimer’s disease and mild
cognitive impairment [163–165].
Community-dwelling adults with early CSVD often

perform normally on neuropsychological tests and only
report mild subjective cognitive deficits [166]. This pre-
clinical stage has been linked to compensatory mecha-
nisms especially in patients who benefit from a larger
cognitive reserve [167, 168]. Three recent studies pro-
vide further evidence for this hypothesis, linking in-
creased functional connectivity to frontal and temporal
areas to ischaemic white matter lesion load in cognitively
normal subjects [78, 83, 93].

Current knowledge is limited by the risk of bias,
confounding, and methodological constraints
While it is possible to extract consistent themes from
the reviewed articles that point toward physiologically
relevant patterns of altered FC in the context of CSVD
and cognitive impairment, the current literature is char-
acterised by a high degree of heterogeneity of individual
results. As discussed above, this may partly reflect vari-
ability in pre-processing and analytical approaches as
well as heterogeneity in the clinical populations under
investigation. However, given the absence of preregis-
tered reports or high-quality multi-centre studies and
the predominantly moderate-to-high risk of bias in indi-
vidual studies, it must be assumed that selective report-
ing allowed the literature to be contaminated by a
substantial number of false-positive findings, reflecting
spurious associations and group differences. In addition,
it is possible that reported results are confounded by the
presence of other age-related pathology or neurodegen-
erative comorbidities, such as Alzheimer’s disease [169],
which were considered specifically in only a small mi-
nority of studies.
Comparison and synthesis of individual study findings

is further hampered by differences in data cleaning tech-
niques, which are known to influence functional con-
nectivity estimates [170]. Two important dimensions of
BOLD pre-processing relate to removal of the global sig-
nal from the whole brain or tissue type compartments,
and handling of subjects or frames with high motion.
Global signal regression is known to be effective at

mitigating the widespread inflation of connectivity esti-
mates induced by subject motion, resulting in an ele-
vated distance-dependence of residual motion artefacts
[171]. Despite this theoretical prediction and the obser-
vation that GSR might improve associations between FC
and behavioural measures [172], the use of GSR was not
associated with specific patterns of altered connectivity
or stronger relations with cognitive measures in the
reviewed papers. Similarly, no clear effect of different
motion scrubbing strategies, i.e. the censoring of subjects
or individual volumes due to excessive average or frame-
wise displacement, could be recognised. It seems likely
that the myriad of unstandardised pre-processing
choices is contributing to the heterogeneity of published
results and that findings which have not been shown to
be robust with respect to such choices should therefore
be interpreted with great care.
Even ignoring potential biases inherent in study design

and publication practice, the study of FC in the context
of CSVD may be limited by more fundamental obstruc-
tions. One concern is that the reliability of estimating
functional connectivity may be negatively affected by the
presence of white matter lesions itself. Two of the
reviewed studies reported results from repeated mea-
surements on participants in longitudinal designs [31,
42]. Worryingly, in both cases, resting-state fMRI mea-
sures were found to be poorly reproducible, indicating a
further need to evaluate their robustness as an imaging
biomarker. In one case, this might have been a conse-
quence, in part, of using a brain parcellation that does
not respect the functional boundaries between brain
areas, which is known to be damaging to network esti-
mation [119]. However, the persistence of low reliability
measures for a range of network characteristics across
network densities and atlas resolutions, as well as the
particularly poor reproducibility of functional network
measures in patients with CSVD compared to controls,
suggests more fundamental problems beyond the choice
of parcellation. The finding of poor reproducibility of
RSNs and graph metrics in CSVD contrasts with high
reproducibility reported in healthy participants [173–
176] and patients with stable multiple sclerosis [177–
179]. It has been suggested that age and confounding
age-related pathologies could be responsible for reduced
reliability of functional connectivity estimates [180, 181];
however, specific methodological challenges arise in pa-
tients with cerebral small vessel disease as a conse-
quence of microvascular pathology, that are absent in
other conditions.
As a measure of synchronous brain activity, the inter-

pretation of BOLD-derived functional connectivity is
contingent upon an understanding of the relation be-
tween neuronal activity and local blood flow. This neu-
rovascular coupling, however, is known to be altered in
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normal ageing as well as the presence of ischaemic dis-
ease [102, 182, 183], and attributing differences in
BOLD-derived measures of connectivity to either vascu-
lar or neuronal factors is therefore challenging [184].
More specifically, white matter lesions of presumed vas-
cular origin are known to be associated with subcortical
hypoperfusion [185], possibly reflecting observed rar-
efaction of the microcirculation in a mouse genetic
model of CSVD [186]. The later stages of neurovascular
coupling involve dynamic upregulation of regional blood
flow mediated by increased CO2 concentration in areas
of increased neuronal activity [102]. This mechanism ap-
pears to be affected in the presence of CSVD as demon-
strated by a diminished cerebrovascular response to
hypercapnia in an early study involving 24 patients with
leukoaraiosis [187], and an association between WMH
load and sonographically assessed measures of pulsatility
and dynamic autoregulation in a cohort of elderly pa-
tient with cardiovascular risk factors [188]. These find-
ings are further complicated by differences in age-
related changes in cerebrovascular reactivity between
grey and white matter [189]. BOLD-derived functional
connectivity is a function of BOLD activity in remote
brain areas, and spatial variations in age- or disease-
related changes in neurovascular coupling might there-
fore affect FC estimates in unpredictable ways [190]. A
small study of 25 subjects with WMH found that while
cardiovascular risk factors are associated with cerebro-
vascular reactivity, no such association was observed for
resting-state functional connectivity in the default mode
network [29]. One potentially testable hypothesis about
the effects of impaired neurovascular coupling on func-
tional connectivity estimates derives from the observa-
tion that BOLD-derived measures of synchronous brain
activity are a composite of true coincident neuronal acti-
vation (‘signal’) and shared noise, where the latter tends
to be more dominant for short-range connections [171].
Reduced ‘signal’ strength as a consequence of a lower
vascular response would therefore be expected to result
in weaker and less precise FC estimates, especially in
long-range connections.

Limitations
While being comprehensive in our inclusion of primary
research articles from electronic databases and other
sources, we cannot exclude the possibility that additional
findings from the grey literature, such as blogs or un-
published conference abstracts, have not been covered
by this review. In order to keep the scope of the work fo-
cused, we have not included reports of task-based con-
nectivity or resting-state connectivity derived from
electrophysiological recordings. Findings obtained using
these alternative paradigms and modalities might lend
further support to the themes of disturbed connectivity

patterns outlined above. This review attempted a quali-
tative synthesis of the recent literature; the heterogeneity
of study designs and populations did not permit the
extraction and quantitative analysis of numerical effect
estimates beyond sample size and age of participants.
From a meta-analytical perspective, it can be noted,
however, that all studies of patients with clinically mani-
fest CSVD report significant FC alterations, while that is
the case for only 30% of the population-based studies
despite larger sample sizes. This discrepancy could
reflect larger effect sizes in clinically preselected patients
or indicate selective reporting in the sense of publication
bias [191].
For conciseness, we have concentrated our attention

on cognitive impairment as one of the main clinical se-
quelae of CSVD. Associations of altered patterns of
functional connectivity with depressive symptoms, ap-
athy, or gait imbalance were rarely reported and have
not systemically been explored here. As an entry point
to the recent literature, we note that abnormal func-
tional coupling has been observed as a correlate of late-
life depression in the context of the vascular depression
hypothesis [192–195]; while apathy has been investigated
using resting-state fMRI in various clinical contexts
[196–198], results on gait disorders are scarce [34, 199].
Functional connectivity does not seem to interact with
race or socio-economic status as possible contributing
factors to neurodegeneration [200].

Conclusion
The large number of recent studies investigating resting-
state fMRI connectivity in the presence of cerebral small
vessel disease reflects an active ongoing interest to
understand the interplay between structural brain dam-
age, associated changes in the spatiotemporal organisa-
tion of neural activity, and clinical sequelae. The
literature documents accumulating evidence for a net-
work disruption model underlying cognitive impairment
in CSVD that is characterised by disordered connectivity
patterns in the DMN and FPCN and a decoupling of
neuronal activity along the anterior–posterior axis, me-
diated by structural damage to long association tracts
and cortico-subcortical connections. In addition, evi-
dence is emerging that altered connectivity of the sali-
ence network might be a novel neuronal correlate of
cognitive deficits in patients with CSVD.
The synthesis of population-based studies involving

healthy participants with low white matter disease bur-
den and clinical studies recruiting patients with manifest
CSVD suggests a pattern of increased functional con-
nectivity in various frontal and temporal brain areas
consistent with compensatory upregulation at low white
matter disease burden in the early stages of the disease,
and dysfunctional patterns of functional connectivity
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among distributed brain networks in more severely af-
fected patients, possibly reflecting a break-down of com-
pensatory mechanisms as the disease progresses and
cognitive symptoms develop.
Further research is needed to address the problem

of poor reproducibility of resting-state functional
brain networks in patients with CSVD and to estab-
lish interacting effects of white matter damage of pre-
sumed vascular origin and functional reorganisation
on cognition in preregistered, sufficiently powered,
longitudinal studies. We expect particularly useful in-
sights from multimodal investigations that combine
resting-state and task functional MRI with electro-
physiological recordings or metabolic imaging to im-
prove temporal resolution and infer cellular processes
relating to pathology.
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